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INTRODUCTION 
 

Variability in the trajectory of age-related cognitive 

decline has stimulated research into the relationship 

between systemic inflammation and cognitive function. 

Polymorphisms in immune response-related genes [1–6] 

and elevated markers of systemic inflammation [7–11] 

have been associated with an increased rate of cognitive 

decline. In addition, severe acute systemic inflammation 

can result in long-lasting cognitive impairments, 

including increased susceptibility to neurodegeneration 

after resolution of the infection [12–14]. Concern about 

the history of inflammation has increased due to the 

COVID-19 pandemic and neurological features of the 

disease, which suggest possible long-term effects [15–

19]. The results from studies in humans suggest that in 

order to understand the relationship between severe 

infections that arise in adulthood and cognitive 

impairment with advanced age, it is important to 

distinguish between changes in baseline verses a 

difference in the trajectory of cognitive decline [10, 11, 

20–26]. 

 

Animal models indicate that inflammation induced by 

lipopolysaccharide (LPS) treatment, during a period of 

neurodevelopment or in young adulthood, may increase 

vulnerability to cognitive impairment with age or due to 

a subsequent occurrence of systemic inflammation 

through altered synaptic plasticity mechanisms [27–29]. 

One possibility is that early inflammation primes or 

trains the brain to increase responsiveness to a 
secondary immune stimulation by either a subsequent 

systemic inflammation or chronic low-level systemic 

inflammation associated with aging. In contrast, other 
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studies indicate that LPS treatment in young adults 

result in immune tolerance in the brain due to long-

lasting epigenetic changes, resulting in decreased 

expression of LPS-induced pro-inflammatory genes, 

cytokines, chemokines, and neurotrophic factors, and 

increased phagocytosis [30, 31]. The goals of this study 

was to longitudinally examine the effect of systemic 

inflammation, administered in young adult (6 months) 

male rats, on subsequent cognitive decline during aging, 

and related treatment effects on synaptic function and 

gene expression in the hippocampus. 

 

RESULTS 
 

Behavioral characterization at 12 months of age 

 

At 6 months of age, rats were injected with vehicle (n 

= 12) or LPS (n = 12) once a week for 7 weeks. 

Cognitive function was first assessed at 12 months of 

age (6 months after the onset of injections). For the 

cue discrimination task, there was an effect of 

training [F(4, 80) = 18.76, p < 0.0001] in which 

animals swam less distance to find the platform over 

the blocks of training (Figure 1A), in the absence of a 

treatment effect. Similarly, for spatial discrimination 

training, there was an effect of training [F(4, 80) = 

12.2, p < 0.0001] on the distance to find the platform 

(Figure 1B), in the absence of a treatment effect. A 

repeated measures ANOVA performed on the DI 

scores for the acquisition, 2-hr, and 24-hr memory 

probe trials indicated no effect of treatment and an 

effect of repeated testing [F(2, 44) = 3.848, p < 0.05]. 

Post hoc analysis indicated that the DI scores for the 

24-hr probe trial were reduced relative to the 

acquisition and 2-hr retention probe trials 

(Figure 1C). Finally, one group t-tests, on the DI 

scores within each treatment group and probe trial, 

indicated performance was above chance for each 

group for each probe trial. The results indicate that, at 

middle-age, no group effects were observed for 

acquisition or retention of a spatial episodic memory, 

examined 6 months after the LPS injections. 

 

 
 

Figure 1. Vehicle and LPS treated animals learn cue and spatial discrimination with no difference in learning or memory at 
12 months, 6 months after treatment. Symbols represent mean escape path length (± SEM) for vehicle (open circles) and LPS treated 
(filled circles) animals over the training blocks for (A) cue and (B) spatial discrimination. (C) Box and whisker plots and individual DI scores 
from the acquisition, 2 hr and 24 hr probe trials. Pound sign indicates significant difference from chance (p < 0.05).  
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Behavioral characterization at 18 months of age 

 

At 18 months of age (12 months after the injections), 

the escape platform location was moved to a different 

location and rats were again assessed for acquisition and 

retention of a spatial episodic memory. A repeated 

measures ANOVA indicated an effect of training [F(4, 

80) = 12.31, p < 0.0001], such that the distance to find 

the platform decreased over the training blocks, in the 

absence of a treatment effect (Figure 2A).  

 

A repeated measures ANOVA on the DI scores 

indicated an effect of repeated testing [F(2, 44) = 17.65, 

p < 0.0001] and treatment [F(1, 22) = 5.0, p < 0.05]. 

Post hoc tests for the repeated testing indicated that the 

24-hr DI scores were reduced compared to the 

acquisition and the 2-hr probe trials and the 2-hr probe 

trial was reduced relative to the acquisition probe. Post 

hoc tests for treatment effects on each probe trial 

indicated that LPS-treated animals performed poorly 

compared to vehicle treated for the 24-hr probe [F(1, 

22] = 4.65, p < 0.05]. One-tailed t-test indicated that 

both groups performed above chance during the 

acquisition and only vehicle treated animals were above 

chance for the 2-hr probe trail (Figure 2B). 

