Association between *CTLA-4* gene polymorphism and risk of rheumatoid arthritis: a meta-analysis

Chuankun Zhou¹, Shutao Gao², Xi Yuan¹, Zixing Shu¹, Song Li¹, Xuying Sun¹, Jun Xiao¹, Hui Liu³

¹Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China

²Department of Spine Surgery, The First Affiliate Hospital of Xinjiang Medical University, Urumqi 830054, Xinjiang, China

³Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China

Correspondence to: Jun Xiao, Hui Liu; email: jun xiao@hust.edu.cn, hui liu@whu.edu.cnKeywords: CTLA-4, polymorphism, rheumatoid arthritis, meta-analysisReceived: December 10, 2020Accepted: June 19, 2021Published: August 2, 2021

Copyright: © 2021 Zhou et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution</u> <u>License</u> (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Cytotoxic T lymphocyte-associated protein 4 (*CTLA-4*) gene polymorphisms may be involved in the risk of Rheumatoid arthritis (RA). However, evidence for the association remains controversial. Therefore, we performed a meta-analysis to confirm the relationship between *CTLA-4* gene polymorphisms and RA. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the strength of association. Stratified analysis was conducted by ethnicity. In total, 66 case-control studies including 21681 cases and 23457 controls were obtained. For rs3087243 polymorphism, significant association was detected in Asians (*A* vs. *G*: OR=0.77, 95%CI=0.65-0.90, *P*=0.001; *AA* vs. *GG*: OR=0.67, 95%CI=0.48-0.94, *P*=0.02) and Caucasians (*A* vs. *G*: OR=0.89, 95%CI=0.86-0.93, *P*<0.00001; *AA* vs. *GG*: OR=0.81, 95%CI=0.75-0.88, *P*<0.00001). For rs231775 polymorphism, significant association was observed in the overall (*G* vs. *A*: OR=1.16, 95%CI=1.08-1.25, *P*<0.0001; *GG* vs. *AA*: OR=1.29, 95%CI=1.24-2.01, *P*=0.0002), but not in Caucasians. However, there was no association between rs5742909 polymorphism and RA. This meta-analysis confirmed that rs3087243 and rs231775 polymorphism were associated with the risk of RA in both overall population and ethnic-specific analysis, but there was no association between rs5742909 polymorphism and RA.

INTRODUCTION

Rheumatoid arthritis, one of the most common inflammatory joint diseases in humans, is characterized by inflammation in synovium, destruction of cartilage and bone, generation of autoantibody, and complications of systemic organs [1]. Although RA affects 0.5–1% of the Western populations, the worldwide incidence of RA is increasing with the aging trend of the population [2]. Because of the results of reduced physical function, declined work capacity, decreased quality of life, and increased comorbid risk, RA carries heavy socioeconomic burden [3]. RA is believed to be a consequence of both genetic factors and environmental factors though main etiology has not yet been clearly clarified. In twin studies 50–65% of the risk for developing RA is ascribed to its heritability [4], indicating genetic factors have a strong effect on RA. So far more than one hundred gene loci associated with RA risk have been identified by single nucleotide polymorphisms (SNPs) [5, 6]. Apart from the human leukocyte antigen (HLA) locus, a well-known genetic risk factor for RA, numbers of other susceptibility genes and loci have been characterized [6]. Recently, a growing body of non-HLA genetic predisposition studies have been conducted on the association with the risk of RA [7–9].

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4), one of widely studied non-HLA susceptibility gene of RA, is mainly expressed on the surface of Treg cells and conventional T cells and suppresses self-reactive T cell responses via downregulating ligand availability for the costimulatory receptor CD28 to elicit inhibitory signals [10, 11]. Besides, the polymorphisms of CTLA-4 have already been proved to be candidates of the risk of the common autoimmune diseases at the genetic level [12–15]. As RA is a T cell mediated autoimmune disorder and CTLA-4 plays a vital role in regulating T cell function [11, 12, 16], it suggests that CTLA-4 expression or function is most likely associated with the pathogenesis of RA. Single nucleotide polymorphisms in the CTLA-4 gene may contribute to abnormal levels of CTLA-4, and subsequently play a leading part in the susceptibility to RA [12, 17, 18].

Among the identified SNPs in this gene, these three loci of CTLA-4, +49A/G (rs231775), -318C/T (rs5742909) and CT60 G/A(rs3087243), are most-often studied for the association with the predisposition of RA [18–20]. However, the conclusions which previous reports drew are inconsistent and incomprehensive. Although the association of CTLA-4 genetic polymorphisms and the risk of RA has been assessed in several meta-analyses [21–23], some recent studies also described this association in different populations in the past several years [9, 15, 24-27]. Hence these studies should be included to increase statistical power and obtain the reliable conclusion. On the other hand, all the three common loci should be included to embody the association comprehensively while the previous meta-analysis only researched one or two of the above loci. In view of these, it is necessary to incorporate the latest research into investigating the association of the three polymorphisms of CTLA-4 with susceptibility to RA. Here we use the latest casecontrol data to carry out an updated and comprehensive meta-analysis and obtain a more accurate estimation of the effect of the 3 SNPs (+49A/G (rs231775), CT60 G/A(rs3087243) and -318 C/T (rs5742909)) on RA risk.

RESULTS

Characteristics of the studies

Based on the predetermined inclusion criteria, 66 eligible case-control studies with 42 articles were

enrolled ultimately in the current analysis [8, 9, 13–15, 17-20, 24-56]. These publications had a high methodological quality whose NOS stars were more than 6 in general. There were 22 studies with 16394 patients and 17453 controls for rs3087243 SNP [8, 9, 13-15, 18, 19, 26, 40, 41, 43, 46-49, 52, 53, 56], 34 studies with 11452 patients and 12444 controls for rs231775 SNP [9, 14, 17, 19, 20, 24, 25, 28–39, 41–45, 49-51, 54], and 10 studies with 2477 patients and 2941 controls for rs5742909 SNP [14, 20, 27, 29, 34, 37-39, 44, 56]. The references of all enrolled articles were subject to scrutiny and no more ones were available. The process of study selection according to the PRISMA principle was generalized in Figure 1. Quality assessment of included studies was shown in Supplementary Table 1. Details of included studies were listed in Table 1. Allele/genotype frequencies were displayed in Table 2.

Efficiency analysis

Meta-analysis of CTLA-4 CT60(rs3087243) SNP and RA susceptibility

By analyzing quantitatively allele or genotype distribution of 16394 patients and 17453 controls, a significant association between RA and CTLA-4 CT60(rs3087243) SNP was observed in all genetic comparisons (A vs. G: OR = 0.87, 95% CI = 0.83-0.91, P < 0.00001; AA vs. GG: OR = 0.80, 95% CI =0.74-0.87, P<0.00001; AG vs. AA: OR = 0.85, 95% CI =0.80-0.90, P<0.0001; AA + AG vs. GG: OR =0.83, 95% CI=0.77-0.90, P<0.0001, and AA vs. AG+ GG: OR =0.88, 95% CI=0.83-0.94, P=0.0003) (Table 3 and Figure 2). Among the 22 included studies, 17 studies were performed in Caucasians, 3 were in Asians, 1 was African and 1 was in Latin Americans. Likewise, we carried out a stratified analysis by race to evaluate the ethnicity effects. In Caucasians, a protective role of rs3087243 SNP on RA was detected in all the five genetic comparisons. Similarly, a decreased risk of RA was found among Asians in the allelic comparison (OR = 0.77, 95% CI = 0.65-0.90, P=0.001) and the homozygote comparison (OR = 0.67, 95% CI = 0.48-0.94, P=0.02). The heterozygote model and dominant model detected also this correlation in Latin Americans and the allelic comparison detected this correlation in Africans, but both the two populations needed more enrolled studies to elevate statistical power because this analysis currently included individually only one study. The outcomes were shown in Table 3. Collectively, Subgroup analyses revealed a significant protective association in Caucasians and Asians. When the $I^2 > I^2$ 50% and P>0.1, the Fix-effect model was used for the synthesis; otherwise, the Random-effect model was used.

Meta-analysis of CTLA-4 +49A/G (rs231775) SNP and RA susceptibility

By quantitative analysis of allele or genotype distribution of 11452 patients and 12444 controls, there was a significant risk association between RA and *CTLA-4* +49A/G (rs231775) SNP. The overall pooled ORs of all the populations were as follows: G vs. A: OR =1.16, 95% CI =1.08-1.25, P<0.0001; GG vs. AA: OR =1.29, 95% CI =1.02-1.50, P=0.0006; GA vs. AA: OR =1.19, 95% CI =1.07-1.32, P=0.001; GG + GA vs. AA: OR =1.24, 95% CI=1.11-1.39, P=0.0001 and GG vs. GA+AA: OR =1.15, 95% CI=1.02-1.30, P=0.02. The main results of overall analyses were shown in Table 3. 17 studies were conducted on Caucasians, 14 on Asians, 2 on Africans and 1 on Latin Americans. Subsequently, stratified analysis by ethnicity was conducted to get

more clarifications. In the subgroup analysis, a significantly increased risk of RA was observed among the Asian population in all genetic comparisons except heterozygote comparison (G vs. A: OR =1.27, 95% CI =1.10-1.47, P=0.001; GG vs. AA: OR =1.58, 95% CI =1.24-2.01, P=0.0002; GG + GA vs. AA: OR =1.33, 95% CI=1.17-1.51, P<0.0001; GG vs. GA+AA: OR = 1.15, 95% CI =1.02-1.30, P=0.02). In Latin American population, rs231775 SNP was a significant risk factor of RA, but it only included single study and the result might be incredible. Besides, no association of the rs231775 SNP with RA risk was found among the Caucasian population in all genetic comparisons when the Elshazli's study [24] was excluded because of its heterogeneity (G vs. A: OR =1.07, 95% CI =0.99-1.15, P =0.08; GG vs. AA: OR = 1.07, 95% CI = 0.92-1.23,

Figure 1. Flow diagram of the literature retrieval and screen.

