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INTRODUCTION 
 

Breast cancer (BC) is the most common cancer in 

women and the leading cause of cancer death and 

disability-adjusted life years among females worldwide 

[1, 2]. A study based on the 2017 Global Burden of 

Disease (GBD) conducted in 195 countries and regions 

from 1990 to 2017 showed that the global incidence of 

BC increased to 1,960,681 cases in 2017, and the global 

incident cases of BC increased by 123% between 1990 

and 2017 [2]. Recently, according to the World Health 

Organization, there were 2.3 million new BC cases in 

2020, thereby replacing lung cancer as the most 

common cancer [3]. With 1 in 6 cancer mortality, BC is 

the leading cause of cancer death [4]. BC is a highly 

heterogeneous malignant tumor composed of many 

subtypes that differ in biological behavior, clinical 

outcomes, and therapeutic responses [5]. The diversity 

between and within tumors as well as among 

individuals all together determine the prognosis and 

drug resistance of BC [6].  

 

Ferroptosis is a novel form of programmed cell death, 

which is defined as an oxidized, iron-dependent form of 

regulatory cell death [7]. Ferroptosis has unique 

morphological and biochemical characteristics, 

including mitochondrial contraction, mitochondrial 

membrane rupture, increase in lipid reactive oxygen 

species, consumption of glutathione, and loss of 
glutathione peroxidase 4 [8, 9]. Ferroptosis participates 

in carcinogenesis and cancer development in various 

cancers [10]. Ferroptosis takes part in maintaining the 
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ABSTRACT 
 

Ferroptosis, a novel form of regulated cell death, is closely associated with the occurrence and development of 
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analyses of patient’s survival and gene expression data identified a prognostic signature consisting of 10 
ferroptosis-related genes (FRGs). The signature demonstrated a favorable prediction performance, and was 
validated in two independent datasets, GSE21653 and GSE25066. Analyses of immune infiltrates, tumor 
microenvironment, immune checkpoints, mutations, drug sensitivity, and clinicopathological features revealed 
significant differences between low- and high-risk BC patients. A multivariate analysis revealed that the 
signature was an independent prognostic predictor in BC, and a nomogram combining the risk score and tumor 
stage intuitively displayed high accuracy and reliability with respect to predicting the survival outcomes of BC 
patients. These findings indicate that the identified prognostic signature is a potential indicator predictive of 
prognosis and immunotherapeutic responses in BC patients. 
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survival of normal cells and tissue, some highly 

aggressive malignancies also have been identified as 

intrinsically susceptible to ferroptosis [11]. Multiple 

genes, including P53 [12], ACSL4 [13], SLC7A11 [14], 

and FZD7 [15] modulate sensitivity to ferroptosis and 

can serve as markers of ferroptosis. Ferroptosis has 

been recently suggested as a promising target to inhibit 

tumor growth and trigger cell death, especially in 

malignant tumors that are resistant to traditional 

therapies [16]. Roles and molecular mechanisms of 

ferroptosis in BC have been investigated in several 

studies [17, 18]. Recent studies have investigated the 

key mechanisms regulating ferroptosis in BC [19]. 

However, the expression patterns and the prognostic 

values of ferroptosis-related genes in BC are still largely 

unknown. Moreover, prognostic models integrating 

multiple biomarkers help clinicians make treatment 

decisions and develop optimal treatment combinations 

to reduce disease mortality. 

In this study, we utilized a bioinformatic approach to 

identify the ferroptosis-related genes (FRGs) to establish 

a robust, reliable prognostic signature in BC. This 

signature was validated by two independent sets and 

demonstrated a favorable prediction performance. 

Analysis of immune infiltrates, tumor microenvironment 

(TME), immune checkpoints, mutations, drug 

susceptibility, and clinicopathological features revealed 

significant differences between low- and high-risk BC 

patients. Our data indicate that this FRGs prognostic 

signature may improve prognosis predictions and 

immunotherapy responses in BC patients. 

 

RESULTS 
 

Identification of FRGs in BC patients 

 

Figure 1 shows the research idea of the present study. 

The detailed clinicopathological features of BC patients 

 

 
 

Figure 1. The flow chart of data analysis in this study. 
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Table 1. Clinicopathologic characteristics of breast cancer patients included in this study. 