 

While LPS treated animals exhibited impaired retention 

relative to controls, it is clear that age also influenced 

retention over the 24-hr delay. The interaction of age 

(12 and 18 months) and treatment was examined for 

probe trial performance using repeated measures 

ANOVAs. For the acquisition probe trial, a repeated 

measures ANOVA indicated decreased performance 

with age [F(1, 22] = 4.5, p < 0.05] in the absence of a 

treatment effect. However, planned repeated measures 

ANOVAs within each group indicated an age effect for 

the LPS group [F(1, 11] = 6.23, p < 0.05], but not the 

vehicle group (p = 0.52). Similarly, for the 2-hr probe 

trial a repeated measures ANOVA indicated a 

significant effect of age [F(1, 22] = 17.46, p < 0.0005] 

in the absence of a treatment effect and planned 

repeated measures ANOVAs within each group 

indicated a significant effect of age for the LPS group 

[F(1, 11] = 20.19, p < 0.001], but not the vehicle group 

(p = 0.12). Finally, for the 24-hr retention probe trial, a 

significant effect of age [F(1, 22] = 16.86, p < 0.0005], 

was observed in the absence of a treatment effect and 

planned repeated measures ANOVAs within each group 

indicated a significant effect of age for the LPS group 

[F(1, 11] = 14.36, p < 0.005] and a trend for an age effect 

in the vehicle group (p = 0.07). Thus, while age-related 

memory deficits over 24-hrs were variable in vehicle 

treated animals, a robust decline in memory was observed 

over the course of aging for LPS treated animals. 

 

Hippocampal synaptic function 

 

The effect of LPS exposure at 6 months of age on 

hippocampal synaptic transmission examined at 18 

months of age was assessed in animals that were not 

behaviorally characterized. Hippocampal CA1-CA3 

synaptic strength was examined by recording total-

fEPSP and generating input-output curves and plotting 

the slope of total synaptic response across the different 

stimulation intensities for vehicle (n = 8/4 

slices/animals) and LPS (n = 8/4 slices/animals) treated 

animals. A repeated-measures ANOVA performed 

across the stimulation intensities indicated an effect of 

stimulation intensity [F(7, 98) = 44.281, p < 0.0001]. 

Despite a general decrease in the synaptic response for   

 

 
 

Figure 2. Vehicle and LPS treated animals learn the spatial discrimination and differences in memory emerge at 18 months, 
12 months after treatment. Symbols represent mean escape path length (± SEM) for vehicle (open circles) and LPS treated (filled circles) 
animals over the training blocks for (A) spatial discrimination. (B) Box and whisker plots and individual DI scores from the acquisition, 2 hr 
and 24 hr probe trials. Pound sign indicates significant difference from chance (p < 0.05). Asterisk indicates significant treatment difference 
(p < 0.05). 
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LPS treated animals, no effect of treatment or 

interaction of treatment and stimulation intensity was 

observed for total synaptic response (Figure 3A). After 

assessing the total synaptic response, the NMDAR-

mediated synaptic component was pharmacologically 

isolated. Again, we generated input-output curves for 

vehicle and LPS treated animals. For the NMDAR-

mediated synaptic response, a repeated measures 

ANOVA indicated an effect of stimulation intensity 

[F(7, 98) = 42.774 p < 0.0001], treatment [F(1, 14) = 

39.439, p < 0.0001], and an interaction of intensity X 

treatment [F(7, 98) = 26.346, p < 0.0001] due to a 

robust decrease in the NMDAR-mediated synaptic 

response in LPS treated animals compared to vehicle 

(Figure 3B). 

The decline in the NMDAR-mediated component of 

synaptic transmission with age can result from a decline 

in receptors or a redox mediated hypofunction [32–34]. 

To determined possible differences in NMDAR 

function due to redox state, the reducing agent, DTT, 

was added to the bath after collection of baseline 

NMDAR-mediated synaptic responses and the response 

was collected for 1 hr in slices obtained from LPS (7/4 

slices/animal) and vehicle (7/4 slices/animal) treated 

animals (Figure 3C). An ANOVA indicated no difference 

between groups; however, t-tests indicated that DTT 

application increased the synaptic response relative to 

baseline in slices from vehicle control animals [t (6) = 

6.26, p < 0.001], while the post DTT response was not 

different from baseline in LPS treated animals (Figure 3C). 

 

 
 

Figure 3. Decreased NMDAR-mediated synaptic responses associated with prior LPS treatment. Input-output curves for 

the mean slope (± SEM) of the total fEPSP (A) and NMDAR-fEPSP (B) evoked by increasing stimulation voltage (V). Data is presented 
for the vehicle (open circles) and LPS treatment (filled circles) recorded at 18 months, 12 months after the final LPS or veh icle 
injection. (C) Bars illustrating mean percentage change in NMDAR fEPSP slope induced by bath application of DTT in slices obtained 
from LPS (n = 7/4 slices/animal) or vehicle (n = 7/4 slices/animal)-treated animals. The distribution of individual responses is also 
depicted.  
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RNA expression  

 