Study Year Country Ethnicity RA Con method criteria score R3:087243(CT60) Orozco 2004 Spain Caucasian 433 398 TaqMan ACR1987 7 Lei 2005 Sweden European 1505 878 MALDI-TOF ACR1987 8 Plenge (IRAAC) 2005 Sweden European 828 845 MALDI-TOF ACR1987 8 Zhernakova 2005 Dutch Caucasian 129 NetR-FLP ACR1987 7 Suspisiah 2006 USA Caucasian 807 712 TaqMan ACR1987 7 Taukahura 2009 USA African 505 712 TaqMan ACR1987 8 Batron 2009 ULch European 3669 3049 TaqMan ACR1987 8 Plant (2) 2010 Germany Caucasian 1140 1248 Sequenom ACR1987					Num	bers	Genotype	Diagnostic	Ouality
Rs3087243(CT60) Orozco 2004 Spain Caucasian 433 398 TaqMan ACR1987 7 Lsi 2005 China Asian 326 250 DGGE ACR1987 8 Plenge (URAACC) 2005 Sweden European 153 900 PCR-RFLP ACR1987 8 Zhernakova 2005 Dutch Caucasian 153 900 PCR-RFLP ACR1987 6 Suppiah 2006 Worthern Ireland Caucasian 429 TaqMan ACR1987 7 Taukahara 2009 USA Caucasian 1498 441 TaqMan ACR1987 7 Barton 2009 UK European 3669 3049 TaqMan ACR1987 8 Plant (1) 2010 France Caucasian 161 148 Sequenom ACR1987 8 Plant (2) 2010 Germany Caucasian 102 Scquenom ACR1987 8 <	Study	Year	Country	Ethnicity	RA	Con	method	criteria	score
Orozco 2004 Spain Caucasian 4.33 398 TaqMan ACR1987 7 Lei 2005 China Axian 326 250 DGGE ACR1987 8 Plenge (EIRA) 2005 Sweden European 1505 878 MALDI-TOF ACR1987 8 Shorthern 2005 Northern freland Caucasian 238 445 MALDI-TOF ACR1987 7 Costenbader 2008 USA Caucasian 423 420 TaqMan ACR1987 7 Daha 2009 USA African 505 712 TaqMan ACR1987 7 Daha 2009 Canada Caucasian 140 1441 TaqMan ACR1987 8 Plant (1) 2010 Germany Caucasian 140 1248 Sequenom ACR1987 8 Plant (3) 2010 Germany Caucasian 1002 725 Sequenom ACR1987 8 </td <td>Rs3087243(CT60)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Rs3087243(CT60)								
Lei2005ChinaAsian226250DGGEACR19878Plenge (CIRA)2005SwedenEuropean1505878MALDI-TOFACR19878Plenge (NARAC)2005SwedenEuropean828845MALDI-TOFACR19876Zhernakova2005DutchCaucasian123900PCR-RH2PACR19877Costenbader2008USACaucasian423420TaqManACR19877Taukahara2008JapanAsian1498441TaqManACR19877Daha2009UUKCaucasian16693649TaqManACR19877Daha2009UUKCaucasian11401248SequenomACR19878Plant (1)2010FranceCaucasian168290SequenomACR19878Plant (2)2010GerearayCaucasian10310202725SequenomACR19878Plant (3)2010UKCaucasian10321702SequenomACR19878Janoy2011ChinaAsian1143252PCR-RFLPACR19877Torse-Carrillo2013MexicoLatin American200PCR-RFLPACR19877Torse-Carrillo2013GermanyCaucasian132490SequenomACR19876Elaterek-Puszyńska2016GormanyCaucasian13249	Orozco	2004	Spain	Caucasian	433	398	TaqMan	ACR1987	7
Picnge (GIRA) 2005 Sweden European 1505 878 MALDI-TOF ACR1987 8 Plenge (NARAC) 2005 Sweden European 828 845 MALDI-TOF ACR1987 7 Suppiah 2006 Northern Ireland Caucasian 289 168 PCR-RFLP ACR1987 7 Costenbader 2008 USA Caucasian 470 TaqMan ACR1987 7 Tsukahara 2009 USA African 505 712 TaqMan ACR1987 8 Kelley 2009 Dut Caucasian 505 712 TaqMan ACR1987 8 Plant (1) 2010 Ferrany Caucasian 1140 1248 Sequenom ACR1987 8 Plant (2) 2010 Germany Caucasian 128 209 Sequenom ACR1987 8 Plant (2) 2011 China Asian 1035 1702 Sequenom ACR1987 7<	Lei	2005	China	Asian	326	250	DGGE	ACR1987	8
Pienge (NARAC) 2005 Sweden European 828 84.5 MALDI-TOF ACR1987 8 Zhernakova 2005 Northern Ireland Caucasian 153 900 PCR-RFLP ACR1987 7 Costenbader 2008 USA Caucasian 423 420 TaqMan ACR1987 7 Tsukahara 2008 Japan Asian 1498 441 TaqMan ACR1987 7 Daha 2009 Durch Caucasian 1140 1248 Sequenom ACR1987 8 Walker 2009 Canada Caucasian 1141 1248 Sequenom ACR1987 8 Plant (1) 2010 Grence Caucasian 1012 1702 Sequenom ACR1987 8 Plant (2) 2010 Grence Caucasian 1002 725 Sequenom ACR1987 8 Danoy 2011 China Asian 1032 700 PCR-RFLP ACR1987 </td <td>Plenge (EIRA)</td> <td>2005</td> <td>Sweden</td> <td>European</td> <td>1505</td> <td>878</td> <td>MALDI-TOF</td> <td>ACR1987</td> <td>8</td>	Plenge (EIRA)	2005	Sweden	European	1505	878	MALDI-TOF	ACR1987	8
Zhernakova 2005 Duch Caucasian 153 900 PCR-RFLP ACR1987 7 Suppiah 2006 Northern Ireland Caucasian 423 TaqMan ACR1987 7 Tsukahara 2008 USA Caucasian 420 TaqMan ACR1987 8 Kelley 2009 USA African 505 712 TaqMan ACR1987 7 Barron 2009 Dutch Caucasian 671 863 Sequenom ACR1987 8 Plant (1) 2010 Ferrore Caucasian 711 77 Sequenom ACR1987 8 Plant (2) 2010 Gerere Caucasian 218 209 Sequenom ACR1987 8 Plant (3) 2010 Gerere Caucasian 1035 1702 Sequenom ACR1987 8 Plant (2) 2010 China Asian 1035 1702 Sequenom ACR1987 6 V	Plenge (NARAC)	2005	Sweden	European	828	845	MALDI-TOF	ACR1987	8
Suppiah 2006 Northern Ircland Caucasian 289 168 PCR-RFLP ACR1987 7 Costenbader 2008 USA Caucasian 423 420 TaqMan ACR1987 7 Tsukahara 2009 USA African 505 712 TaqMan ACR1987 7 Daha 2009 Dutch Caucasian 867 863 Sequenom ACR1987 8 Barton 2009 Caucasian 114 1248 Sequenom ACR1987 8 Plant (1) 2010 Gereace Caucasian 118 209 Sequenom ACR1987 8 Plant (3) 2010 Greece Caucasian 1002 2725 Sequenom ACR1987 8 Danoy 2011 China Asian 1032 TaqMan ACR1987 8 Luterck-Puszyńska 2016 Geramay Caucasian 312 490 Sequenom ACR1987 6 <	Zhernakova	2005	Dutch	Caucasian	153	900	PCR-RFLP	ACR1987	6
Costendader 2008 USA Caucasian 423 420 TaqMan ACR1987 7 Tsukahara 2008 Japan Asian 1498 441 TaqMan ACR1987 7 Daha 2009 USA African 505 712 TaqMan ACR1987 7 Barton 2009 UK European 3669 3049 TaqMan ACR1987 8 Plant (1) 2010 France Caucasian 671 177 Sequenom ACR1987 8 Plant (2) 2010 Germany Caucasian 1002 2725 Sequenom ACR1987 8 Plant (2) 2010 UK Caucasian 1032 1702 Sequenom ACR1987 7 Statz 2010 OGrmany Caucasian 142 338 TaqMan ACR1987 8 Luterek-Puszyńska 2016 Poland Caucasian 332 490 Sequenom ACR1987 6	Suppiah	2006	Northern Ireland	Caucasian	289	168	PCR-RFLP	ACR1987	7
Tsukahara2008JapanAsian1498441TaqManACR19878Kelley2009UKAAfrican5057.12TaqManACR19877Barton2009DutchCaucasian863SequenomACR19877Barton2009UKEuropean36693049TaqManACR19878Walker2009CanadaCaucasian11401248SequenomACR19878Plant (1)2010GermanyCaucasian118209SequenomACR19878Plant (3)2010GreeceCaucasian10022725SequenomACR19878Danoy2011ChinaAsian10321702SequenomACR19878Luterek-Puszyńska2016PolandCaucasian1402200PCR-RFLPACR19877Schulz2020GermanyCaucasian422338TaqManACR19877Schulz2016BorvakiaCaucasian432490SequenomACR19876El-Gabalawy2011CanadaCaucasian432490SequenomACR19877Barton (I)2006SpainCaucasian132490SequenomACR19877Barton (II)2016SpainCaucasian132490SequenomACR19877Barton (II)2010KuwaitAsian114282PCR-RFLPACR1	Costenbader	2008	USA	Caucasian	423	420	TaqMan	ACR1987	7
Kelley 2009 USA African 505 712 TaqMan ACR1987 7 Daha 2009 Dutch Caucasian 867 863 Sequenom ACR1987 8 Barton 2009 Canada Caucasian 1140 1248 Sequenom ACR1987 8 Plant (1) 2010 Germany Caucasian 218 209 Sequenom ACR1987 8 Plant (3) 2010 Gereee Caucasian 108 290 Sequenom ACR1987 8 Danoy 2011 China Asian 1032 1702 Sequenom ACR1987 7 Schulz 2013 Mexico Latin American 200 Sequenom ACR1987 7 Schulz 2020 Germany Caucasian 313 TaqMan ACR1987 7 Schulz 2020 Germany Caucasian 131 Sequenom ACR1987 6 Hadinto Caucasian	Tsukahara	2008	Japan	Asian	1498	441	TaqMan	ACR1987	8
Daha 2009 Dutch Caucasian 867 863 Sequenom ACR1987 7 Barton 2009 UK European 3669 3049 TaqMan ACR1987 8 Plant (1) 2010 France Caucasian 114 1248 Sequenom ACR1987 8 Plant (2) 2010 Germany Caucasian 218 209 Sequenom ACR1987 8 Plant (2) 2010 Greece Caucasian 1002 2725 Sequenom ACR1987 8 Danoy 2011 China Asian 1032 1702 Sequenom ACR1987 7 Schulz 2020 Germany Caucasian 422 338 TaqMan ACR1987 6 Literek-Puszyńska 2016 Slovakia Caucasian 332 490 Sequenom ACR1987 6 Barton (1) 2000 UK Caucasian 114 PSCR-RFLP ACR1987 7	Kelley	2009	USA	African	505	712	TaqMan	ACR1987	7
Barton 2009 UK European 3669 3049 TaqMan ACR1987 8 Walker 2009 Canada Caucasian 1140 1248 Sequenom ACR1987 8 Plant (1) 2010 Germany Caucasian 218 209 Sequenom ACR1987 8 Plant (3) 2010 Gerece Caucasian 1002 2725 Sequenom ACR1987 7 Torres-Carrillo 2013 Mexico Latin American 1003 170 Sequenom ACR1987 7 Schulz 2020 Germany Caucasian 422 338 TaqMan ACR1987 7 Schulz 2020 Germany Caucasian 432 438 TaqMan ACR1987 6 Strutz 2020 Germany Caucasian 422 338 TaqMan ACR1987 7 Schuz 2010 Germany Caucasian 111 256 PCR-RFLP ACR1987	Daha	2009	Dutch	Caucasian	867	863	Sequenom	ACR1987	7
Walker 2009 Canada Caucasian 1140 1248 Sequenom ACR1987 8 Plant (1) 2010 France Caucasian 671 177 Sequenom ACR1987 8 Plant (2) 2010 Germany Caucasian 268 290 Sequenom ACR1987 8 Plant (3) 2010 UK Caucasian 1002 2725 Sequenom ACR1987 8 Danoy 2011 China Asian 1032 1702 Sequenom ACR1987 8 Luterek-Puszyńska 2016 Poland Caucasian 122 338 TaqMan ACR1987 6 Vernerova 2016 Slovakia Caucasian 132 490 Sequenom ACR1987 6 Barton (1) 2000 Germany Caucasian 114 282 PCR-RFLP ACR1987 6 Barton (1) 2013 Kuwait Asian 114 282 PCR-RFLP ACR1987 </td <td>Barton</td> <td>2009</td> <td>UK</td> <td>European</td> <td>3669</td> <td>3049</td> <td>TaqMan</td> <td>ACR1987</td> <td>8</td>	Barton	2009	UK	European	3669	3049	TaqMan	ACR1987	8
Plant (1) 2010 France Caucasian 671 177 Sequenom ACR1987 8 Plant (2) 2010 Germany Caucasian 218 209 Sequenom ACR1987 8 Plant (3) 2010 Greece Caucasian 1002 2725 Sequenom ACR1987 8 Danoy 2011 China Asian 1035 1702 Sequenom ACR1987 8 Luterek-Puszyńska 2016 Poland Caucasian 422 338 TaqMan ACR1987 7 Schulz 2020 Germany Caucasian 422 338 TaqMan ACR2197 6 Schulz 2020 Germany Caucasian 332 490 Sequenom ACR1987 6 El-Gabalawy 2011 Caucasian 114 282 PCR-RFLP ACR1987 7 Rs231775(49G/A) - A Caucasian 136 144 PCR-RFLP ACR1987 6	Walker	2009	Canada	Caucasian	1140	1248	Sequenom	ACR1987	8
Plant (2)2010GermanyCaucasian218209SequenomACR19878Plant (3)2010GreeceCaucasian268290SequenomACR19878Plant (4)2010UKCaucasian10022725SequenomACR19877Torres-Carrillo2013MexicoLatin American200200PCR-RFLPACR19877Torres-Carrillo2013MexicoLatin American200200PCR-RFLPACR19877Schulz2020GermanyCaucasian422338TaqManACR19877Schulz2020GermanyCaucasian111256PCR-RFLPACR20106El-Gabalawy2011CanadaCaucasian132490SequenomACR19876Merrova2016SlovakiaCaucasian114282PCR-RFLPACR19876Barton (1)2000SpainCaucasian136144PCR-RFLPACR19876Benhatchi2015EgyptCaucasian112122PCR-RFLPACR19876Feng2005ChinaAsian5060PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-RFLPACR19876Lee 20022003ChinaAsian326250DGGEACR19876Lee 20032003ChinaAsian326<	Plant (1)	2010	France	Caucasian	671	177	Sequenom	ACR1987	8
Plant (3)2010GreeceCaucasian268290SequenomACR19878Plant (4)2010UKCaucasian10022725SequenomACR19878Danoy2011ChinaAsian10031702SequenomACR19877Torres-Carrillo2013MexicoLatin American200200PCR-RFLPACR19877Schulz2020GermanyCaucasian422338TaqManACR19877Schulz2020GermanyCaucasian312490SequenomACR19876Vernerova2016SlovakiaCaucasian332490SequenomACR19876Vernerova2016SlovakiaCaucasian312490SequenomACR19876Barton (1)2000SpainCaucasian114282PCR-RFLPACR19877Benton (1)2000UKCaucasian136144PCR-RFLPACR19876Gonzalez-Escribano2015EgyptCaucasian5751PCR-RFLPACR19876Feng2005ChinaAsian5060PCR-RFLPACR19876Hadj2001TunisiaAfrican60150PCR-RFLPACR19876Lie 20022002KoreaAsian3686PCR-RFLPACR19876Liu 20142001TunisiaAfrican60150PCR-RFLP	Plant (2)	2010	Germany	Caucasian	218	209	Sequenom	ACR1987	8
Plant (4)2010UKCaucasian10022725SequenomACR19878Danoy2011ChinaAsian10351702SequenomACR19877Torres-Carrillo2013MexicoLatin American200200PCR-RFLPACR19877Schulz2020GermanyCaucasian422338TaqManACR19877Schulz2020GermanyCaucasian332490SequenomACR19876El-Gabalawy2011CanadaCaucasian332490SequenomACR19876Vernerova2016SlovakiaCaucasian111256PCR-RFLPACR19876AlFadhli2013KuwaitAsian114282PCR-RFLPACR19877Barton (I)2000SpainCaucasian136144PCR-RFLPACR19877Barton (II)2000UKCaucasian19296PCR-RFLPACR19876Elshazli2015EgyptCaucasian5751PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-RFLPACR19876Hadj2001TunisiaAfrican60150PCR-RFLPACR19876Lee 20032003ChinaAsian326250DGGEACR19876Lee 20032003ChinaAsian161150PCR-RFLP	Plant (3)	2010	Greece	Caucasian	268	290	Sequenom	ACR1987	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Plant (4)	2010	UK	Caucasian	1002	2725	Sequenom	ACR1987	8
Torres-Carrillo2013MexicoLatin American200200PCR-RFLPACR19878Luterek-Puszyńska2016PolandCaucasian422338TaqManACR19877Schulz2020GermanyCaucasian111256PCR-RFLPACR20106El-Gabalawy2011CanadaCaucasian332490SequenomACR19876Vernerova2016SlovakiaCaucasian332490SequenomACR20109Rs23175(49G/A)Vernerova2016SlovakiaCaucasian136144PCR-RFLPACR19877Barton (I)2000SpainCaucasian136144PCR-RFLPACR19877Benhatchi2011SlovakiaCaucasian17251PCR-RFLPACR19877Benhatchi2011SlovakiaCaucasian112122PCR-RFLPACR19876Elshazli2015EgyptCaucasian138305PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-RFLPACR19876Lee 20032003ChinaAsian3686PCR-RFLPACR19876Lee 20032003ChinaAsian326250DGGEACR19877Lue 20132013ChinaAsian316134PCR-RFLPACR19877Lue 20132013China	Danoy	2011	China	Asian	1035	1702	Sequenom	ACR1987	7