Variables 
TCGA cohort GSE21653 dataset GSE25066 dataset 

Number (%) Number (%) Number (%) 

Age    

< 60 172 (54.1) 135 (56.0) 244 (79.0) 

≥60 146 (45.9) 106 (44.0) 65 (21.0) 

Surgery type    

Lumpectomy 109 (34.3) / / 

Modified Radical Mastectomy 109 (34.0) / / 

Other 101 (31.8) / / 

Margin status    

Negative 291 (91.5) / / 

Positive 16 (5.0) / / 

Unknow 11 (3.5)  / 

Tumor status    

Tumor free 256 (80.5) / / 

With tumor 40 (12.6) / / 

Unknow 22 (6.9)  / 

T stage    

T1 93 (29.2) 55 (22.8) 22 (7.1) 

T2 174 (54.7) 121 (50.2) 165 (53.4) 

T3–4 51 (16.0) 65 (27.0) 122 (39.5) 

N stage    

N0 149 (46.9) 113 (46.9) 87 (28.2) 

N1–3 169 (53.1) 128 (53.1) 222 (71.8) 

Stage   / 

I 54 (17.0) / 6 (1.9) 

II 175 (55.0) / 165 (53.4) 

III–IV 79 (24.8) / 134 (43.4) 

Unknow 10 (3.1) / 4 (1.3) 

 

are summarized in Table 1. 267 FRGs were acquired 

from the FerrDb database and integrated with the 

mRNA data from TCGA database to obtain 255 FRGs. 

Through merging the candidate genes with two GEO 

external validation sets, 240 common FRGs were 

obtained for modeling analysis. 

 

Establishment of ferroptosis-related gene signature 

 

Univariate Cox regression based on survival and gene 

expression data of BC patients was used to evaluate the 

prognostic role of the FRGs. In total, 12 FRGs were 

selected as candidate genes to construct the prognostic 

model with the criterion of P value < 0.05 

(Supplementary Figure 1). LASSO regression analysis 

was performed using the training set to identify genes 

that exhibited the highest association with RFS (Figure 

2A and 2B). Finally, 10 genes (CHAC1 [OMIM 

614587], GCLM [OMIM 601176], SLC7A11 [OMIM 

607933], HMOX1 [OMIM 141250], NOX4 [OMIM 

605261], DUOX1 [OMIM 606758], TFR2 [OMIM 

604720], WIPI2 [OMIM 609225], DRD4 [OMIM 

126452], and NGB [OMIM 605304]) were selected 

to build the prognostic signature in the training set. 

Risk score = (0.19003 × ExpCHAC1) + (0.16688 × 

ExpGCLM) + (0.03959 × ExpSLC7A11) + (0.17125 × 

ExpHMOX1) + (0.49082 × ExpNOX4) + (0.61939 × 

ExpDUOX1) + (0.02989 × ExpTFR2) + (0.89319 × 

ExpWIPI2) + (0.01862 × ExpDRD4) + (0.38955 × 

ExpNGB). The cut-off value for the low- and high-risk 

groups was 0.936, which was calculated by the 

“survminer” R package. The distributions of RFS status 

were shown in Figure 2C and 2D. The AUCs were 0.819 

and 0.820 for the 3- and 5-year RFS rates in the training 

set, suggesting a great prognostic value of this signature 

(Figure 2E). Moreover, our data demonstrated that the 

mortality rate in the low-risk group was markedly lower 

than that in the high-risk group (Figure 2F).  
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Validation of the ferroptosis-related signature 

 

To validate the robustness of the signature, the 

validation sets from GEO (GSE21653 and GSE25066) 

were also stratified into high- or low-risk groups 

based on the same formula as that from the training 

set (Figures 3 and 4). The distributions of RFS status 

were shown in Figure 3A–3B and 4A–4B. The 

patients with high-risk score had a poor RFS than the 

low-risk patients (Figures 3C and 4C). The AUC of 

ROC for 3- and 5-year survival predictions were 

0.696 and 0.675 in the GSE21653 dataset and 0.651 

and 0.681 in the GSE25066 dataset. These data 

indicate that the model has a favorable performance 

(Figures 3D and 4D). 