For behaviorally characterized LPS (n = 8) and 

vehicle (n = 8) treated rats, RNA-sequencing was 

performed on the CA1 region of the hippocampus 

collected at 18 months of age. Differential expression 

filtering resulted in 157 genes that increased and 286 

genes that decreased with treatment. For the genes 

that increased with LPS treatment, unsupervised 

functional annotation analysis indicated that these 

genes were enriched for lipid biosynthetic process 

(Figure 4, Table 1). Functional annotation clustering 

analysis for genes that were downregulated with LPS 

treatment were related to excitatory synapse, 

postsynaptic density, dendrite, synapse, neuron 

projection development, and synapse organization 

(Figure 4, Table 1). In order to examine possible 

candidate genes related to inflammation, we 

examined genes within the clusters response to 

lipopolysaccharide (GO:0032496), regulation of 

immune system process (GO:0002682), and 

inflammatory response (GO:0006954). The LPS 

treatment group exhibited decreased expression of 

genes that are normally upregulated by LPS, involved 

in the production of cytokines (Adam8, Tnfrsf25, 

Comt, Bcr, Pml, Mavs, Nectin2, Dapk1), or linked to 

regulation of the immune response (Asb2, Cdkn1a, 
Cyp4f5, Dnaaf2, Mtor, Nthl1), including transcription 

regulators (Kdm6b, Tfe3, Tead4). In contrast, 

upregulated genes were associated with phagocytosis 

and toxic effects of microglial activation (Ripk1, 

Kcnn4, Snx4, Fcgr3a). Interestingly, Gng12, a 

negative regulator of the LPS response was increased. 

Interestingly, no differences were observed for 

markers of activated microglia (Aif1, Cd68) and 

astrocytes (Gfap). The results confirm other studies 

that find memory impairment linked to aging is 

associated with a decrease in synaptic genes [35–37] 

and suggest that prior LPS treatment was associated 

with an altered expression of genes linked to 

inflammatory/immune response. 

 

Western blot analysis 

 

CA1 tissue samples from LPS- (n = 4) and vehicle-

treated (n = 4) behaviorally characterized animals were 

prepared for Western blot analysis. Membranes were 

immuno-stained for GluN2B, GluN2A, PSD95, and 

GAPDH (Figure 5). PSD95 signal intensities, 

normalized to GAPDH, were not significantly different 

between treatment groups (p = 0.66), which suggests 

no difference in synapse number. In addition, we found 

no significant group differences in the expression of 

either subunit of NMDAR, GluN2B and GluN2A 

normalized to GAPDH (p = 0.26 and p = 0.85 

respectively, not shown), or for each subunit 

normalized to PSD95 expression (p = 0.52 and p = 

0.89, respectively) (Figure 5). 

 

 
 

Figure 4. Differential gene expression analysis evaluating the effect of treatment in the CA1 region. Bars represent the –log (p 

value) for selected GO terms that were significant for down regulated (blue) and upregulated (red) genes. Dotted line is the –log (0.05).   
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Table 1. Gene ontology categories and lists of differentially expressed genes evaluating the effect of treatment in the 
CA1 region. 

Category Term Count Genes Benjamini p-value 

GOTERM_BP 

GO:0008610~
lipid 

biosynthetic 
process 

17 

HMGCS1, NUS1, ST8SIA4, GPAT3, HSD17B7, 
INPP4B, INSIG1, IGF2, IDH1, MSMO1, PEX2, 
PDSS1, PTGDS, PTPMT1, SELENOI, SC5D, 

THRSP 

0.004 

GOTERM_CC 
GO:0060076~

excitatory 
synapse 

15 
BCR, MAGI2, BAIAP2, GRIK5, MINK1, BSN, 

PPP1R9B, SH2D5, SEMA4C, LRFN1, CAMK2B, 
NSMF, UNC13A, DISC1, ADD2 

0.002 

GOTERM_CC 
GO:0014069~
postsynaptic 

density 
14 

BCR, MAGI2, BAIAP2, GRIK5, MINK1, BSN, 
PPP1R9B, SH2D5, SEMA4C, LRFN1, CAMK2B, 

NSMF, DISC1, ADD2 
0.004 

GOTERM_CC 
GO:0030425~

dendrite 
25 

CRTC1, GRIK5, HCFC1, COMT, KCNJ2, 
ZMYND8, NUMA1, HTR1A, INPP5J, ANK3, 
AGO2, CAMK2B, HAP1, SLC8A2, MAGI2, 
BAIAP2, STRN4, MINK1, BSN, PPP1R9B, 

