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INTRODUCTION 
 

Gastric cancer (GC) is one of the most common 

digestive malignancies around the world [1], especially 

in East Asia such as China. Due to continuous 

development in the diagnosis and treatment of GC, the 

incidence of GC is gradually decreasing, and in 

particular, the number of cases of early gastric cancer 

among all the cases of GC is rapidly on the rise. What 

we urgently need is to explore the development of GC 

and identify novel therapeutic targets. Aldo-keto 

reductase family 1 member B10 is a 36-kD cytosolic 

NADPH-dependent oxidoreductase [2]. AKR1B10 is 

mainly expressed in digestive tract tissues such as the 

stomach, small intestine, and colorectum. In the liver, 

thymus and prostate, the expression can be low, but in 

other normal tissues the expression is zero [2–5]. 

AKR1B1 and AKR1B10 have a similar structure but the 

functions are different [6, 7]. AKR1B1 participates in 

the conversion of glucose into sorbitol. Thus, this 

enzyme has been found to be involved in the 

pathophysiological processes of diabetes. The effect of 

AKR1B10 on glucose is not known, but it has been 

proven to be involved in the metabolism of 

4-hydroxynonenal, acrolein and phospholipid aldehydes 

[8, 9]. Increasingly researches have demonstrated that 

AKR1B10 is indispensable to development of GC, and 

targeted therapy for AKR1B10 may be an effective 

treatment regimen. As reported, AKR1B10 has been 

shown to be secreted via nonclassical pathway mediated 

by lysosome [10]. In addition, it is well known to be 

overexpressed in human pancreatic cancer, hepatocellular 

carcinoma, and lung cancer [2, 8, 11, 12]. However, most 

studies on the effects of AKR1B10 on tumors have 

focused on non-gastrointestinal tumors. The role of 

gastrointestinal tumors has not yet been elucidated. 
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ABSTRACT 
 

Gastric cancer (GC) is a common malignancy around the world with a poor prognosis. Aldo-keto reductase 
family 1 member B10 (AKR1B10) is indispensable to cancer development and progression, which has served 
as a diagnostic biomarker for tumors. In our study, we demonstrated that the expression of AKR1B10 in GC 
tissues was significantly lower compared with normal gastric tissues. Subgroup analysis showed that, 
according to the clinic-pathological factors, the effect of the AKR1B10 expression level on the prognosis of GC 
patients was significantly different. Moreover, reduced expression of AKR1B10 promoted the ability of GC 
cells in proliferation and migration. Furthermore, increased AKR1B10 levels resulted in the opposite trend 
in vitro. Moreover, AKR1B10 was correlated with epithelial-mesenchymal transition (EMT) in a significant 
way. In vivo experiment, knockdown of AKR1B10 promoted the growth of tumor, increased Vimentin, and 
E-cadherin significantly. In summary, AKR1B10 is considered as a tumor suppressor in GC and is a promising 
therapeutic target. 
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The ability of GC cells in proliferation and metastasis 

are caused by abnormal activation of epithelial-

mesenchymal transition (EMT), which is activated by 

factors such as TGF-β and EMT inducers, including 

Snail, while some inducers, such as α-SMA have 

opposite regulatory effects [13, 14]. Our findings 

demonstrated that EMT of GC cells was likely regulated 

by AKR1B10. Furthermore, alteration of AKR1B10 

level affected characteristics of GC cells such as 

proliferation and migration. 

 

Due to differential expression of AKR1B10 in 

gastrointestinal tumors and other tumors, the feasibility 

of targeted therapy for AKR1B10 is not clear [6, 8, 11, 

15]. Few studies demonstrated the value of AKR1B10 

in diagnosing, estimating prognosis as well as impacting 

the functional behavior of tumor. Additional studies on 

whether AKR1B10 can be a potential target for 

gastrointestinal cancer therapy are critical. 