Luterek-Puszyńska2016PolandCaucasian422338TaqManACR19877Schulz2020GermanyCaucasian111256PCR-RFLPACR20106El-Gabalawy2011CanadaCaucasian332490SequenomACR19876Vernerova2016SlovakiaCaucasian499894TaqManACR20109 Rs23175(49G/A) JAlFadhli2013KuwaitAsian114282PCR-RFLPACR19876Barton (I)2000SpainCaucasian136144PCR-RFLPACR19877Benhatchi2011SlovakiaCaucasian19296PCR-RFLPACR19876Elshazli2015EgyptCaucasian112122PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-RFLPACR19876Hadj2001TunisiaAfrican60150PCR-RFLPACR19876Lee 20022002KoreaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian186203PCR-RFLPACR19877Liu 20132013ChinaAsian18681	Torres-Carrillo	2013	Mexico	Latin American	200	200	PCR-RFLP	ACR1987	8
Schulz2020GermanyCaucasian111256PCR-RFLPACR20106El-Gabalawy2011CanadaCaucasian332490SequenomACR19876Vernerova2016SlovakiaCaucasian499894TaqManACR20109Rs21775(49G/A)AlFadhli2013KuwaitAsian114282PCR-RFLPACR19876Barton (I)2000SpainCaucasian136144PCR-RFLPACR19877Barton (II)2000UKCaucasian17296PCR-RFLPACR19876Elshazli2015EgyptCaucasian112122PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-ARMSACR19876Hadj2001TunisiaAfrican60150PCR-RFLPACR19876Lee 20022002KoreaAsian326230PCR-RFLPACR19876Lei2005ChinaAsian326230PCR-RFLPACR19876Liu 20042004TaiwanAsian136131PCR-RFLPACR19877Liu 20132013ChinaAsian132156TaqManACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Liu 20132013ChinaAsian213303P	Luterek-Puszyńska	2016	Poland	Caucasian	422	338	TaqMan	ACR1987	7
El-Gabalawy 2011 Canada Caucasian 332 490 Sequenom ACR1987 6 Vernerova 2016 Slovakia Caucasian 499 894 TaqMan ACR2010 9 Rs231775(49G/A) 499 894 TaqMan ACR2010 9 Rs231775(49G/A) Kuwait Asian 114 282 PCR-RFLP ACR1987 6 Barton (I) 2000 Segupt Caucasian 136 144 PCR-RFLP ACR1987 7 Benhatchi 2011 Slovakia Caucasian 7 51 PCR-RFLP ACR1987 6 Elshazli 2015 Egypt Caucasian 113 305 PCR-RFLP ACR1987 6 Gonzalez-Escribano 1999 Spain Caucasian 138 305 PCR-RFLP ACR1987 6 Lee 2002 Korea Asian 86 86 PCR-RFLP ACR1987 6 Lee 2003<	Schulz	2020	Germany	Caucasian	111	256	PCR-RFLP	ACR2010	6
Vernerova 2016 Slovakia Caucasian 499 894 TaqMan ACR2010 9 Rs231775(49G/A) AIFadhli 2013 Kuwait Asian 114 282 PCR-RFLP ACR1987 6 Barton (I) 2000 Spain Caucasian 136 144 PCR-RFLP ACR1987 7 Barton (II) 2000 UK Caucasian 192 96 PCR-RFLP ACR1987 7 Benhatchi 2011 Slovakia Caucasian 57 51 PCR-RFLP ACR1987 6 Feng 2005 China Asian 50 60 PCR-RFLP ACR1987 6 Gonzalez-Escribano 1999 Spain Caucasian 138 305 PCR-RFLP ACR1987 6 Lei 2001 Tunisia African 60 150 PCR-RFLP ACR1987 6 Lee 2002 2002 Korea Asian 326 250 DGGE ACR1	El-Gabalawy	2011	Canada	Caucasian	332	490	Sequenom	ACR1987	6
Rs231775(49G/A) Kuwait Asian 114 282 PCR-RFLP ACR1987 6 Barton (I) 2000 Spain Caucasian 136 144 PCR-RFLP ACR1987 7 Barton (II) 2000 UK Caucasian 192 96 PCR-RFLP ACR1987 7 Benhatchi 2011 Slovakia Caucasian 17 D PCR-RFLP ACR1987 6 Elshazli 2015 Egypt Caucasian 112 122 PCR-RFLP ACR1987 6 Gonzalez-Escribano 1999 Spain Caucasian 138 305 PCR-RFLP ACR1987 6 Hadj 2001 Tunisia African 60 150 PCR-RFLP ACR1987 6 Lie 2002 2002 Korea Asian 86 86 PCR-RFLP ACR1987 6 Lee 2003 2003 China Asian 326 250 DGGE ACR1987	Vernerova	2016	Slovakia	Caucasian	499	894	TagMan	ACR2010	9
AlFadhli2013KuwaitAsian114282PCR-RFLPACR19876Barton (I)2000SpainCaucasian136144PCR-RFLPACR19877Barton (II)2000UKCaucasian19296PCR-RFLPACR19877Benhatchi2011SlovakiaCaucasian5751PCR-RFLPACR19876Elshazli2015EgyptCaucasian112122PCR-RFLPACR19876Feng2005ChinaAsian5060PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-ARMSACR19876Hadj2001TunisiaAfrican60150PCR-RFLPACR19877Lee 20022002KoreaAsian8686PCR-RFLPACR19876Lei2005ChinaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian132156TaqManACR19877Liu 20042004TaiwanAsian215TaqManACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR19877Miterski2004GermanyCaucasian243362PCR-RFLPACR19877Mi	Rs231775(49G/A)								
Barton (I)2000SpainCaucasian136144PCR-RFLPACR19877Barton (II)2000UKCaucasian19296PCR-RFLPACR19877Benhatchi2011SlovakiaCaucasian5751PCR-RFLPACR19876Elshazli2015EgyptCaucasian112122PCR-RFLPACR19876Feng2005ChinaAsian5060PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-RFLPACR19876Hadj2001TunisiaAfrican60150PCR-RFLPACR19877Lee 20022002KoreaAsian8686PCR-RFLPACR19876Lee 20032003ChinaAsian326250DGGEACR19878Liu 20042004TaiwanAsian32681PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR19877Luterek-Puszyńska2016PolandCaucasian421452PCR-RFLPACR19877Milcic2001UKCaucasian284362PCR-RFLPACR19877Milcic2001UKCaucasian421452PCR-RFLPACR19877Milcic2001UKCaucasian284362PCR-RFLPACR1987 <td>AIFadhli</td> <td>2013</td> <td>Kuwait</td> <td>Asian</td> <td>114</td> <td>282</td> <td>PCR-RFLP</td> <td>ACR1987</td> <td>6</td>	AIFadhli	2013	Kuwait	Asian	114	282	PCR-RFLP	ACR1987	6
Barton (II)2000UKCaucasian19296PCR-RFLPACR19877Benhatchi2011SlovakiaCaucasian5751PCR-RFLPACR19876Elshazli2015EgyptCaucasian112122PCR-RFLPACR19876Feng2005ChinaAsian5060PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-ARMSACR19877Lee 20022002KoreaAsian60150PCR-RFLPACR19876Lee 20032003ChinaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian326250DGGEACR19878Liu 20042004TaiwanAsian6581PCR-RFLPACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Miterski2001MexicoMexican199199PCR-RFLPACR1987	Barton (I)	2000	Spain	Caucasian	136	144	PCR-RFLP	ACR1987	7
Benhatchi2011SlovakiaCaucasian5751PCR-RFLPACR19876Elshazli2015EgyptCaucasian112122PCR-RFLPACR19876Feng2005ChinaAsian5060PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-RFLPACR19877Lee 20022002KoreaAsian66150PCR-RFLPACR19876Lee 20032003ChinaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian326250DGGEACR19878Liu 20042004TaiwanAsian6581PCR-RFLPACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian421452PCR-RFLPACR19877Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Miterski2004GermanyCaucasian284362PCR-RFLPACR19876Miterski2001UKCaucasian284362PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR1987 </td <td>Barton (II)</td> <td>2000</td> <td>UK</td> <td>Caucasian</td> <td>192</td> <td>96</td> <td>PCR-RFLP</td> <td>ACR1987</td> <td>7</td>	Barton (II)	2000	UK	Caucasian	192	96	PCR-RFLP	ACR1987	7
Elshazli2015EgyptCaucasian112122PCR-RFLPACR19876Feng2005ChinaAsian5060PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-ARMSACR19876Hadj2001TunisiaAfrican60150PCR-RFLPACR19877Lee 20022002KoreaAsian8686PCR-RFLPACR19876Lei2003ChinaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian326250DGGEACR19878Liu 20042004TaiwanAsian6581PCR-RFLPACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Milcic2001UKCaucasian421452PCR-RFLPACR19877Milcick2001UKCaucasian284362PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19878Plant (1)2010GermanyCaucasian684162SequenomACR19878 <tr< td=""><td>Benhatchi</td><td>2011</td><td>Slovakia</td><td>Caucasian</td><td>57</td><td>51</td><td>PCR-RFLP</td><td>ACR1987</td><td>6</td></tr<>	Benhatchi	2011	Slovakia	Caucasian	57	51	PCR-RFLP	ACR1987	6
Feng2005ChinaAsian5060PCR-RFLPACR19876Gonzalez-Escribano1999SpainCaucasian138305PCR-ARMSACR19876Hadj2001TunisiaAfrican60150PCR-RFLPACR19877Lee 20022002KoreaAsian8686PCR-RFLPACR19876Lee 20032003ChinaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian326250DGGEACR19878Liu 20042004TaiwanAsian6581PCR-RFLPACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Matsushita1999JapanAsian451150PCR-SSCPACR19877Milicic2001UKCaucasian421452PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GermanyEuropean220209SequenomACR19878 <td>Elshazli</td> <td>2015</td> <td>Egypt</td> <td>Caucasian</td> <td>112</td> <td>122</td> <td>PCR-RFLP</td> <td>ACR1987</td> <td>6</td>	Elshazli	2015	Egypt	Caucasian	112	122	PCR-RFLP	ACR1987	6
Gonzalez-Escribano1999SpainCaucasian138305PCR-ARMSACR19876Hadj2001TunisiaAfrican60150PCR-RFLPACR19877Lee 20022002KoreaAsian8686PCR-RFLPACR19876Lee 20032003ChinaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian326250DGGEACR19878Liu 20042004TaiwanAsian6581PCR-RFLPACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Matsushita1999JapanAsian461150PCR-SSCPACR19878Milerski2004GermanyCaucasian421452PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean220209SequenomACR19878Plant (4)2010UKEuropean272287SequenomACR1987 <td>Feng</td> <td>2005</td> <td>China</td> <td>Asian</td> <td>50</td> <td>60</td> <td>PCR-RFLP</td> <td>ACR1987</td> <td>6</td>	Feng	2005	China	Asian	50	60	PCR-RFLP	ACR1987	6
Hadj 2001 Tunisia African 60 150 PCR-RFLP ACR1987 7 Lee 2002 2002 Korea Asian 86 86 PCR-RFLP ACR1987 6 Lee 2003 2003 China Asian 186 203 PCR-RFLP ACR1987 6 Lee 2003 2005 China Asian 326 250 DGGE ACR1987 8 Liu 2004 2004 Taiwan Asian 65 81 PCR-RFLP ACR1987 7 Barton 2004 UK European 132 156 TaqMan ACR1987 7 Liu 2013 2013 China Asian 213 303 PCR-RFLP ACR1987 7 Luterek-Puszyńska 2016 Poland Caucasian 422 338 TaqMan ACR2010 7 Mitsushita 1999 Japan Asian 461 150 PCR-RFLP ACR1987 8 Miterski 2004 Germany Caucasian 421 452 PCR-RFLP	Gonzalez-Escribano	1999	Spain	Caucasian	138	305	PCR-ARMS	ACR1987	6
LineLi	Hadi	2001	Tunisia	African	60	150	PCR-RFLP	ACR1987	7
Lee 20032003ChinaAsian186203PCR-RFLPACR19876Lei2005ChinaAsian326250DGGEACR19878Liu 20042004TaiwanAsian6581PCR-RFLPACR19876Barton2004UKEuropean132156TaqManACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Matsushita1999JapanAsian461150PCR-RFLPACR19877Milicic2001UKCaucasian421452PCR-RFLPACR19878Miterski2004GermanyCaucasian284362PCR-RFLPACR19876Plant (1)2010MexicoMexican199199PCR-RFLPACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Lee 2002	2002	Korea	Asian	86	86	PCR-RFLP	ACR1987	6
Lei2005ChinaAsian326250DGGEACR19878Liu 20042004TaiwanAsian6581PCR-RFLPACR19876Barton2004UKEuropean132156TaqManACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Matsushita1999JapanAsian461150PCR-SSCPACR19877Milicic2001UKCaucasian421452PCR-RFLPACR19878Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Lee 2003	2003	China	Asian	186	203	PCR-RFLP	ACR1987	6
Liu2004TaiwanAsian6581PCR-RFLPACR19876Barton2004UKEuropean132156TaqManACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Matsushita1999JapanAsian461150PCR-SSCPACR19877Milicic2001UKCaucasian421452PCR-RFLPACR19878Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Lei	2005	China	Asian	326	250	DGGE	ACR1987	8
Barton2004UKEuropean132156TaqManACR19877Liu 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Matsushita1999JapanAsian461150PCR-SSCPACR19877Milicic2001UKCaucasian421452PCR-RFLPACR19878Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Liu 2004	2004	Taiwan	Asian	65	81	PCR-RFLP	ACR1987	6
Lin 20132013ChinaAsian213303PCR-RFLPACR19877Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Matsushita1999JapanAsian461150PCR-SSCPACR19877Milicic2001UKCaucasian421452PCR-RFLPACR19878Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Barton	2004	UK	European	132	156	TagMan	ACR1987	7
Luterek-Puszyńska2016PolandCaucasian422338TaqManACR20107Matsushita1999JapanAsian461150PCR-SSCPACR19877Milicic2001UKCaucasian421452PCR-RFLPACR19878Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Lin 2013	2013	China	Asian	213	303	PCR_RFLP	ACR1987	, 7
Matsushita1999JapanAsian461150PCR-SSCPACR19877Milicic2001UKCaucasian421452PCR-RFLPACR19878Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Luterek-Puszvńska	2016	Poland	Caucasian	422	338	TagMan	ACR2010	7
Milicic2001UKCaucasian421452PCR-RFLPACR19878Miterski2004GermanyCaucasian284362PCR-RFLPACR19877Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Matsushita	1999	Japan	Asian	461	150	PCR-SSCP	ACR1987	7
Miner2001Orr <th< td=""><td>Milicic</td><td>2001</td><td>UK</td><td>Caucasian</td><td>421</td><td>452</td><td>PCR-RFLP</td><td>ACR1987</td><td>8</td></th<>	Milicic	2001	UK	Caucasian	421	452	PCR-RFLP	ACR1987	8
Munoz-Valle2010MexicoMexican199199PCR-RFLPACR19876Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Miterski	2001	Germany	Caucasian	284	362	PCR_RFLP	ACR1987	7
Plant (1)2010FranceCaucasian684162SequenomACR19878Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Munoz-Valle	2010	Mexico	Mexican	199	199	PCR-RFLP	ACR1987	6
Plant (2)2010GermanyEuropean220209SequenomACR19878Plant (3)2010GreeceEuropean272287SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Plant (1)	2010	France	Caucasian	684	162	Sequenom	ACR1987	8
Plant (2)2010GreeceEuropean220267SequenomACR19878Plant (4)2010UKEuropean10042659SequenomACR19876	Plant (2)	2010	Germany	European	220	209	Sequenom	ACR1987	8
Plant (4) 2010 UK European 1004 2659 Sequenom ACR1987 6	Plant (3)	2010	Greece	European	220	207	Sequenom	ACR1987	8
	Plant (4)	2010	UK	European	1004	2659	Sequenom	ACR1987	6