 

Immune infiltration analysis 

 

To determine whether different risk-stratified patients 

were characterized by different immune infiltrates and 

TME, we compared the immune infiltrates and TME in 

high- and low-risk patients. As shown in Figure 5A, 

 

 
 

Figure 2. Establishment of ferroptosis-related gene signature in TCGA set. (A and B) The LASSO regression analysis and partial 

likelihood deviance of the 12 prognosis-associated FRGs. (C) The ranked dot plot indicates the risk score distribution. (D) Scatter plot 
illustrates the patients’ survival status. (E) ROC curve of 10-FRG signature. (F) Kaplan-Meier method was used to plot the RFS curve for the 
high-risk and low-risk score groups.  
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aDCs, DCs, macrophages, Treg cells, T helper cells, 

Tfh, Th1 cells, and TIL were highly infiltrated in the 

low-risk group (P < 0.05). Furthermore, significant 

differences in most immune-related pathways were 

observed between the two risk groups (P < 0.05; Figure 

5B). Analysis of the relationship between the risk score 

and the TME score revealed that a significant negative 

association between the risk score and stromal score, 

immune score, and ESTIMATE score (Figure 6A–6C). 

In addition, we found that the expression of 4 immune 

checkpoints, including PD-1 (PDCD1), PD-L1 

(CD274), and CTLA-4 was significantly upregulated in 

the low-risk group (Figure 6D), suggesting a potential 

role of the signature model in predicting immune 

responses to immunotherapy in BC patients. 

 

Comprehensive analysis of the signature 

 

Next, we assessed the relationship of the signature with 

the somatic mutation count and tumor mutation burden 

(TMB). The results indicated that the group of high risk 

owned a higher somatic mutation count (P = 0.018; 

Figure 7A) and TMB (P = 0.01; Figure 7B) than the 

group of low risk. In addition, we analyzed the 

responses of patients with different risk groups to 

antineoplastic drugs. As shown in Figure 7C–7H, we 

observed significant differences in the IC50 values of 6 

antineoplastic drugs between the two risk groups. 

Patients with high-risk were more sensitive to 

Gemcitabine (P < 0.001), Paclitaxel (P < 0.001), 

Doxorubicin (P = 0.011), Docetaxel (P < 0.001), and 

Cisplatin (P < 0.001), while patients with low-risk were 

more sensitive to AKT inhibitor VIII (P < 0.001). 

 

Association between signature and clinicopathological 

features 

 

The correlation between the prognostic signature and 

clinical features was analyzed. The boxplot demonstrated 

that the signature was significantly linked to tumor status 

 

 
 

Figure 3. Evaluation of ferroptosis-related gene signature in GSE21653 dataset. (A) The ranked dot plot indicates the risk score 

distribution. (B) Scatter plot illustrating the patients’ survival status. (C) Kaplan-Meier method was used to plot the RFS curve for the high-risk 
and low-risk score groups. (D) ROC curve of the 10-FRG signature. 
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Figure 4. Evaluation of ferroptosis-related gene signature in GSE25066 dataset. (A) The ranked dot plot indicates the risk score 

distribution. (B) Scatter plot illustrates the patients’ survival status. (C) Kaplan-Meier method was used to plot the RFS curve for the high-risk 
score and low-risk score groups. (D) ROC curve of 10-FRG signature. 

 

 
 

Figure 5. ssGSEA scores in high-risk and low-risk patients in the TCGA set. The scores of 16 immune cells (A) and 13 immune-related 

functions (B) are displayed in boxplots. 
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Figure 6. Correlation between the risk score, the TME score, and immune checkpoints. (A) immune scores. (B) stromal scores. (C) 

ESTIMATE scores. (D) immune checkpoints. 

 

 
 

Figure 7. Correlation between the signature, mutation status, and drug susceptibilities. (A) somatic mutation count in the high- and 

low-risk groups. (B) tumor mutation burden (TMB) in the high- and low-risk groups. (C–H) drug susceptibilities in the high- and low-risk groups. 
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(P < 0.001; Figure 8A) and tumor stage (P = 0.012; 

Figure 8B). In addition, stratification analyses were 

conducted to examine whether the signature retained the 

ability to predict RFS in various subgroups. Compared 

with low-risk patients, BC high-risk patients had a 

worse RFS in subgroups stratified by age (< 60 vs. ≥ 60; 

Figure 8C–8D), stage (I–II vs. III–IV; Figure 8E–8F), 

and surgery type (lumpectomy vs. modified radical 

mastectomy; Figure 8G–8H). 