 

MATERIALS AND METHODS 
 

Human tissue specimens 

 

Human GC and adjacent normal tissues were collected 

immediately after radical surgical resection. Total 117 

paired specimens were collected from 2010 to 2012. All 

samples were obtained with informed consent from 

patients who had not undergone radiotherapy or 

chemotherapy prior to surgery. All specimens were 

histo-pathologically verified. In accordance with the 

guidelines of Independent Ethics Committee of the 

Affiliated Suzhou Hospital of Nanjing Medical 

University (IRB approval number, KL901066) 

(Nanjing, China), the study was approved and all 

patients signed informed consent. 

 

Immunohistochemistry (IHC) evaluation 
 

10% formalin was used to fix the tumor tissues, after 

embedding, the tissues were continuously cut into 

5-µm-thick slices. Sections were dewaxed, rehydrated, 

quenched with hydrogen peroxide in methanol, and 

blocked with 10% normal goat serum for 30 min. After 

blocking, per sample was incubated overnight with a 

1:100 dilution polyclonal anti-human AKR1B10 

(ABclonal, China) at 4°C or at room temperature for 2 

hours. In accordance with manufacturer's protocol, 

processed tissues were immunostained using tissue 

staining kit (Zhongshan Biotechnology, China) and 

scored by two authors respectively [16]. 

 

Bioinformatics analysis 

 

AKR1B10 expression and the effect it exerts on  

the prognosis were analyzed by the GEPIA 

(http://gepia.cancer-pku.cn) and Oncomine 

(http://www.oncomine.org) platform. The level of 

AKR1B10 in GC cell was searched from CCLE 

(https://portals.broadinstitute.org/ccle) platform. All the 

information obtained was analyzed by established 

protocols. 

 

Cell culture and transfection  

 

Cell Bank of Chinese Academy of Sciences (Shanghai, 

China) was the source of GC cell lines (MKN45 and 

AGS). At 37°C under 5% CO2, MKN45 and AGS cells 

were cultured in RPMI 1640 medium (Hyclone, USA), 

supplemented with 10% fetal bovine serum (Gibco, 

USA). Specific ingredients include penicillin G sodium 

(100 U/ml) and streptomycin (100 μg/ml). The prepared 

human AKR1B10-shRNA was transfected into MKN45 

cells. AGS cells were processed by AKR1B10 cDNA 

plasmid [17]. 

 

Protein isolation and western blot analysis 

 

As manufacturer’s protocol, GC cells were lysed in ice-

cold RIPA lysis buffer supplemented with protease and 

phosphatase inhibitors. Extracted proteins were 

separated by SDS-PAGE and transferred onto PVDF 

membranes (Millipore, USA).  

 

After blocking with 5% non-fat milk for 1 h, membranes 

were incubated overnight with antibodies at 4°C. Protein 

bands were visualized by chemiluminescence and 

quantified by ImageJ for Windows (NIH, USA). Specific 

antibodies include: anti-AKR1B10 (1:1000; no. bs-

6274R; Bioss), anti-E-cadherin (1:1000; no. bs-1016R; 

Bioss), anti-vimentin (1:1000; no. bs-23063R; Bioss) and 

anti-GAPDH (1:5000; no. bs-0755R; Bioss). 

 

RNA isolation and quantitative real-time PCR 

(qRT-PCR) 

 

Total RNA of GC tissues or cells was extracted by 

TRIzol reagent (Invitrogen, Life Technologies, USA). 

After reverse transcription by a RevertAid First Strand 

cDNA Synthesis Kit (Thermo Fisher Scientific, USA), 

as manufacturer’s instructions, qRT-PCR was 

conducted by Power SYBR® Green PCR Master Mix 

(ABI, USA) and 7500 real time PCR system (ABI, 

USA). 

 

β-actin was used as the internal control. The primer 

sequences were as follows: AKR1B10 forward (5′-

CCCAAAGATGATAAAGGTAATGCCATCGGT-3′) 

and reverse (5′-CGATCTGGAAGTGGCTGAAATTG 
GAGA-3′); E-cadherin forward (5′-CGGGAATGCAG 

TTGAGGATC-3′) and reverse (5′-AGGATGGTGTAA 

GCGATGGC-3′); Vimentin forward (5′-GAGAACTTT 

http://gepia.cancer-pku.cn/
http://www.oncomine.org/
https://portals.broadinstitute.org/ccle
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GCCGTTGAAGC-3′) and reverse (5′-GCTTCCTGTA 

GGTGGCAATC-3′); β-actin forward (5′-CCACACT 

GTGCCCATCTACG-3′) and reverse (5′-AGGATCTT 

CATGAGGTAGTCAGTCAG-3′). 