Table 1. Main characteristics of included studies.

Seidl	1998	Germany	Caucasian	258	456	RFLP-SSCP	ACR1987	8
Suppiah	2006	UK	European	289	475	PCR-RFLP	ACR1987	7
Takeuchi	2006	Japan	Asian	100	104	PCR-RFLP	ACR1987	6
Tang	2013	China	Asian	1489	1200	TaqMan	ACR1987	8
Tsukahara	2008	Japan	Asian	1490	448	TaqMan	ACR1987	8
Kelley	2009	USA	African	505	712	TaqMan	ACR1987	7
Vaidya	2002	UK	Caucasian	123	349	PCR-RFLP	ACR1987	6
Walker	2009	Canada	Caucasian	1140	1248	Sequenom	ACR1987	8
Yanagawa	2000	Japan	Asian	85	200	PCR-RFLP	ACR1987	6
Zhou	2007	China	Asian	39	44	PCR-RFLP	ACR1987	6
Sameem	2015	Pakistani	Asian	100	100	PCR-RFLP	RF test	6
Rs5742909 (318C/T)								
Gonzalez-Escribano	1999	Spain	Caucasian	138	305	PCR-ARMS	ACR1987	6
Lee 2002	2002	Korea	Asian	86	86	PCR-RFLP	ACR1987	6
Barton	2004	UK	European	151	152	TaqMan	ACR1987	7
Liu 2004	2004	Tainan	Asian	65	81	PCR-RFLP	ACR1987	6
Miterski	2004	Germany	Caucasian	284	362	PCR-RFLP	ACR1987	7
Takeuchi	2006	Japan	Asian	100	104	PCR-RFLP	ACR1987	6
Walker	2009	Canada	Caucasian	1140	1248	Sequenom	ACR1987	8
Liu 2013	2013	China	Asian	213	303	PCR-RFLP	ACR1987	7
Torres-Carrillo	2013	Mexico	Latin American	200	200	PCR-RFLP	ACR1987	7
Fattah	2017	Egypt	Caucasian	100	100	PCR-RFLP	ACR2010	6