 

Building a predictive nomogram 

 

Based on the univariate analysis, the risk score and 

several clinical features, including age, tumor stage, 

surgery type, and margin status and were integrated to 

evaluate their independent prognostic significance in 

BC. As shown in Figure 9A and 9B, univariate and 

multivariate analyses revealed a significant correlation 

between RFS of BC patients, and tumor stage and risk 

score. To establish a quantitative method for BC 

prognosis, we used a prognostic nomogram according to 

tumor stage and risk score (Figure 9C). The AUCs for 

the 3- and 5- year RFS predictions were 0.837 and 

0.836, respectively (Figure 9D). The calibration curve 

revealed the prediction value of the nomogram and 

demonstrated high accuracy of the predicted survival 

(Figure 9E and 9F). 

 

Functional analysis 

 

The GSEA was conducted to explore the changes and 

possible mechanisms in BC patients with different 

scores. Several signaling pathways were significantly 

enriched in high- and low-risk group patients (false 

discovery rate < 0.25 and P < 0.05), but there was a 

different enrichment pattern in the two groups. The cell 

cycle, P53 pathway, amino sugar, and nucleotide sugar 

metabolism, pyrimidine metabolism, cysteine, and 

methionine metabolism, and galactose metabolism 

pathways were highly gathered in the group of high-risk 

(Figure 10). 
 

DISCUSSION 
 

Ferroptosis plays a vital role in maintaining cell 

survival. Since cancer cells have a greater iron demand 

than normal cells, they are extremely susceptible to 

ferroptosis [10]. The therapeutic effect of antineoplastic 

drugs is far from satisfactory because of the intrinsic 

and acquired caspase-dependent resistance of cancer 

cells to apoptosis. Treatments aimed at ferroptosis are 

promising since they may overcome the deficiencies of 

traditional apoptosis-inducing chemotherapeutic agents. 

In addition, a recent study has shown that CD8+ T cells 

activated by immunotherapy can induce ferroptosis in 

cancer cells and increase their sensitivity to 

immunotherapy [20]. Hence, ferroptosis induction may 

provide a promising therapeutic strategy in cancer 

treatment, especially in cancers resistant to traditional 

chemotherapy or immunotherapy. Ferroptosis is closely 

associated with tumor development and anti-tumor 

immunity. However, there is still a lack of information 

about the relationship between BC and ferroptosis. 

 

Our high-throughput “omics” data combined with 

bioinformatics analysis provided a valid and economical 

approach to analyze the prognostic value of FRGs in 

BC. First, we combined the mRNA expression profiles 

 

 
 

Figure 8. Correlation between signature and clinicopathological features. (A–B) Correlation of signature with clinicopathological 

features. (C–H) the predictive performance of the signature in different subgroups.  
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with the survival time and status of patients retrieved 

from TCGA database, and successfully identified FRGs. 

A robust FRG-related prognostic signature was 

established by LASSO regression model for predicting 

the RFS of patients with breast cancer. We divided 

patients into two risk groups (low and high) and found 

statistically significant differences in their survival 

rates. The tdROC curve and two independent GEO 

datasets indicated that signature endows a good 

predictive performance. Analyses of immune infiltrates, 

TME, immune checkpoints, mutations, drug 

susceptibility, and clinicopathological features revealed 

significant differences between the two score groups. 

The GSEA of the high-score group revealed significant 

enrichment in cancer-related and metabolism-related 

processes and pathways. Additionally, a nomogram 

combining FRG-signature with clinical features was 

constructed to verify the robustness of the model for 

speculating RFS in breast cancer patients. 

 

Tumor progression is inextricably linked with the tumor 

microenvironment, which consists of stromal 

components, endotheliocytes, mesenchymal stem cells, 

tumor-associated fibroblasts, and immunocytes [21]. 

With the recent development of technologies such as 

RNA-seq, it is possible to systematically analyze the 

tumor microenvironment and the functional diversity of 

tumor-infiltrating immune cells that influence and 

predict the sensitivity of patients to immunotherapy 

[22]. In this study, we found that the FRG signature 

 

 
 

Figure 9. Construction and evaluation of nomogram for survival prediction of BC patients based on risk score and clinical 
variables. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. (C) Nomogram for predicting the 3- and 5-year RFS 

of BC patients. (D) ROC curves for 3- and 5-year RFS of the nomogram. (E, F) Calibration curves for predicting 3- and 5-year RFS.  
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significantly correlated with the infiltration levels of 

immune cells of BC patients. We also assessed the 

correlation of the signature with the response to 

immunotherapy. The 30 immune checkpoints, including 

PD-1, PD-L1, and CTLA-4 was significantly 

upregulated in the low-risk group, suggesting that 

immune checkpoint inhibitors could be more effective 

in BC patients with the low-risk signature score.  