 

CCK-8 assay  

 

Cell suspension was inoculated in 96-well plates, and 

CCK8 solution (APExBIO, USA) was added to each 

well. After incubation, absorbance was measured at 

450nm with a microplate reader, and then cell 

proliferation inhibition rate was calculated. All samples 

were performed in triplicate.  

 

Colony formation assay 

 

After transfection, 1000 experimental cells were 

seeded in each well of 6-well plates. After 10 days 

cultivation, the cells were fixed and stained with 0.1% 

crystal violet. By means of optical microscope (Nikon, 

Japan) that was equipped with digital camera (Nikon, 

Japan), we counted the number of colonies at 40x 

magnification.  

 

Cell migration assay 

 

Detection of cell migration via Transwell plates 

(Corning Incorporated, USA) and by means of a 

microscope at 200× magnification to observe it [17]. 

Five fields were selected per specimens for quality 

statistics. The final result was calculated after removing 

one maximum and minimum value. 

 

Subcutaneous xenograft establishment 

 

Male BALB/c nude mice (3-5-week old, 16-18 g, 

specific pathogen-free grade) were obtained from 

Shanghai SLRC Laboratory Animal Co. Ltd. (Shanghai, 

China). Mice were randomly divided into AKR1B10 

knock down (KD) and negative control (NC) groups 

(n = 5). 5 × 106 AKR1B10-KD or NC-shRNA MKN45 

were injected into left and right dorsal flank on day 0 

subcutaneously [18]. Animal experiments were 

approved by the Animal Ethics Committee of the 

Affiliated Suzhou Hospital of Nanjing Medical 

University (Nanjing, China). 

 

Statistical analysis  

 

Different data were compared using chi-squared, 

Student's t-test (unpaired, two-tailed), Mann–Whitney 

U test or one-way ANOVA. All data were presented as 

the mean ± SD. Moreover, Kaplan-Meier curves were 
plotted for survival analysis. SPSS version 25.0 (IBM, 

USA), R programs (https://cran.r-project.org) and 

GraphPad Prism 8 (USA) were conducted to analyze 

statistics. P < 0.05 was considered statistically 

significant. 

 

RESULTS 
 

AKR1B10 is upregulated in GC tissues and associated 

with clinico-pathological factors 

 

AKR1B10 expression levels were searched in multiple 

cancer types via the GEPIA Platform. Compared with 

para-tumor tissues, the levels of AKR1B10 in GC 

tissues were decreased in a significantly way 

(Supplementary Figure 1A–1B). Furthermore, in a 

certain of non-gastrointestinal tissues, the expression of 

AKR1B10 in most tumor tissues was higher in 

comparison to normal tissues (Supplementary Figure 

1A). High levels of AKR1B10 may predict prolonged 

disease-free survival (DFS) in the TCGA dataset by 

GEPIA significantly (Supplementary Figure 1C), while 

an overall survival (OS) was not affected by AKR1B10 

expression (Supplementary Figure 1D). The results of 

the Oncomine platform showed that, compared to non-

tumor tissues, AKR1B10 mRNA levels in GC tissues 

were increased in Cui and DErrico datasets 

(Supplementary Figure 1E). For further analysis, 5 

datasets of Oncomine platform were used to compare 

AKR1B10 mRNA expression in GC and normal tissues. 

The results revealed a similar expression trend 

(Supplementary Figure 1F). 