Table 2. Distribution of genotype and allele among RA patients and controls.

Star la			Cases				Controls						
Study	MM	Mm	mm	Μ	m	MM	Mm	mm	Μ	m	- HEW		
Rs3087243(CT60)													
Orozco	118	198	117	434	432	98	199	101	395	401	YES		
Lei	33	137	156	203	449	32	131	87	195	305	YES		
Plenge (EIRA)	230	680	595	1140	1870	145	396	337	686	1070	YES		
Plenge (NARAC)	133	387	308	653	1003	165	426	254	756	934	YES		
Zhernakova	NA	NA	NA	133	173	NA	NA	NA	841	959	NA		
Suppiah	NA	NA	NA	234	344	NA	NA	NA	145	191	NA		
Costenbader	82	201	140	365	481	87	195	138	369	471	YES		
Tsukahara	87	538	873	712	2284	33	163	245	229	653	YES		
Kelley	NA	NA	NA	NA	505	NA	NA	NA	NA	712	NA		
Daha	NA	NA	NA	729	1005	NA	NA	NA	785	941	NA		
Barton	677	1760	1232	3114	4224	634	1523	892	2791	3307	YES		
Walker	207	518	415	932	1348	273	613	362	1159	1337	YES		
Plant (1)	131	332	208	594	748	45	91	41	181	173	YES		
Plant (2)	35	105	78	175	261	35	101	73	171	247	YES		
Plant (3)	55	135	78	245	291	70	145	75	285	295	YES		
Plant (4)	204	487	311	895	1109	542	1344	839	2428	3022	YES		
Danoy	NA	NA	NA	310	1760	NA	NA	NA	681	2723	NA		
Torres-Carrillo	31	86	83	148	252	32	106	62	170	230	YES		
Luterek-Puszyńska	53	193	176	299	545	45	174	119	264	412	YES		
Schulz	13	49	49	75	147	42	124	90	208	304	YES		
El-Gabalawy	45	161	126	126 251	413	66	226	198	358	622	YES		