ADCY9, KHSRP, NSMF, RGS8, MTOR 

0.005 

GOTERM_CC 
GO:0045202~

synapse 
28 

CRTC1, GRIK5, COMT, KCNJ2, ZMYND8, 
AMPH, SH2D5, ANK3, LRFN1, CAMK2B, HAP1, 
DISC1, SLC8A2, MAGI2, BCR, BAIAP2, RIMBP2, 

STRN4, MINK1, BSN, PPP1R9B, DOK7, LRP6, 
SEMA4C, NSMF, DOC2B, UNC13A, ADD2 

0.008 

GOTERM_BP 

GO:0031175~
neuron 

projection 
development 

29 

CRTC1, ZMYND8, FOXO6, IGF1R, JADE2, 
FOLR1, UNC5A, INPP5J, ANK3, CAMSAP1, 

LRFN1, OBSL1, CAMK2B, MKL1, HAP1, DISC1, 
MAGI2, BAIAP2, LRRN2, SDK1, MINK1, NTNG2, 

ARID1B, PPP1R9B, SEMA4C, NSMF, MTOR, 
UNC13A, KIF26B 

0.02 

GOTERM_BP 
GO:0050808~

synapse 
organization 

13 
SEZ6L2, HTR1A, MAGI2, ANK3, MDGA1, DOK7, 

BSN, CAMK2B, SEZ6L, ZMYND8, UNC13A, 
DISC1, ADGRB2 

0.02 

 

DISCUSSION 
 

The current study indicates that inflammation in 

adulthood influences the trajectory of cognitive 

decline, from middle-age (12 months of age) to old 

age (18 months of age). At 18 months, 12 months 

after LPS injections, both groups exhibited a similar 

level of learning observed as a decrease in the 

distance to find the platform over the course of 

training. Furthermore, no difference was observed for 

the acquisition probe trial and both groups performed 

above chance indicating similar acquisition of a 

spatial search strategy. For retention probe trials, 

only the vehicle control group performed above 

chance for the 2-hr retention period. Also, the DI 

score for the 24-hr retention probe trial was 

decreased in LPS animals relative to vehicle controls. 

Furthermore, repeated measures analysis indicates 

that the age-related decline in cognition from 12 to 18 

months was mainly due to LPS treated animals. The 

current study adds to the previous literature by 

demonstrating that inflammation initiated in adults, 

interacts with aging, contributing to the trajectory of 

cognitive decline, such that LPS treated animals 

exhibit greater susceptibility to memory deficits from 

middle-age to old age. 

 

Age-related memory impairment is associated with a 

decline in NMDAR function [38] and impaired memory 

following LPS treatment in adults is also associated 

with decreased NMDAR function [35]. The current 

study provides the first evidence that systemic 

inflammation can have long-term effects on NMDAR 

synaptic function. Previous research in neonates suggest 

a shift in NMDAR subunit expression and the direction 

is dependent on when systemic inflammation occurred 

during development/maturation. Systemic inflammation 

initiated in neonates increased NMDAR subunit 

expression, particularly in the dentate gyrus, while 

inflammation initiated in adults resulted in a decrease in 

hippocampal NMDAR subunits [29, 39]. We did not 
observe a change in expression of GluN2B or GluN2A 

protein. However, we cannot rule out that the decrease 

in the NMDAR synaptic response was due to a decrease 
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in the GluN1 subunit or altered plasticity processes that 

regulate the localization of NMDARs to the synapse. 

 

Work from several labs indicates that the age-related 

NMDAR hypofunction is due to redox regulation of 

NMDARs [32, 40–44] involving translocation of 

NMDARs into the synapse [34]. We observed that 

addition of the reducing agent, DTT, increased the 

NMDAR synaptic response in aged, vehicle-treated 

animals. The inability to increase the NMDAR response 

of LPS treated animals under reducing conditions 

suggests alterations in the molecular machinery for 

NMDAR plasticity relative to that observed for normal 

aging [35].  

 

 
 

Figure 5. Western blot analysis of NMDAR subunit expression in CA1 region of hippocampus. The blots illustrate expression of 
(A) GluN2B, (B) GluN2A, and PSD95. (C) The bars represent the mean (± SEM) ratio of expression for vehicle (n = 4) and LPS treated (n = 4) 
animals.  
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For genes that passed our statistical filter, unsupervised 

analysis of gene enrichment indicated that LPS-treatment 

was associated with decreased expression of genes linked 

to synaptic function (excitatory synapse, postsynaptic 

density, dendrite, synapse, and synapse organization). The 

decrease in synaptic gene expression is consistent with 

work indicating that age-related cognitive decline is 

associated with decreased expression of synaptic genes 

[36, 37, 45]. However, it is unclear if the gene changes 

contribute to the decline in NMDAR synaptic 

transmission. It is also possible that altered expression 

represents an attempt to compensate for the decrease in 

NMDAR function/plasticity [38]. In previous studies 

examining the transcriptional profile of young adults 

treated with LPS, an increase in expression of synaptic 

genes was observed, suggesting a recovery/resilience 

process for young animals in response to the decline in 

synaptic transmission [35, 46]. Several of the 

recovery/resilience synaptic genes (Sema4c, Sez6) were 

down regulated in the current aged-LPS treated group and 

other down regulated synaptic genes (Camk2b, Crtc1, 

Mink1) were reported to decrease in aged cognitively 

impaired animals [35]. Taken together, the results suggest 

that the history of neuroinflammation contributes to the 

loss of synaptic function and decreased synaptic gene 

transcription during aging, possibly augmenting a loss of 

resilience in the face of aging stressors. 