 

Ferroptosis has been reported to participate in the 

development and progression of BC. Glutathione 

peroxidase 4 (GPX4) is the main regulator of 

ferroptosis, which is pivotal for triple-negative BC cell 

growth. Song et al. [17] found that GPX4 expression 

was upregulated in gefitinib-resistant cells and 

knockdown of GPX4 in vitro and in vivo inhibited cell 

viability, reduced clonal formation, promoted apoptosis, 

and increased the cell sensitivity to gefitinib by 

promoting ferroptosis. Zhang and colleagues [23] 

recently reported that suppression of circRHOT1 

inhibited cell proliferation, invasion and migration, and 

promoted apoptosis of BC cells. Knockdown of 

circRHOT1 significantly upregulated the levels of 

reactive oxygen species (ROS), iron, and Fe2+ in BC 

cells. CircRHOT1 promoted the malignant progression 

and attenuated ferroptosis of BC cells through the miR-

106a-5p/STAT3 axis [26]. Among the 10-FRG 

signature identified in this study, CHAC1, GCLM, and 

HMOX1 are closely associated with ferroptosis in BC 

cells. Chen et al. [24] showed that CHAC1 degradation 

of GSH enhanced cystine-starvation-induced 

necroptosis and ferroptosis through the activated 

GCN2-eIF2α-ATF4 pathway in triple-negative BC 

cells. Carlisle et al. [25] found that up-regulation of 

SLC7A11 increased GSH production and inhibited 

ferroptosis in BC cells. Several studies have indicated 

that GCLM is a key gene of ferroptosis and its 

dysregulated expression is significantly associated with 

the occurrence and development of cancers [26, 27]. 

HMOX1, also known as HO-1, has been reported to 

promote curcumin-induced ferroptosis in BC cells [28]. 

Kato et al. [29] showed that treatment with zinc 

protoporphyrin 9, which is a specific inhibitor of HO-1, 

significantly reduced the cell death induced by MI-463 

plus auranofin. Yang et al. [30] demonstrated that the 

ferroptosis sensitivity in ovarian and renal cancers is 

regulated by cell density through TAZ-ANGPTL4-

NOX2 and TAZ-EMP1-NOX4 pathway, respectively. 

 

 
 

Figure 10. GSEA analysis of differentially expressed genes in high and low risk groups. The GSEA analysis revealed a remarkable 
enrichment of tumor and metabolism-related phenotypes in the high-risk group. 
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Our analysis provides new insights into the prognosis 

and treatment targets of BC. Nevertheless, a few 

limitations of this study should be taken into 

consideration. First, the information on BC is 

incomplete, which may reduce the prediction accuracy 

of the nomogram, although it is difficult to find a 

suitable dataset in other databases to validate this 

nomogram. Second, our study was conducted solely 

based on data from a public database, and the gene 

signature was identified mainly with retrospective 

datasets. Therefore, inherent case selection bias may 

have influenced the results. In addition, the specific 

effect and mechanism of the 10 FRGs in CRC remain 

unclear, and the expression profiles of the 10 FRGs 

combined with clinical validation in the patients of the 

prospective cohort need to be proven. 
 

CONCLUSIONS 
 

In this study, we established a ferroptosis-related 

prognostic signature that could be used to predict the 

prognosis and immune responses of BC patients. Our 

proposed signature can not only be used for clinical 

stratified management of patients but also lay the 

foundation stone for future studies investigating 

ferroptosis as the therapeutic target in BC. 
 

MATERIALS AND METHODS 
 

Data collection 

 

The original profiles of mRNA and clinicopathological 

data of BC cases were obtained from TCGA database, 

including 1104 tumor samples and 113 normal samples. 