Vernerova	NA	NA	NA	616	382	NA	NA	NA	1064	1064	NA
Rs231775(49G/A)											
AIFadhli	10	30	74	50	178	14	86	182	114	450	YES
Barton (I)	14	57	65	85	187	12	70	62	94	194	YES
Barton (II)	38	86	68	162	222	19	51	26	89	103	YES
Benhatchi	6	33	18	45	69	5	25	21	35	67	YES
Elshazli	14	55	43	83	141	6	45	71	57	187	YES
Feng	20	21	9	61	39	9	32	19	50	70	YES
Gonzalez-Escribano	10	63	65	83	193	30	103	172	163	447	NO
Hadj	23	27	10	73	47	68	62	20	198	102	YES
Lee 2002	41	35	10	117	55	49	29	8	127	45	YES
Lee 2003	103	67	16	273	99	85	100	18	270	136	YES
Lei	148	138	40	434	218	86	125	39	297	203	YES
Liu 2004	14	42	9	70	60	21	50	10	92	70	NO
Barton	34	55	43	123	141	29	68	59	126	186	YES
Liu 2013	77	111	25	265	161	130	125	48	385	221	YES
Luterek-Puszyńska	79	210	133	368	476	63	160	115	286	390	YES
Matsushita	200	199	62	599	323	56	72	22	184	116	YES
Milicic	63	223	135	349	493	73	213	166	359	545	YES
Miterski	NA	NA	NA	222	346	NA	NA	NA	269	455	NA
Munoz-Valle	42	102	55	186	212	34	82	83	150	248	YES
Plant (1)	96	315	273	507	861	15	75	72	105	219	YES
Plant (2)	37	111	72	185	255	32	94	83	158	260	YES
Plant (3)	26	133	113	185	359	33	107	147	173	401	YES
Plant (4)	146	451	407	743	1265	410	1255	994	2075	3243	YES
Seidl	37	138	83	212	304	68	210	179	346	568	YES
Suppiah	40	144	105	224	354	92	241	142	425	525	YES
Takeuchi	49	39	12	137	63	44	49	11	137	71	YES
Tang	652	642	195	1946	1032	474	535	191	1483	917	YES
Tsukahara	636	668	186	1940	1040	181	194	73	556	340	YES
Kelley	NA	NA	NA	NA	505	NA	NA	NA	NA	712	NA
Vaidya	20	65	38	105	141	45	158	146	248	450	YES
Walker	177	554	409	908	1372	178	577	493	933	1563	YES
Yanagawa	29	50	6	108	62	78	88	34	244	156	YES
Zhou	22	9	8	53	25	8	14	22	30	58	YES
Sameem	54	26	20	134	66	28	31	41	87	113	NO
Rs5742909 (318C/T)		•	100	21	2.4.5		FO	2.42	- 1		NG
Gonzalez-Escribano	1	29	108	31	245	2	60	243	64	546	NO
Lee 2002	2	19	65	23	149	4	14	68	22	150	YES
Barton	l	18	132	20	282	3	27	122	33	271	YES
Liu 2004	0	15	50	15	115	0	23	58	23	139	NO
Miterski	NA	NA 12	NA	64	504	NA	NA	NA	50	6/4	NA
I akeuchi	0	13	87	13	187	0	22	82	22	186	YES
walker	13	219	908	245	2035	10	183	1055	203	2293	YES
Liu 2013	14	9/	102	125	301 200	13	11	213	103	503	YES
1 orres-Carrillo	2	16	182	20	38U	0	20	180	20	380	IES
rattan	/	52	41	66	154	2	52	66	36	164	YES

M, minor allele; m, major allele; NA, not available; HWE, Hardy-Weinberg Equilibrium.

<u> </u>	Association						He	terogei	neity
Genetic model	Population	Cases	Controls	OR	95%CI	<i>P</i> -value	Model	I^2	<i>P</i> -value
Rs308724									
	Total	16394	17453	0.87	0.83-0.91	< 0.00001	REM	39	0.003
	Caucasian	12830	14148	0.89	0.86-0.93	< 0.00001	FEM	25	0.17
A vs. G	Asian	2859	2393	0.77	0.65-0.90	0.001	REM	56	0.10
	Latin	200	200	0.79	0.60-1.06	0.11	-	-	-
	African	505	712	0.83	0.67-1.02	0.08	-	-	-
	Total	13046	12214	0.80	0.74-0.87	< 0.00001	FEM	22	0.20
	Caucasian	11022	11323	0.81	0.75-0.88	< 0.00001	FEM	32	0.13
AA vs. UU	Asian	1824	691	0.67	0.48-0.94	0.02	FEM	0	0.48
	Latin	200	200	0.72	0.40-1.31	0.29	-	-	-
	Total	13046	12214	0.85	0.80-0.90	< 0.0001	FEM	28	0.14
	Caucasian	11022	11323	0.86	0.81-0.92	< 0.0001	FEM	11	0.33
AG VS. GG	Asian	1824	691	0.75	0.48-1.18	0.21	REM	78	0.03
	Latin	200	200	0.61	0.39-0.94	0.02	-	-	-
	Total	13046	12214	0.83	0.77-0.90	< 0.0001	REM	46	0.02
	Caucasian	11022	11323	0.85	0.78-0.93	< 0.0002	REM	40	0.07
AA+GA VS. GG	Asian	1824	691	0.74	0.48-1.12	0.15	REM	77	0.04
	Latin	200	200	0.60	0.40-0.90	0.01	-	-	-
	Total	13046	12214	0.88	0.83-0.94	0.0003	FEM	0	0.75
	Caucasian	11022	11323	0.89	0.83-0.95	0.0008	FEM	0	0.60
AA vs. GA+GG	Asian	1824	691	0.76	0.55-1.06	0.10	FEM	0	0.98
	Latin	200	200	0.96	0.56-1.65	0.89	-	-	-
Rs231775									
	Total	11452	12444	1.16	1.08-1.25	< 0.0001	REM	66	0.00001
	Caucasian	5884	7872	1.09	1.01-1.19	0.04	REM	38	0.004
G vs. A	Asian	4804	3511	1.27	1.10-1.47	0.001	REM	71	< 0.0001
	African	565	862	1.06	0.68-1.65	0.81	REM	73	0.05
	Latin	199	199	1.45	1.09-1.92	0.010	-	-	-
	Total	10663	11370	1.29	1.12-1.50	0.0006	REM	54	0.0002
	Caucasian	5600	7510	1.11	0.94-1.31	0.21	FEM	25	0.17
GG vs. AA	Asian	4804	3511	1.58	1.24-2.01	0.0002	REM	51	0.01
	African	60	150	0.68	0.28-1.65	0.39	-	-	-
	Latin	199	199	1.24	1.09-1.42	0.03	-	-	-
	Total	10663	11370	1.19	1.07-1.32	0.001	REM	46	0.003
	Caucasian	5600	7510	1.18	1.02-1.35	0.02	REM	59	0.001
GA vs. AA	Asian	4804	3511	1.20	1.05-1.38	0.08	FEM	3	0.42
	African	60	150	0.87	0.36-2.11	0.76	-	-	-
	Latin	199	199	1.88	1.20-2.94	0.006	-	-	-
	Total	10663	11370	1.24	1.11-1.39	0.0001	FEM	56	0.001
	Caucasian	5600	7510	1.17	1.02-1.34	0.02	REM	62	0.0006
GG+GA vs. AA	Asian	4804	3511	1.33	1.17-1.51	< 0.0001	FEM	31	0.12
	African	60	150	0.77	0.34-1.76	0.53	-	-	-
	Latin	199	199	1.87	1.23-2.85	0.003	-	-	-
~~ ~	Total	10663	11370	1.15	1.02-1.30	0.02	REM	57	< 0.0001
GG vs. GA+AA	Caucasian	5600	7510	1.01	0.91-1.12	0.80	FEM	10	0.34

Table 3. Results of different comparative genetic models on the association of CTLA-4 SNPs with RA.

	Asian	4804	3511	1.34	1.08-1.65	0.008	REM	72	< 0.0001
	African	60	150	0.75	0.41-1.38	0.36	-	-	-
	Latin	199	199	1.30	0.79-2.15	0.31	-	-	-
Rs5742909									
	Total	2477	2941	1.21	0.93-1.57	0.15	REM	71	0.0003
T _W C	Caucasian	1813	2167	1.31	0.94-1.84	0.11	REM	73	0.005
1 vs. C	Asian	464	574	1.05	0.56-1.96	0.88	REM	80	0.002
	Latin	200	200	1.00	0.53-1.89	1.00	-	-	-
	Total	2193	2579	1.71	1.08-2.73	0.08	FEM	17	0.30
TT vs. CC	Caucasian	1529	1805	1.58	0.60-4.17	0.35	REM	32	0.22
	Asian	464	574	1.34	0.34-5.28	0.68	REM	56	0.13
	Latin	200	200	4.95	0.24-103.73	0.30	-	-	-
	Total	2193	2579	1.19	0.84-1.69	0.33	FEM	76	< 0.0001
	Caucasian	1529	1805	1.27	0.81-1.99	0.29	REM	74	0.01
IC VS. CC	Asian	464	574	1.16	0.53-2.56	0.70	REM	83	0.0004
	Latin	200	200	0.79	0.40-1.58	0.51	-	-	-
	Total	2193	2579	1.19	0.84-1.69	0.33	FEM	77	< 0.0001
	Caucasian	1529	1805	1.28	0.79-2.07	0.32	REM	78	0.003
TT+TC VS. CC	Asian	464	574	1.12	0.52-2.43	0.77	REM	84	0.0003
	Latin	200	200	0.89	0.46-1.74	0.73	-	-	-
	Total	2193	2579	1.43	0.90-2.27	0.13	FEM	0	0.52
	Caucasian	1529	1805	1.46	0.77-2.78	0.25	FEM	0	0.39
11 VS. 1C+CC	Asian	464	574	1.27	0.63-2.54	0.51	FEM	32	0.23
	Latin	200	200	5.05	0.24-105.86	0.30	-	-	-

OR, odds ratio; CI, confidence interval; FEM, fix-effect model; REM, random-effect model.