 

To confirm the expression of AKR1B10 in GC, 117 

specimens were analyzed for AKR1B10 expression 

(Figure 1A). Quantification of IHC scores indicated a 

significant reduction about AKR1B10 levels in GC 

compared with normal gastric tissues (Figure 1B, 

Supplementary Figure 2). In addition, AKR1B10 

decreased in patients with lymph node metastasis in a 

significant way compared with patients without 

(Figure 1C). Furthermore, the expression of AKR1B10 

was related to stage of tumor, that is, the expression 

level in tumor-node-metastasis (TNM) stage III–IV 

was lower than that in I–II (Figure 1D). Datasets from 

the GEPIA and Oncomine platforms further validate 

our results. 

 

A summary about AKR1B10 and clinico-pathological 

characteristics was made in Table 1. The expression of 

AKR1B10 had significant association with tumor size 

(P < 0.001), depth of invasion (P < 0.001), lymph node 

metastasis (P < 0.001), venous invasion (P = 0.002), 

and TNM stage (P < 0.001), while no correlation with 

other clinicopathological variables such as age, gender, 

degree of differentiation or neural invasion (P > 0.05). 

Additionally, AKR1B10 can be used as a single factor 

to predict univariate risk, determined by Cox's 

proportional hazard model analysis (Table 2). 

https://cran.r-project.org/
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Maintained level of AKR1B10 improved prognosis 

of GC patients 

 

In accordance with IHC scores, patients who expressed 

AKR1B10 positive or negative were divided into 

different subgroups. Results indicated the fact that 

AKR1B10neg patients suffered worse post-surgery overall 

survival than that of AKR1B10pos patients (Figure 1E). 

Interestingly, In patients with TNM stages I–II, 

maintained AKR1B10 expression was associated with 

favorable in patients with TNM stages I–II but not stage 

III–IV patients (P = 0.030; P = 0.942; Figure 1F–1G). 

 

For further elucidate the value of AKR1B10 in 

prognosis, patients were divided into different 

subgroups according to AKR1B10 expression levels 

(Figure 2). No matter how degree of infiltration depth, 

lymph node metastasis and differentiation vary, 

AKR1B10 expression exerted no obvious effect on the 

prognosis of GC patients. However, AKR1B10neg 

patients with smaller tumor size (P = 0.013), negative 

venous invasion (P = 0.001), negative neural invasion 

(P < 0.001) and TNM stage I–II (P = 0.035) faced a 

worse prognosis. Conversely, for patients with tumor 

size larger than 5cm (P = 0.283), venous invasion (P = 

0.862), neural invasion (P = 0.694), and TNM stage III–

IV (P = 0.944), the impact of AKR1B10 on disease 

prognosis is insignificant.  

 

Age, gender, tumor size, differentiation, vascular 

invasion, neural invasion, TNM stage, and AKR1B10 

expression were applied to evaluate 3- and 5- year OS. 

The nomogram gave every prognostic variable a score 

on the point scale. We obtained scores associated with 

each prognostic variable and calculated the overall score 

(Figure 3).  

 

Increased AKR1B10 expression inhibits the ability 

of GC cells in proliferation and migration  

 

To further elucidate the link between AKR1B10 and 

GC cells, we determined the AKR1B10 expression level 

of GC cells by the CCLE platform (Figure 4A–4B).  

 

Due to the fact that AKR1B10 expressed highly in 

MKN45 cells and low in AGS, MKN45 cells were 

transfected with control- or AKR1B10-shRNA to 

knockdown AKR1B10. AGS cells were transfected 

 

 
 

Figure 1. Expression of AKR1B10 in gastric cancer tissues. (A) Representative immunohistochemistry images showing in situ 

AKR1B10 expression in gastric cancer (GC) and normal tissues (scale bar = 100 μm). (B–D) IHC scores of AKR1B10 in (B) GC vs normal 
tissues, (C) tumors with and without lymph node invasion, and (D) TNM stage I–II vs III–IV. (E–G) overall survival analysis of (E) AKR1B10pos 
vs AKRiB10neg GC patients, and in subgroups overall survival analysis of TNM stage I–II (F) and III–IV (G). LNM, Lymph node metastasis. 
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Table 1. Relationship between AKR1B10 and clinic-pathological factors in GC patients. 

