SUPPLEMENTARY FIGURES

Supplementary Figure 1. Intrinsic and synaptic properties of SPNs from juvenile mice. (A) Depolarizing (+600 pA) and hyperpolarizing (200 pA) current steps caused tonic action potential discharge in SPNs recorded from $Tor1a^{+/+}$ (black) and $Tor1a^{+/-}$ (red) mice. (B) Paired-pulse ratio (PPR) showed similar facilitation in both genotypes. Short ISI (25-50 ms) of paired synaptic stimulation could induce PPF in both genotypes (*P*<0.05), whereas longer ISI (100-1000 ms) failed (*P*>0.05). (C) Glutamatergic sEPSCs recordings in PTX from SPNs of $Tor1a^{+/+}$ and $Tor1a^{+/-}$ mice showed no significant difference between genotypes in frequency and amplitude (both *P*>0.05). (D) Glutamatergic mEPSCs recordings in PTX plus TTX from SPNs of $Tor1a^{+/+}$ and $Tor1a^{+/-}$ mice showed no significant difference between genotypes in frequency and amplitude (both *P*>0.05). (E) GABAergic sIPSCs recordings in MK-801 and CNQX from SPNs of $Tor1a^{+/+}$ and $Tor1a^{+/-}$ mice showed no significant difference between genotypes in frequency and amplitude (both *P*>0.05). (E) GABAergic sIPSCs recordings in MK-801 and CNQX from SPNs of $Tor1a^{+/+}$ and $Tor1a^{+/-}$ mice showed no significant difference between genotypes in frequency and amplitude (both *P*>0.05). (F) GABAergic mIPSCs recorded in MK-801, CNQX and TTX from SPNs of $Tor1a^{+/+}$ and $Tor1a^{+/-}$ mice showed no significant difference between genotypes in frequency and amplitude (both *P*>0.05). (F) GABAergic mIPSCs recorded in MK-801, CNQX and TTX from SPNs of $Tor1a^{+/+}$ and $Tor1a^{+/-}$ mice showed no significant difference between genotypes in frequency and amplitude (both *P*>0.05). In each group, five mice were used (N=5), and three independent electrophysiological recordings were conducted for each mouse (n=3). P<0.05 was considered to be statistically significant.

Supplementary Figure 2. TUDCA inhibits the ER stress markers in Tor1a^{+/-} **mice.** (A) Levels of mRNA in striatal lysates were measured by RT-qPCR. (B) Quantification of protein expression in striatum ais shown (N=5 per group). Data are represented as mean \pm SEM. (C) Representative western blots of striatal lysates. In each group, five mice were used (N=5), and three independent experiments were conducted for each mouse (n=3). *P*<0.05 was considered to be statistically significant.

Supplementary Figure 3. TUDCA restores calcium dynamics in Tor1a^{+/-} striatal spiny projection neurons (SPNs) under ER stress. (A) Ca^{2+} imaging in Ca^{2+} -free solution to examine the role of TUDCA *in vitro*. (B) Quantification of Ca^{2+} imaging shows that SPNs from Tor1a^{+/-} mice revealed a significantly higher intracellular Ca^{2+} concentration than that of SPNs from Tor1a^{+/+} mice. However, the intracellular Ca^{2+} release induced by Tor1a^{+/-} was markedly alleviated by the ER stress inhibitor TUDCA. (C) Representative pictures of Ca^{2+} imaging at 0 and 60 min. In each group, five mice were used (N=5), and three independent experiments were conducted for each mouse (n=3). P<0.05 was considered to be statistically significant.