P=0.37; *GA* vs. *AA*: OR = 1.15, 95% CI =1.00-1.31, *P*=0.05; *GG* + *GA* vs. *AA*: OR =1.14, 95% CI=1.00-1.29, *P*=0.05 and *GG* vs. *GA*+*AA*: OR =1.00, 95% CI=0.90–1.11, *P*=0.98) (Table 3 and Figure 3). There was no remarkable association between rs231775 SNP and RA in Africans. The results were summarized in Table 3 and Figure 3. These data with moderate heterogeneity employed the random-effect model for the synthesis.

Meta-analysis of CTLA-4 318C/T (rs5742909) SNP and RA susceptibility

Through the pooled analysis of genetic data of 2477 patients and 2941 controls in a total of 10 studies, of which 5 were conduct on Caucasians, 4 on Asians, and 1 on Latin Americans, no significant associations between rs5742909 SNP and RA in the overall pooled results were found among all populations for the allelic and genotypic comparisons (T vs. C: OR =1.21, 95% CI =0.93-1.57, P=0.15; TT vs. CC: OR =1.71, 95% CI =1.08-2.73, P=0.08; TC vs. CC: OR =1.19, 95% CI =0.84-1.69, P=0.33 and TT vs. TC+CC: OR =1.43, 95% CI=0.90-2.27, P=0.13) (Table 3 and Figure 4). Meanwhile, the subgroup analysis by ethnicity did not indicate any remarkable associations in all genetic

models (Table 3). As the heterogeneity of genetic model existed, random effect model in this part was used to make a reliable result.

Heterogeneity analysis and publication bias

To ensure the reliability of the results, we first evaluate the heterogeneity (by I^2) and found that heterogeneity existed in some genetic models of rs231775 SNP and rs5742909 SNP (Table 3). In order to minimize heterogeneity, the following methods were carried out in this meta-analysis. On the one hand, the random-effect models were exploited in the genetic models with moderate heterogeneity $(I^2 > 50\%)$. On the other hand, sensitivity analysis was adopted to evaluate the effect of a single study on the pooled ORs by removing each study in turn from the pooled analysis. Although the heterogeneity had not changed obviously, the P values for pooled ORs under allelic comparison, heterozygous comparison and dominant comparison were reversed when the study [24] led by Elshazli R was removed. Therefore, we deleted this study and recalculated the relevant ORs and 95%CIs to harvest a stable and credible outcome (Figure 3). The funnel plots were used to investigate publication bias and the outlines of the funnel plots appear to be symmetrical (Figure 5). For rs231775

SNP, the asymmetry of the funnel plot was attributed to Zhou et al.'s study [45] which was published in Chinese. HWE estimation indicated that allele or genotype frequencies were deviant from HWE in control group in the Liu et al.'s, Gonzalez-Escribano et al.'s and Sameem et al.'s studies [25, 29, 38], but the results of synthesis analysis were not substantially inversed. Hence, we didn't remove these studies from the meta-analysis.

Figure 2. Forest plot of the association between rs308724 polymorphism and RA risk under the homozygous (A) and recessive model (B).

Δ	Experime	ntal	Contr	ol		Odds Ratio	Orids Ratio	B							
Study or Subaroup	Events	Total	Events	Total	Weight	M-H. Random, 95% Cl	M-H. Random, 95% Cl	D	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
1.2.1 Caucasian								Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% CI	M-H. Random. 95% Cl
Barton (I) 2000	85	272	94	288	2.4%	0.94 [0.66, 1.34]	+	6.2.1 Caucasian							
Barton (II) 2000	162	384	89	192	2.5%	0.84 [0.60, 1.20]	1	Barton (I) 2000	14	106	12	74	2.1%	1.11 [0.48, 2.59]	
Benhatchi 2011	45	114	35	102	1.3%	1.25 [0.72, 2.17]	Τ-	Banbatchi 2011	30	24	19	40	1.0%	1.40 [0.36, 1.36]	
EIShazii 2015 Gonzalez-Fecribano 1999	83	224	163	244	2.8%	1.93 [1.29, 2.89]	+	Elshazli 2015	14	57	6	77	0.0%	3.85 [1.38, 10.78]	
Barton 2004	123	264	126	312	2.6%	1.29 [0.92, 1.79]		Gonzalez-Escribano 1999	10	75	30	202	2.4%	0.88 [0.41, 1.91]	-
Luterek-Puszyńska 2016	368	844	286	676	3.9%	1.05 [0.86, 1.29]	+	Barton 2004	34	77	29	88	3.1%	1.61 [0.85, 3.03]	<u>+</u>
Milicic 2001	349	842	359	904	4.1%	1.07 [0.89, 1.30]	t	Luterek-Puszyńska 2016	79	212	63	178	4.7%	1.08 [0.72, 1.64]	I
Miterski 2004	222	568	269	724	3.7%	1.09 [0.87, 1.36]	Ē	Milicic 2001	63	198	73	239	4.8%	1.06 [0.71, 1.59]	T
Plant (1) 2010	507	1368	105	324	3.3%	1.23 [0.95, 1.59]	E	Plant (1) 2010 Plant (2) 2010	90	109	15	115	3.3%	1.69 [0.92, 3.08]	+
Plant (2) 2010	185	544	173	574	3.4%	1.19[0.91, 1.57]	⊢	Plant (3) 2010	26	139	33	180	3.5%	1.02 [0.58, 1.81]	+
Plant (4) 2010	743	2008	2075	5318	5.1%	0.92 [0.83, 1.02]	-	Plant (4) 2010	146	553	410	1404	6.5%	0.87 [0.70, 1.09]	-+
Seidl C 1998	212	516	346	914	3.7%	1.14 [0.92, 1.43]	+	Seidl C 1998	37	120	68	247	4.2%	1.17 [0.73, 1.89]	+-
Suppiah 2006	224	578	425	950	3.9%	0.78 [0.63, 0.96]	-	Suppiah 2006	40	145	92	234	4.4%	0.59 [0.38, 0.92]	
Vaidya 2002	105	246	248	698	2.9%	1.35 [1.00, 1.82]	F	Vaidya 2002	20	58	45	191	3.1%	1.71 [0.90, 3.23]	<u> </u>
Walker 2009	908	2280	933	2496	5.0%	1.11 [0.99, 1.25]	r	Walker 2009 Subtotal (95% CI)	177	586	178	671 3991	6.3% 55.2%	1.20 [0.94, 1.53]	F
Subtotal (95% CI)	4606	1544	6994	15500	53.8%	1.07 [0.99, 1.15]	ſ	Total events	823	2030	1104	2301	33.276	1.07 [0.82, 1.23]	ſ
Heterogeneity: Tau ² = 0.01:	4000 Chi² = 25.56	6 df = 1	5 (P = 0.0	M): I ² = 1	11%			Heterogeneity: Tau ² = 0.0	2: Chi ² = 18.7	5. df = 1	4 (P = 0.	17): l² =	= 25%		
Test for overall effect: Z = 1.	73 (P = 0.08	3)	0 (1 0.0	,,,.				Test for overall effect: Z =	0.90 (P = 0.3	(7)		,			
1.2.2 Asian								6.2.2 Asian							
Sameem 2015	134	200	87	200	2.1%	2.64 [1.76, 3.96]	T	Sameem 2015	54	74	28	69	2.7%	3.95 [1.96, 7.98]	
Alfadhli 2013	50	228	114	564	2.3%	1.11 [0.76, 1.61]	Τ	Alfadhii 2013	10	84	14	196	2.1%	1.76 [0.75, 4.13]	T
Feng 2005	117	172	127	120	1.4%	2.19 [1.27, 3.76]	-+	Lee 2002	20	29	49	∠0 57	1.4%	4.09 [1.34, 14.34]	
Lee 2003	273	372	270	406	2.8%	1.39 [1.02, 1.89]		Lee 2003	103	119	85	103	2.6%	1.36 [0.66, 2.83]	+
Lei 2005	434	652	297	500	3.5%	1.36 [1.07, 1.73]	-	Lei 2005	148	188	86	125	3.9%	1.68 [1.00, 2.81]	<u> </u>
Liu 2004	70	130	92	162	1.7%	0.89 [0.56, 1.41]	+	Liu 2004	14	23	21	31	1.3%	0.74 [0.24, 2.28]	
Liu 2013	265	426	385	606	3.3%	0.94 [0.73, 1.22]	+	Liu 2013	77	102	130	178	3.5%	1.14 [0.65, 1.99]	+-
Matsushita 1999	599	922	184	300	3.2%	1.17 [0.89, 1.53]	E	Matsushita 1999	200	262	56	78	3.5%	1.27 [0.72, 2.24]	
Takeuchi 2006	137	200	137	208	2.0%	1.13 [0.75, 1.70]	T	Takeuchi 2006	49	61	44	55	1.9%	1.02 [0.41, 2.55]	
Tang 2013 Taukahara 2008	1946	2978	1483	2400	5.0%	1.17 [1.04, 1.30]	Ľ	Tang 2013	652	847	474	665	6.4%	1.35 [1.07, 1.70]	Ľ.
Yanagawa 2000	108	2980	244	400	4.0%	1.14 [0.96, 1.33]	+	Yanagawa 2008	20	822	181	204	1 7%	2 11 [0 90 5 64]	<u> </u>
Zhou 2007	53	78	30	88	1.0%	4.10 [2.14, 7.84]		Zhou 2007	20	30	/0	30	1.3%	7 56 [2 41 23 75]	
Subtotal (95% CI)		9608		7022	36.9%	1.27 [1.10, 1.47]	•	Subtotal (95% CI)		2727		1981	39.4%	1.58 [1.24, 2.01]	◆
Total events	6187		4056					Total events	2055		1263				
Heterogeneity: Tau ² = 0.05;	Chi ² = 44.75	5, df = 13	3 (P < 0.0	0001); l²	= 71%			Heterogeneity: Tau ² = 0.0	; Chi ² = 26.7	2, df = 1	3 (P = 0.	01); l² =	= 51%		
Test for overall effect: Z = 3.	19 (P = 0.00	01)						Test for overall effect: Z =	3.67 (P = 0.0	1002)					
1.2.3 African								6 2 3 African							
Kelley 2009	434	1010	530	1424	4.4%	1.27 [1.08, 1.50]	-	Hadi 2001	23	33	68	88	1 9%	0.68.00.28.1.651	
Hadi 2001	73	120	198	300	1.9%	0.80 [0.52, 1.24]	-+	Subtotal (95% Cl)	23	33	00	88	1.9%	0.68 [0.28, 1.65]	-
Subtotal (95% CI)		1130		1724	6.3%	1.06 [0.68, 1.65]	+	Total events	23		68				
Total events	507		728					Heterogeneity: Not applica	ble						
Heterogeneity: Tau ² = 0.08;	Chi ² = 3.77,	df = 1 (P = 0.05)	; I ² = 73	%			Test for overall effect: Z =	0.86 (P = 0.3	19)					
Lest for overall effect: $Z = 0$.	24 (P = 0.81	0													
1.2.4 Latin American								6.2.4 Latin American	42	07	24	447	2.5%	4 88 14 08 9 281	
Munoz-Valle 2010	186	398	150	398	3.1%	1.45 [1.09, 1.92]	-	Subtotal (95% CI)	92	97	34	117	3.5%	1.86 [1.06, 3.28]	•
Subtotal (95% CI)		398		398	3.1%	1.45 [1.09, 1.92]	•	Total events	42	51	34		0.074	1.00 [1.00, 0.20]	-
Total events	186		150					Heterogeneity: Not applica	ible		04				
Heterogeneity: Not applicabl	е							Test for overall effect: Z =	2.16 (P = 0.0	3)					
Test for overall effect: Z = 2.	58 (P = 0.01	10)					1			Ĩ					
Total (95% CI)		2680		24644	100.0%	1 15 [1 07 1 24]	4	Total (95% CI)		5707		6167	100.0%	1.27 [1.10, 1.46]	•
Total events	11386	2000	10812	v-4044	100.0%	1.10[1.07, 1.24]	ľ	Total events	2943		2469			_	
Heterogeneity: Tau ² = 0.02	Chi ² = 88 71	. df = 3	2 (P < 0.0	0001)	² = 64%			Heterogeneity: Tau ² = 0.0	$r; Chi^2 = 62.6$	iu, df = 3	v (P = 0.	0004);	r = 52%	0.01	0.1 1 10 100
Test for overall effect: Z = 3.	77 (P = 0.00	002)				0.0	1 0.1 1 10	100 Test for suborour difference	o.∠4 (P = 0.0	123 df-	3 (P = 4	01) 12	= 73.3%		
Test for subaroup difference	s: Chi ² = 7.6	61. df = 3	3 (P = 0.0)5), ² = (50.6%			tost for subbroad differen	ana. Grill = 1		0.0		- 10.0 %		