Variables 
AKR1B10 

Negative Positive P value 

Age (years)    

≤60 25 19 0.606 

>60 45 28  

Gender    

Male 53 37 0.705 

Female 17 10  

Tumor size (cm)    

<5 38 41 <0.001* 

≥5 32 6  

Depth of tumor invasion    

T1–2 10 21 <0.001* 

T3–4 60 26  

Lymph node metastasis    

No 18 31 <0.001* 

Yes 52 16  

Degree of differentiation    

Well 32 27 0.213 

Poor 38 20  

Venous invasion    

Negative 39 39 0.002* 

Positive 31 8  

Neural invasion    

Negative 43 35 0.142 

Positive 27 12  

TNM staging    

I–II 25 37 <0.001* 

III–IV 45 10  

*P < 0.05. 
 

Table 2. Results of univariate and multivariate analyses of postoperative patients’ survival by Cox’s proportional 
hazard model. 

Varieties n 
Univariate analysis  Multivariate analysis 

HR 95% CI p value  HR 95% CI p value 

Age (≤60 or > 60 years) 44/73 0.796 0.503–1.259 0.330      

Gender (Male/Female) 90/27 0.902 0.540–1.507 0.694      

Size of tumor (≤5 or > 5 cm) 79/38 0.356 0.226–0.560 <0.001*  0.795 0.464–1.361 0.402 

Depth of tumor invasion (T1–2/T3–4) 31/86 0.241 0.137–0.421 <0.001*  0.429 0.211–0.873 0.020 

Lymph node metastasis (negative/positive) 49/68 0.271 0.168–0.437 <0.001*  0.498 0.233–1.064 0.072 

Degree of differentiation (moderate-well/poor) 59/58 0.576 0.374–0.887 0.012*  0.81 0.503–1.304 0.385 

Venous invasion (negative/positive) 78/39 0.384 0.247–0.597 <0.001*  0.725 0.429–1.226 0.231 

Neural invasion (negative/positive) 78/39 0.466 0.297–0.729 0.001*  1.182 0.691–2.023 0.541 

TNM staging (I–II/III–IV) 62/55 0.243 0.153–0.385 <0.001*  0.832 0.394–1.759 0.631 

AKR1B10 expression (negative/positive) 70/47 2.401 1.504–3.832 <0.001*  1.161 0.673–2.004 0.591 

*P < 0.05. 
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with vector or AKR1B10 overexpression plasmid to 

amplify AKR1B10 (Figure 4C–4D). For further analyzed 

the biological characteristics of AKR1B10, we conducted 

knockdown (KD) and overexpression (OE) constructs. 

What we found is that AKR1B10-KD increased cellular 

proliferation ability, whereas that of AKR1B10-OE was 

reduced (Figure 4E–4F). Consistent with these findings, 

AKR1B10-KD cells strengthened colony-formation 

(Figure 4G–4H) and migration (Figure 4I–4J) ability, 

whereas AKR1B10-OE cells indicated reversed impacts.  

 

Expression of AKR1B10 is associated with the EMT 

in GC 

 

AKR1B10 regulated the ability of GC cells to proliferate 

and migrate negatively. However, EMT is closely related 

to migration of tumor cells. Therefore, what deserves 

further determination is whether AKR1B10 affect EMT 

of tumor or not. Correlation between AKR1B10 mRNA 

expression and EMT-related gene expression was 

analyzed in GC specimens from the TCGA dataset by the 

GEPIA platform. Specifically speaking, between 

AKR1B10 mRNA expression and EMT-related genes, 

including Vimentin (Figure 5A), Snail family 

transcriptional repressor 1, 2 (SNAI1, 2 Supplementary 

Figure 3A, 3B), zinc finger E-box binding homeobox 1, 2 

(ZEB1, 2 Supplementary Figure 3C, 3D), signified a 

negative correlation, whereas correlated with E-cadherin 

positively (Figure 5B). 