 

LPS treatments can have long-term effects on the brain’s 

response to inflammatory signals, possibly through 

epigenetic regulation of transcription. Acute peripheral 

inflammation results in immune priming or training, 

increasing the brains inflammatory response to a 

subsequent bout of systemic inflammation. In contrast, 

repeated LPS injections induce immune tolerance of 

microglia, which can be detected weeks or months 

following LPS injections [30, 31]. In the current study, 

several of the transcriptional changes associated with 

repeated LPS injections are consistent with an immune 

tolerance. Relative to vehicle controls, animals 

previously treated with LPS exhibited decreased 

expression of genes that are normally upregulated by LPS 

or the production of cytokines including those involved 

in signaling in response to LPS, the Tumor necrosis 

factor (TNF) family receptor, Tnfrsf25, and 

immunoreceptor (Bcr). Similarly, down regulation was 

observed for genes that promote cytokine production 

(Pml, and Dapk1, Mavs) [47, 48], regulate the cytokine 

response (Comt) [49–51], and mediate signaling 

downstream of cytokine activation (Cdkn1a, Adam8, 
Ripk1) [52–54]. Moreover, upregulated genes included 

Gng12, a negative regulator of the LPS response [55]. 

Immune tolerance of the brain might be beneficial in the 
face of chronic or repeated inflammation-inducing 

conditions. However, cytokines have a biphasic function 

on cognition, wherein low-levels improve and high-levels 

impair memory function [56–59]. Thus, a shift in 

mechanisms for cytokine signaling, either increasing or 

decreasing signaling, could impair memory. 

 

Other upregulated genes suggest an increase in 

phagocytosis, potassium currents, and release of nitric 

oxide, which are observed following an inflammatory 

challenge in immune tolerant microglia [31]. In 

particular, there was an increase in expression of the 

potassium channel Kcnn4, which regulates the release 

of nitric oxide [60–64]. Increased expression was also 

observed for the cell-surface phagocytosis receptor, 

Fcgr3a, and genes linked to autophagy (Atg12, Snx4), 

antigen presentation pathway (RT1-CE6), Itm2a, 

involved in immunoglobulin production, and Oas1g, an 

immune response protein against viral infection. 

Finally, decreased expression was observed for 

epigenetic and transcription factor regulators, including 

those involved in inflammation (Kdm6b, Tfe3, Tead4) 

and DNA base excision repair (Nthl1), suggesting that 

inflammation in adulthood may have triggered 

epigenetic mechanism resulting in long-term changes in 

responsiveness to cytokines and inflammatory signals. 

Finally, it is possible that behavioral and brain 

differences were due to LPS induced cell senescence 

and the release of metabolic waste and toxic factors 

from other tissues. 

 

Finally, it is possible that behavioral and brain 

differences were due to the history of systemic 

inflammation interacting with the age-related increase 

in chronic low level systemic inflammation, sometimes 

referred to as “inflammaging”. A bout of severe 

systemic inflammation can induce senescence of 

peripheral cells, including cells of the immune system 

[65–69]. In turn, senescent cells exhibit a senescence 

associated secretory phenotype (SASP), releasing toxic 

factors: pro-inflammatory cytokines, chemokines, 

extracellular matrix proteases, and microRNA in 

extracellular vesicles, that contribute to age-related 

diseases. Furthermore, senescent cells exhibit hyper-

activation in response to a variety of inflammatory 

mediators, increasing the release of pro-inflammatory 

cytokines and chemokines [70]. If the history of 

infection alters the number or responsiveness of 

peripheral senescent cells, this could influence the level 

of inflammaging, which has been linked to cognitive 

impairment in humans [7–11] and animal models [35, 

71, 72]. Future studies should consider examining the 

relationship between the history of infection on 

measures of senescent cells or markers of systemic 

inflammation, as a measure of biological aging that 

influences the trajectory of cognitive decline. 
 

In summary, repeated LPS treatment in adults was 

associated with long-term effects on the trajectory of 
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age-related cognitive decline, NMDAR function, and 

expression of genes linked to the synapse and regulation 

of the response to inflammatory signals. The results of 

the current study suggest that the history of systemic 

inflammation is one component of environmental 

factors that contribute to the resilience or susceptibility 

to age-related brain changes and associated trajectory of 

cognitive decline. 

 

MATERIALS AND METHODS 
 

Animals 

 

Young (n = 32, 6 months) male Fischer 344 X Brown 

Norway hybrid rats were obtained from the National 

Institute on Aging colony through the University of 

Florida Animal Care and Service facility. Animals were 

housed in pairs on a 12:12 light/dark cycle (lights on at 

6 PM). All procedures involving animals were approved 

by Institutional Animal Care and Use Committee at the 

University of Florida and were in agreement with 

guidelines recognized by the U.S. Public Health Service 

Policy on Humane Care and Use of Laboratory 

Animals. 

 

Experimental paradigm 

 

Figure 6 illustrates the experimental timeline used to 

assess the longitudinal effect of LPS on spatial learning 

and memory. Following arrival, animals were acclimated 

to the new environment for one week, then administered 

intraperitoneal injections of LPS (1 mg/kg; n = 16) or 

vehicle (n = 16) once a week for 7 weeks. Our previous 

work indicates that this procedure induces a cognitive 

impairment, reduces the hippocampal CA3-CA1 synaptic 

response, and alters transcription examined days after the 

last injection [35]. A subset of these animals (LPS n = 12, 

vehicle n = 12) were cognitively assessed on the cue and 

spatial versions of the water maze tasks at 12 months of 

age (6 months after the onset of injections). The cue 

version of the water maze task was performed only at 12 

months, since procedural memory for how to perform the 

swim task (i.e., how to swim and that the pool wall is not 

an escape route) is retained across the lifespan [73–75]. 