179 normal breast tissue data were obtained from 

the GTEx database by UCSC Xena website 

(http://xena.ucsc.edu/). After screening, the samples 

without clinical data were removed. A total of 318 BC 

patients were included in the analysis. BRCA-related 

datasets GSE21653 and GSE25066, obtained from the 

GEO database, were used as validation cohorts. The 

complete expression profile data and survival 

information of 241 and 309 BC patients were extracted 

from the GEO datasets, respectively. In addition, the 

267 FRGs were acquired based on the FerrDb database 

(http://www.zhounan.org/ferrdb/). 

 

Establishment of ferroptosis-related gene signature 

 

The FRGs strongly related to the RFS were determined 

to establish an FRG signature for BC using least 

absolute shrinkage and selection operator (LASSO) Cox 

regression analysis with “glmnet” and “survival” R 

package. Risk core = ∑ 𝐶𝑜𝑒𝑓𝑖 × 𝐸𝑥𝑝𝑟𝑛
𝑖=1 𝑖

, where Coefi 

is the coefficient and Expri is the expression value of 

the corresponding FRGs. The risk scores of BC patients 

were calculated using the risk assessment model. The 

samples were assigned to low- or high-risk groups, 

respectively, based on the cutoff values calculated by 

the “survminer” package in R. Log-rank tests and 

Kaplan-Meier curves were performed to assess the 

efficiency of RFS in different risk patients. The 

predictive ability of the signature was analyzed by ROC 

curves by “SurvivalROC” R package.  

 

Validation of the ferroptosis-related gene signature 

 

The strength of the prognostic signature in predicting 

the survival probability of patients was further verified 

by GEO datasets (GSE21653 and GSE25066). Using 

the same method as that used in the training set, the risk 

score of each patient and the corresponding median risk 

scores were calculated separately, after which the 

patients were grouped high-score and low-score. 

Similarly, the Kaplan-Meier method was employed to 

assess the efficiency of RFS in low- and high-score 

groups described above. 

 

Immune infiltration analysis 

 

The ssGSEA was employed to calculate the infiltration 

levels of 16 types of immune cells and 13 immune-

related pathways in BC [31]. The tumor 

microenvironment (TME) score of each BC patient was 

estimated using the ESTIMATE algorithm [32]. In 

addition, the expression of immune checkpoints was 

used to examine the molecular relationship with the 

prognostic signature. 

 

Comprehensive analysis of the signature 

 

To compare the mutation load between the two score 

groups, we assessed the association of the signature 

with the somatic mutation count and tumor mutation 

burden (TMB). In addition, integrated with the gene 

expression of TCGA BRCA samples, the algorithm-

driven by “pRRophetic” R package based on ridge 

regression analysis was applied to analyze 

antineoplastic drug susceptibility in the low- and high-

risk groups based on the prognostic model. The half-

maximal inhibitory concentration (IC50) was used to 

assess the antineoplastic drug susceptibility; patients 

with lower IC50 were more sensitive to antineoplastic 

drugs. 

 

Clinical correlation analysis of the prognostic 

signature 

 

Clinical correlation analysis was performed to evaluate 
the correlation between risk score and clinical factors, 

including age, TNM stage, surgery, margin status, and 

tumor status. 

http://xena.ucsc.edu/
http://www.zhounan.org/ferrdb/
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Building a nomogram 

 

We used Cox regression analysis to select clinical 

prognostic factors along with risk status to establish a 

nomogram to foresee the RFS rates for 3 and 5 years of 

patients. The ROC curve and the calibration plot of the 

patients’ long-term survival probability (3- and 5-year 

probability) examined the accuracy and divergence of 

the nomogram.  

 

Functional analysis 

 

GSEA based on the KEGG and hallmark gene sets was 

used to investigate the biological pathways and 

functions associated with the risk signature. The 

“Expression datasets” were made and imported as 

required by the software, and the “gene set database” 

was selected “c2.cp.kegg.v7.0.symbols.gmt (Curated)”; 

the number of permutations was set to 1000 times, and 

the “phenotype labs” were set to high- versus low-risk 

group. After permutations, a rich gene set was obtained 

using P < 0.05 and false discovery rate (FDR) q value 

< 0.25. 

 

Availability of data and materials 

 

All samples and files were supported by GEO 

(https://www.ncbi.nlm.nih.gov/geo) and TCGA 

database (http://www.cancer.gov/tcga). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Forest plot of 12 candidate prognosis-related FRGs selected by univariate Cox regression analysis. 

 