 

Next, we assessed AKR1B10, Vimentin, and E-cadherin 

mRNA levels in GC tissues. Compared with 19 paired 

normal gastric tissues, AKR1B10 expression was 

downregulated in GC tissues (Figure 5C, Supplementary 

Figure 4A–4B). Moreover, Vimentin was elevated and 

E-cadherin was reduced in GC tissues (Figure 5D–5E, 

Supplementary Figure 4C–4F). According to the results 

of AKR1B10, Vimentin and E-cadherin mRNA level in 

19 GC tissues, AKR1B10 indicated a negative 

correlation with Vimentin while correlated with 

E-cadherin positively (Figure 5F). Additionally, the 

detection of E-cadherin and Vimentin were conducted by 

immunoblot analysis (Figure 5G). AKR1B10 silencing 

significantly reduced the expression of E-cadherin and 

increased that of Vimentin. In contrast, AKR1B10 

overexpression affected expression of EMT markers 

oppositely (Figure 5H). Taken together, it is not difficult 

to draw conclusion that AKR1B10 is crucial to EMT in 

GC cells. 

 

AKR1B10 inhibits gastric tumorigenesis in vivo  

 

For further analyze how AKR1B10 impacted GC cell 

growth, wild-type and AKR1B10-KD MKN45 cells 

 

 
 

Figure 2. Subgroup analysis of the influence of AKR1B10 expression on the survival of gastric cancer patients. 
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were used as an in vivo xenograft model. Depletion of 

AKR1B10 exerted the reduction of body weight in mice 

(Figure 6A), and facilitated GC cells proliferation, 

which was manifested by the fact that tumor size 

(Figure 6B–6C) and weight (Figure 6D) were greater 

than that of NC group. The difference in body weight 

between AKR1B10-KD and control group without 

tumors was obvious (Figure 6E). Additionally, in situ 

mRNA levels of AKR1B10 and E-cadherin indicated a 

reduction in a significant way, whereas Vimentin was 

higher in AKR1B10-KD group (Figure 6F–6H). Results 

showed a significant correlation (Figure 6I).  

Furthermore, we conducted cluster analysis in order to 

explore whether AKR1B10 levels, body weight and 

tumor weigh had combined effect. Mice in the 

AKR1B10-KD group and the control group were 

significantly differentiated (Figure 6J–6K). 

 

DISCUSSION 
 

The AKR1B subgroup is associated with numerous 

diseases, such as diabetes and cancers. AKR1B10 is one 

of the subgroups included in AKR1B [2]. The 

expression of AKR1B10 is primarily distributed in 

 

 
 

Figure 3. Nomograms to predict survival of gastric cancer patients. Points of each variable were obtained via a vertical line 

between each variable and the point scale. The predicted survival rate was correlated with the total points by drawing a vertical line from 
the total points scale to the overall survival.  
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digestive tract, meaning that the expression in non-

digestive tract tissues is low. Moreover, what calls for 

special attention is that the level of AKR1B10 is 

opposite in tumors. It was found that AKR1B10 has 

enzymatic activity for substrates including 

retinaldehyde [19] and lipid peroxidation products [20]. 

 

AKR1B10 is indispensable to the development of 

tumors, becoming a diagnostic biomarker for some 

tumors. Inhibiting AKR1B10 may be an ideal treatment 

strategy [21, 22]. An AKR1B10 inhibitor used widely in 

tumor treatment has recently attracted increased attention 

[23–25]. AKR1B10 had statistical difference in 

gastrointestinal and non-gastrointestinal tissues. 

However, the differences were reversed in tumor tissues. 

These findings attracted the attention of researchers and 

resulted in a differential effect of the targeted inhibition 

of AKR1B10 on tumor cells [9, 26, 27]. 

 

 
 