These same animals were again assessed on the spatial 

version of the water maze task at 18 months of age (12 

months after the injections). Another subset of animals 

(LPS n = 4, vehicle n = 4), were not behaviorally 

characterized and were used for electrophysiological 

experiments at 18 months of age (12 months after the 

injections). 

 

Electrophysiology 

 

Methods for collection of hippocampal slices and 

recordings have been published previously [34, 40, 76]. 

Briefly, rats were anesthetized with isoflurane 

(Halocarbon Laboratories, River Edge, NJ, USA) and 

swiftly decapitated. The brains were rapidly removed 

and the hippocampi were dissected. Hippocampal slices 

(~400 µm) were cut parallel to the Alvear fibers using a 

tissue chopper. The slices were incubated in a holding 

chamber (room temperature) containing standard 

artificial cerebrospinal fluid (aCSF) (in mM): NaCl 124,  

 

 
 

Figure 6. Schematic representing the experimental paradigm for the longitudinal effect of systemic inflammation on 
cognition. Young (6 months) male Fischer 344 X Brown Norway hybrid rats were either injected with vehicle (n = 16) or LPS (n = 16) once a 

week for 7 weeks. A subset of animals (vehicle n = 12; LPS n = 12) were cognitively assessed on the spatial discrimination water maze task 
at 12 and 18 months of age. Hippocampal tissue from behaviorally characterized rats was collected one week after completion of 
behavioral testing, at 18 months of age, and RNA sequencing was performed on the CA1 region of the hippocampus. The other group of 
animals (vehicle n = 4; LPS n = 4) were not behaviorally characterized and were used for electrophysiological experiments at 18 months of 
age (12 months after the injections).  
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KCl 2, KH2PO4 1.25, MgSO4 2, CaCl2 2, NaHCO3 26, 

and glucose 10. Thirty to sixty minutes before 

recording, 2–3 slices were transferred to a standard 

interface recording chamber (Harvard Apparatus, 

Boston, MA, USA). The chamber was continuously 

perfused with standard oxygenated (95% O2, 5% CO2) 

aCSF at a flow rate of 2 ml/min. The pH and 

temperature were maintained at 7.4 and 30 ± 0.5°C, 

respectively. Humidified air (95% O2, 5% CO2) was 

continuously blown over the slices. 

 

The total extracellular synaptic field potential (total-

fEPSP) from CA3-CA1 hippocampal synaptic contacts 

were recorded with a glass micropipette (4–6 MΩ) filled 

with aCSF. Concentric bipolar stimulating electrodes 

(outer pole: stainless steel, 200 μm diameter; inner pole: 

platinum/iridium, 25 μm diameter, Fredrick Haer and 

Co, Bowdoinham, ME, USA) were positioned on 

approximately 1 mm of a recording electrode localized 

to the middle of stratum radiatum to stimulate CA3 

inputs onto CA1. Using an SD9 stimulator (Grass 

Instruments, Braintree MA, USA), field potentials were 

induced by single diphasic stimulus pulses (100 μs). 

The signals were amplified, filtered between 1 Hz and 1 

kHz, and stored on computer disk for off-line analysis 

(Data Wave Technologies, Longmont, CO, USA). The 

N-methyl-D-aspartate receptor (NMDAR)-mediated 

component of synaptic transmission (NMDAR-fEPSP) 

was obtained by incubating the slices in aCSF that 

contained low magnesium (Mg2+) (0.5 mM), 6,7-

dinitroquinoxaline-2,3-dione (DNQX, 30 μM), and 

picrotoxin (PTX, 10 μM) [40, 71, 77]. Input-output 

curves for the total and NMDAR fEPSP (mV/ms) were 

constructed for increasing stimulation intensities. 

 

The reducing effect of dithiothreitol (DTT) (0.5 mM) on 

NMDAR-fEPSP was performed by setting a baseline 

response at 50% of the maximum and the responses 

were collected for at least 10 min before and 60 min 

after drug application. 

 

Spatial water maze 

 

For behaviorally characterized animals, one week 

before behavioral testing, animals were handled to 

allow for acclimation to the new environment. The 

water maze tasks were tracked on the Ethovision 

computer software (Noldus Information Technology, 

Leesburg, VA, USA). The water was dyed white (Rich 

Art-Tempera Paint), which allowed for the animals 

performance to be tracked. The pool was surrounded by 

a black curtain. 

 

Cue discrimination testing 

The animals were first habituated to the pool by freely 

swimming for 30 seconds followed by a gentle guidance 

to the platform. After habituation, the cue version of the 

water maze task was performed, which assesses 

sensory-motor performance and permits animals to 

learn the procedural aspects of the task, minimizing 

thigmotaxis [78]. During the cue task, the platform was 

topped with a white flag and was 1 cm above the water 

level. For cue training, animals completed five blocks of 

three trials (15 total trials) massed into a single day. For 

each trial, the animal was placed into the water at a 

randomly assigned release point. The animal was given 

60 seconds to find the randomly assigned platform. If 

the animal did not locate the platform within 60 

seconds, the animal was gently guided to the platform. 

 

Spatial discrimination testing 

Three days after cue discrimination testing, animals 

were tested on the one-day version of the spatial water 

maze, in accordance with previously described methods 

[35]. Briefly, objects were attached to the black curtain 

surrounding the pool to act as extra-maze cues. The 

platform location remained the same across all trials and 

was submerged 1.5 cm under the water level. For each 

trial, the animal was placed into the water from a 

randomly assigned release point and given 60 seconds 

to find the platform. If the animal could not locate the 

platform, the animal was gently guided to the platform. 

Spatial training consisted of 4 training blocks of three 

trials (12 total trials). An acquisition probe trial was 

performed between blocks 4 and 5 to assess if animals 

had learned the platform location. For a probe trial, the 

platform was removed and the animal was released 

from the quadrant opposite of the platform (goal) 

location and allowed to swim for 60 seconds. Following 

the acquisition probe trial, another training block was 

performed (block 5). In addition, memory probe trials 

were delivered 2 and 24 hours after the acquisition 

probe trial. When animals performed the spatial 

discrimination task for the second time, at 18 months, 

the escape platform was moved to a new quadrant. To 

analyze performance on the probe trials, a 

discrimination index (DI) score was calculated. A DI 

score measures the time spent in the goal quadrant 

(contains platform) compared to the opposite quadrant 

[(Goal Quadrant-Opposite Quadrant)/(Goal Quadrant + 

Opposite Quadrant)]. 

 

Tissue collection 

 

One week after completion of behavioral testing rats 

were removed from the home cage, anesthetized with 

isoflurane (Halocarbon Laboratories, River Edge, NJ, 

USA) and swiftly decapitated. The brains were rapidly 

removed and the subregions of the hippocampi were 

dissected. Samples were flash-frozen in liquid nitrogen. 
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RNA, library preparation, and sequencing 

 

RNA-sequencing was performed on the hippocampal 

subregion CA1 from behaviorally characterized LPS 

(n = 8) and vehicle (n = 8) animals using the Ion 

Proton system. RNA was isolated using the RNeasy 

Lipid Tissue Mini kit (Qiagen, Hilden, Germany, 

catalog number 74804) with DNase digestion with 

RNase-Free DNase Set (Qiagen, catalog number 

79254). A NanoDrop 2000 spectrophotometer was 

used to measure RNA concentration and a High 

Sensitivity (HS) RNA Screen Tape in an Agilent 

2200 Tapestation system was used to quantify the 

RNA integrity number (RIN). As a control for library 

preparation, External RNA Controls Consortium 

(ERCC) spike-in controls (Thermo Fisher Scientific, 

catalog number 4456740) were added to samples. To 

select for poly-(A) mRNA, the Dynabead mRNA 

DIRECT Micro kit (Thermo Fisher Scientific, catalog 

number 61021) was used. Ion Total RNA-seq Kit v2 

(Thermo Fisher Scientific, catalog number 4475936) 

was used to prepare libraries. For multiplex 

sequencing, Ion Xpress barcodes (Thermo Fisher 

Scientific, catalog number 4475485) were added. The 

concentration and size distribution of the libraries 

were assessed using the Qubit double-stranded DNA 

HS Assay (Thermo Fisher Scientific, catalog number 

32851) and HS D1000 Screen Tape in a Tapestation 

system. An Ion Chef system was used for template 

preparation and sequenced on an Ion Proton system. 

Using the ERCC analysis plugin on the Torrent 

Server, the ERCC analysis was performed and found 

that samples contained at least 40 transcripts with an 

R2 of above 0.9. Each sample contained about 30 

million reads of 145 base-pair length. 

 

Bioinformatics and statistical analyses 

 

Data analysis was performed using the Partek Flow 

server. FASTQ files were trimmed based on quality 

score and then aligned to the rat genome (rn6) using 

STAR. In Partek, gene-level counts were generated 

and annotated. DESeq2 was used to normalize genes. 

Genes for cluster analysis were filtered in two steps. 

First, genes with an average of less than 5 reads were 

removed [45, 79–81]. Second, statistical filter was 

used to generate a list of genes for cluster analysis. A 

p < 0.05 was used as a statistical filter to select 

differentially expressed genes (DEGs) between LPS 

treated animals compared to control. To assess the 

relationship of gene expression and cognitive 

performance, Spearman correlations were calculated 

between normalized counts of gene expression and 
the DI score measured during the 2-hr probe task. 

The criterion for a significant correlation was set at p 

< 0.05, consistent with our previous work [80]. 

Confidence in the significance of individual genes is 

low due to false positives associated with multiple 

comparisons across all genes. Gene enrichment 

analysis was performed under the assumption that 

changes in biological processes with treatment or 

cognition would result in a shift in the expression of 

clusters of genes related to the biological process [36]. 