Figure 4. Effect of AKR1B10 on the cell proliferation and migration ability of gastric cancer cells. (A) AKR1B10 expression in 

gastric cancer (GC) cell lines from the CCLE platform. (B) Relative expression of AKR1B10 in GC cell lines according to RNAseq results via the 
CCLE platform. (C–D) Immunoblot showing AKR1B10 protein levels in MKN45 cells transfected with AKR1B10-shRNA (C) and in AGS cells 
transfected with the AKR1B10 overexpression plasmid (D), and gray value analysis via ImageJ. (E–J) Proliferation rates (E–F), colony forming 
ability (G–H), and migration ability (I–J) of AKR1B10-KD and AKR1B10-OE GC cells. CCLE, Cancer Cell Line Encyclopedia. NC, negative control. 
KD, knockdown, AKR1B10-shRNA. VEC, vector. OE, overexpression, AKR1B10 overexpression plasmid. Data are presented as the mean ± SD 
(n = 3). *P < 0.05, **P < 0.01, ***P < 0.001. 
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The level of AKR1B10 in GC tissues was significantly 

lower compared with that in normal tissues, demonstrated 

by TCGA database analysis via the GEPIA platform and 

tissue detection. At the same time, we demonstrated that 

the expression of AKR1B10 in TNM stage III–IV patients 

or patients with lymph node metastasis was lower than 

that in control group in a significant way. In the subgroup 

analysis, the predicting value of AKR1B10 in prognosis 

of GC was significantly different. This indicated that 

target therapy may be dependent on the subgroup 

conditions, which may appropriately reduce the effective 

population and improve the therapeutic effect [18]. 

 

For a novel target that is conductive to prevent and treat 

cancer, increasingly attention has been paid on 

inhibitors of AKR1B10 [25, 28, 29]. The analysis of 

these inhibitors improves the understanding of the 

important features to be considered in the design of 

these compounds: the inhibitors must properly match 

the binding sites of AKR1B10 [8]. In the treatment of 

non-gastrointestinal tumors, targeted therapy of 

AKR1B10 has an excellent effect. AKR1B10 may 

promote cell proliferation and inhibit cell apoptosis by 

regulating oncogene expression. By contrast, the 

downregulation of AKR1B10 in tumor cells suppresses 

the growth and progression of tumor [4, 11]. Studies 

have shown that the down-regulation of AKR1B10 

promotes apoptosis, mediated by mitochondrial 

dysfunction and oxidative stress [30–32]. In addition, 

targeting against AKR1B10 and inducing autophagy of 

 

 
 

Figure 5. Correlation between AKR1B10 and epithelial-mesenchymal transition. (A) Correlation analysis of AKR1B10 and 

Vimentin gene expression levels in gastric cancer (GC) patients by the GEPIA platform. (B) Correlation analysis of AKR1B10 and E-cadherin 
gene expression levels in GC patients by the GEPIA platform. (C–E) Comparison of AKR1B10 (C), Vimentin (D) and E-cadherin (E) mRNA 
levels in 19 paired GC and normal tissues. (F) Correlation between AKR1B10 and Vimentin, and between AKR1B10 and E-cadherin mRNA 
levels in GC tissues. (G) MKN45 cells transfected with NC or KD and (H) AGS transfected with VEC or AKR1B10-OE. The bands were 
semi-quantified by ImageJ and the results are presented as the mean ± SD. VIM, Vimentin; ECAD, E-cadherin; TPM, transcripts per million. 
NC, negative control; KD, knockdown; VEC, vector; OE, overexpression. **P < 0.01, ***P < 0.001. 
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tumor cells may effectively inhibit the growth of 

tumor cells. AKR1B10P1 is the pseudogene of 

oncogene AKR1B10 in hepatocellular carcinoma, 

noticed as being anomalistic transcribed 

preliminarily. AKR1B10P1 stably impacts SOX4, 

EMT by sponging miR-138 directly, which modulates 

the regulating gene of SOX4 post-transcriptionally. 

Moreover, the phosphorylation of p70S6K at T389 

was found a consistent reduction, which is known as 

a direct target of mTOR. In addition to 

phosphorylation of several proteins involved in 

protein synthesis, p70S6K can also affect the 

phosphorylation of proteins about cell growth, 

proliferation and motility. It also participates in the 

process of EMT. Whether AKR1B10 plays a specific 

function in GC associated with the EMT process is 

poorly understood [33, 34]. In this paper, we 

explored whether inhibition of AKR1B10 could 

affect proliferation and migration of GC cells, which 

may depend on the EMT process. 