Therefore, filtered genes were separated based on the 

direction of change and submitted to the National 

Institute of Health (NIH) Database for Annotation, 

Visualization, and Integrated Discovery (DAVID) for 

gene enrichment and functional annotation clustering 

analysis [36, 79, 80, 82, 83]. For unsupervised 

analysis, we report clusters for Gene Ontology (GO) 

terms for Cellular Components (CC), Biological 

Process (BP), and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways that exhibited a 

Benjamini False Discovery Rate (FDR) p < 0.05. In 

addition, we conducted directed analysis of several GO 

terms based on previous research examining age-

related cognitive impairment and the hypothesis that 

prior LPS treatment would influence 

neuroinflammation responsiveness. We focused 

specifically on the synapse (GO:0045202), response to 

lipopolysaccharide (GO:0032496), regulation of 

immune system process (GO:0002682), and 

inflammatory response (GO:0006954). 

 

Western blot analysis 

 

The CA1 region of the dorsal hippocampus from 

behaviorally characterized LPS (n = 4) and vehicle (n = 

4) animals were isolated, flash frozen in liquid nitrogen, 

and stored at −80°C. Tissue samples were sonicated and 

lysed in radio-immunoprecipitation assay (RIPA) buffer 

(Thermo Fisher Scientific cat#89900) supplemented with 

phosphatase inhibitors, protease inhibitors and EDTA 

(Thermo Fisher Scientific, Waltham, MA, USA) and 

centrifuged at 20,000 × g for 10 minutes at 4°C. Protein 

concentrations were measured using Pierce BCA protein 

assay (Thermo Fisher Scientific cat#23227). Lysates 

were combined with 2×-Laemmli sample buffer (Bio-

Rad cat#1610737) containing 2-mercaptoethanol (Sigma 

cat#M3148) and boiled at 97–98°C for 5 minutes prior to 

electrophoresis. Samples (10 μg per well) and Chameleon 

Duo protein ladder (Li-Cor cat#928-60000) were 

separated on 4%–15% Criterion TGX stain-free gels 

(Bio-Rad cat#5678085) in running buffer 

(Tris/Glycine/SDS, Bio-Rad cat#1610732) at 80V/20 

min, 100V/45 min, and 120V/30 min. Prior to transfer, 

filter papers, membranes, and gels were equilibrated in 

ice-cold transfer buffer (10× Tris/Glycine, Bio-Rad cat 

#1610771) containing 20% methanol. Proteins were 
transferred to low fluorescent polyvinylidene fluoride 

membranes (LF-PVDF, Bio-Rad cat#1620262) using a 

Criterion Blotter with plate electrodes (Bio-Rad, 
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Hercules, CA, USA) at 100V/30 minutes. The 

immunoblots were washed in TBS and blocked with 

Intercept (TBS) Blocking Buffer (Li-Cor P/N 927-60001) 

for 1 hour at room temperature followed by overnight 

incubation at 4°C with primary antibodies diluted with 

Intercept T20 (TBS) Antibody Diluent (Li-Cor P/N 927-

65001). Antibodies used were anti-GluN2B, mouse 

monoclonal (Millipore/Sigma, 05-920) 1:1000; anti-

GluN2A, rabbit polyclonal (Invitrogen, A-6473) 1:500; 

anti-PSD95, mouse monoclonal (Thermo Fisher 

Scientific, MA1-045) 1:1000 and anti-GAPDH, mouse 

monoclonal (Encor Biotechnology, MCA1D4) 1:10,000. 

Membranes were washed 3 times in TBST prior to a one 

hour room temperature incubation with IRDye 800CW 

and 600LT secondary antibodies (1:20,000) diluted with 

Intercept T20 (TBS) Antibody Diluent. Membranes were 

washed with TBST 3 times for 10 minutes each, and then 

rinsed 3 times with TBS before scanning on Li-Cor 

Odyssey CLx Imaging System. The data were analyzed 

with Image Studio Lite Ver 5.2. Target protein signals 

were normalized to the expression of the house-keeping 

protein, GAPDH. Technical replicates (×2) for signal 

intensity were averaged across blots. 

 

Statistical analysis for electrophysiology, behavior, 

and western blot data 

 

ANOVAs were employed to examine input/output curves 

and treatment effects for synaptic responses. Similarly, 

repeated measures ANOVAs were used to examine 

treatment differences across training blocks for cue or 

spatial discrimination testing and across probe trial DI 

scores within each test period, 12 and 18 months. In 

addition, repeated measures ANOVAs were used to 

examine aging and LPS treatment on behavioral measures 

across the 12 and 18 month time points. Significant 

differences were localized using Fischer’s PLSD post hoc 

comparisons (p < 0.05). In addition, due to the prediction 

that LPS-treatment would impair cognition, post hoc 

ANOVAs within each treatment group were employed to 

determine if significant effects were driven by LPS or 

vehicle control animals. One-tailed one-group t-tests (p < 

0.05) were performed to determine if the DI scores were 

above that expected by chance (i.e., DI score = 0) and for 

DTT studies to determine if the synaptic response 

increased above baseline. 
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