 

However, target treatment of AKR1B10 in 

gastrointestinal tumors has not been thoroughly studied, 

and the effect of AKR1B10 in gastrointestinal tumors 

has not been fully elucidated. Our study showed that in 

GC, inhibition of the expression level of AKR1B10 

modestly promoted the capacity of tumor to proliferate, 

migrate and form colony. Furthermore, increased 

AKR1B10 expression can significantly inhibit the 

ability of GC cells in proliferation, migration, and 

colony formation. Therefore, we have the reason to 

believe that AKR1B10 impacts the proliferative and 

migratory ability of cells in gastrointestinal and non-

gastrointestinal tumors reversely. In summary, the role 

of AKR1B10 in GC have not yet been fully elucidated. 

In addition, a accurate validation about the impact of 

 

 
 

Figure 6. AKR1B10 knockdown promotes gastric cancer tumor growth in vivo. (A–B) Total body weight (A) and tumor volume (B) 

of the mice. (C) Representative pictures of subcutaneous tumors harvested from NC and AKR1B10-KD group. (D) The weights of tumor 
masses. (E) The weights of mice without tumor masses. (F–I) Relative AKR1B10 (F), Vimentin (G) and E-cadherin (H) mRNA levels in tumors 
of the AKR1B10-KD or NC group, and their correlation (I). (J) Stratification of mice into cluster 1 and cluster 2 according to AKR1B10 mRNA 
levels, body weight and tumor weight. (K) Percentage of NC and AKR1B10-KD mice in each cluster. Data are presented as the mean ± SD. 
NC, negative control; KD, AKR1B10 knockdown. *P < 0.05, **P < 0.01. 
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AKR1B10 on growth of GC cells and tumor metastasis 

is still lacking. For the structure and function of 

AKR1B10, as well as AKR1B10 inhibitor interactions 

in GC deserve a comprehensive understanding, which 

may promote novel therapeutic strategies for GC 

especially combined with further studies. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Expression of AKR1B10 in gastric cancer in datasets. (A–B) Comparison of AKR1B10 levels in (A) multiple 

cancers, and (B) between gastric cancer (GC) and paired normal tissues in TCGA datasets via GEPIA platform. (C–D) disease free survival (C) and 
overall survival (D) were analyzed according to AKR1B10 expression level in GC tissues in the TCGA datasets via the GEPIA platform. (E) 
AKR1B10 mRNA levels in GC and non-tumor tissues in the datasets presented by the Oncomine platform. (F) Comparison of AKR1B10 mRNA 
expression in GC and normal tissues across 5 datasets by Oncomine platform. 
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Supplementary Figure 2. Immunohistochemistry images showing in situ AKR1B10 expression in gastric cancer tissues. 
Negative (A), weak (B), positive (C), strong positive (D). Scale bar = 100 μm. 
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Supplementary Figure 3. AKR1B10 is associated with epithelial-mesenchymal transition. (A) Correlation analysis between 

AKR1B10 and SNAI1 gene expression in patients with gastric cancer (GC) by GEPIA datasets. (B) Correlation analysis between AKR1B10 and 
SNAI2 gene expression in patients with GC by GEPIA datasets. (C) Correlation analysis between AKR1B10 and ZEB1 gene expression in 
patients with GC by GEPIA datasets. (D) Correlation analysis between AKR1B10 and ZEB2 gene expression in patients with GC by GEPIA 
datasets. SNAI1/2, Snail family transcriptional repressor 1/2; ZEB1/2, zinc finger E-box binding homeobox 1/2; TPM, transcripts per million. 
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Supplementary Figure 4. mRNA level of AKR1B10, E-cadherin and Vimentin expression in gastric cancer (GC) and paired 
normal tissues. (A–B) AKR1B10 mRNA levels in 19 paired GC and normal tissues (A), comparison of AKR1B10 expression in paired GC and 

normal tissues (B). (C–D) Vimentin mRNA levels in 19 paired GC and normal tissues (C), comparison of Vimentin expression in paired GC and 
normal tissues (D). (E–F) E-cadherin mRNA levels in 19 paired GC and normal tissues (E), and comparison of E-cadherin expression in paired 
GC and normal tissues (F). 

 