Figure 3. Forest plot of the association between rs231775 polymorphism and RA risk under the allelic model with Elshazli R et al.'s study excluded (A) and homozygous model (B).

DISCUSSION

To our knowledge, this was the first meta-analysis to investigate the association between the three most-often SNPs of *CTLA-4* and RA susceptibility. From the data integration of 66 studies in 21681 cases and 23457 controls, we found that the rs3087243 SNP decreased the risk of RA risk in Caucasians and Asians, the

rs231775 SNP of *CTLA-4* increased RA risk in Asians but not in Caucasians and Africans, and the rs5742909 SNP was not significantly associated with RA risk in both Caucasians and Africans.

The *CTLA-4* gene, located on chromosome 2q33, encodes a 223 amino acid receptor protein on T cell surface which is responsible for T cell immune

Figure 4. Forest plot of the association between rs574299 polymorphism and RA risk under the homozygous (A) and recessive model (B).

Figure 5. Funnel plot of the association between RA risk and rs308724 polymorphism under the allelic (A) and recessive model (B), rs231775 polymorphism under the allelic (C) and homozygous model (D), and rs574299 polymorphism under the homozygous (E) and recessive model (F).

regulation. As an antagonist of the costimulatory receptor CD28 which binds the same ligand B7 as CTLA-4, CTLA-4 with higher affinity transmits an inhibitory signal and subsequently plays a suppressive role in regulating T-cell activation [57], which suggests it is involved in the pathological processes of many autoimmune disorders [12–15]. It is widely believed that RA is a T cell-mediated autoimmune disease [58], of which the chronic inflammation and damage of the joints are typical [1]. Although a great many genes whose protein products are critical to T cell function don't have genetic associations with RA, the effect of *CTLA-4* on RA pathogenesis has attracted growing attentions.

Previous research had found that serum levels of soluble CTLA-4 were increased in RA patients and had a positive correlation with Disease Activity Score in RA patients and even proposed that serum levels of CTLA-4 could serve as a new marker of RA disease activity [59, 60]. Besides, function experiments *in vivo* indicated that gene delivery of CTLA4 by intra-articular injection could alleviate experimental arthritis [61]. Furthermore, CTLA-4Ig administration on RA synovial macrophages and T helper cells downregulated the production of proinflammatory cytokines, and these evidences suggested that CTLA-4 could be a treatment target for RA [62, 63]. In fact, blockade of CTLA-4 by CTLA-4Ig had been successfully applied to treatment for RA [64].

As we all know, the protein level, structure and function are determined in large part by gene. Apart from these function research, numerous studies on correlation between *CTLA-4* and RA risk from gene level also had been conducted to investigate genetic factors [8, 9, 13– 15, 17–20, 24–56]. However, the results were inconsistent or contrary likely due to the various ethnic background, disparate geographic environment, limited sample size, insufficient data and so on. Thus, it was urgently necessary to perform a comprehensive up-todate meta-analysis as an effective methodology to draw an overall objective appraisal on the association between *CTLA-4* polymorphism and RA susceptibility.

In the present meta-analysis, we extracted 66 studies with 21681 cases and 23457 controls to inspect the correlation between three most-often SNPs in the *CTLA-4* gene and the risk of RA. There were 22 studies with 16394 cases and 17453 controls for rs3087243 SNP, 34 studies with 11452 cases and 12444 controls for rs231775 SNP, and 10 studies with 2477 cases and 2941 controls for rs5742909 SNP. For rs3087243 polymorphism, our findings demonstrated a decreased susceptibility of RA both in total and in Caucasians in any gene mode. In total, carriers with allele *A* reduced an approximate 13% risk of RA than ones with allele *G*

and genotype AA reduced 20% or so than genotype GG. Moreover, a decreased susceptibility of RA was respectively also found among Asians in the allele and homozygote comparison and among Latin Americans in the heterozygote and dominant comparison. However, only one study was included in Latin Americans and Asians so it needed to enlarge sample size to further research. For rs231775 polymorphism, significant association did exist among the whole population in all genetic models except recessive model: compared with allele A and genotype AA, allele G and genotype GGand GA respectively was associated with an increased risk of RA. The same association was observed in Asians and Latin Americans in the subgroup analysis. On the contrary, no significant association between rs231775 SNP and RA risk could be detected in Caucasians and Africans using any gene model after excluding the Elshazli R's study [24] with the apparent heterogeneity. Here, it should be noted that only one or two case-control study was included in Africans and Latin Americans, so the conclusions were not particularly convincing. For rs5742909 polymorphism, significant association between this locus no polymorphism and RA risk was observed among any population in any model. Although the heterogeneity existed in some genetic model, but no obvious change had happened in heterogeneity and P value for the pooled ORs when each study was individually removed by sensitivity analysis.

With regard to the diverse results of the same SNP on different populations, it might be attributed to clinical and genetic real heterogeneity of RA, interaction of genetic background and region environment, and even lack of vigorous statistical power. Besides, it was noteworthy that one important factor for the diverse and disparate results was linkage disequilibrium (LD). These *CTLA-4* SNPs might be not definitely the causative alleles, but they were likely to be in LD with the causative alleles which were yet unidentified. And, LD was different between ethnic and racial groups.

It should be pointed out that previous several metaanalyses have summarized the effect of *CTLA-4* polymorphism on RA risk [21–23, 65]. But a few points need to be taken notice. On one hand, the previous conclusions were discordant as the following: the conclusion of Li's (2014) study [65] on the association of rs231775 SNP of *CTLA-4* with RA was contrary to the others; the genetic models which indicated significant association were diverse in these analyses. These differences were mainly originated from divergent diagnostic criteria, limited number of studies and sample sizes. On the other hand, all these metaanalyses focused on only one of the three well-studied loci except Li's study [23] on two. As we all know, the expression and function of the protein are determined by the whole gene. Therefore, it is of great necessity to investigate simultaneously the effect of all the 3 SNPs on RA risk to obtain an overall evaluation. Besides, the number of included studies in previous meta-analyses was small. Some original association studies [9, 15, 24– 27] have emerged in the past few years and they can be incorporated. Taking these points into considerations, we updated the meta-analysis to achieve a more valid and comprehensive estimation on the association of *CTLA-4* gene and RA susceptibility.

However, some limitations of our study should be acknowledged. Firstly, the small sample size in some studies and the limited studies for some stratified analysis were not sufficient enough to detect the relationship. Especially, the results of populations including only one study should be interpreted with caution. Secondly, we only investigated the role of three loci polymorphisms. As CTLA-4 gene had various SNPs, the function of protein CTLA-4 depended on the whole gene and RA was a multigene susceptibility disease, more SNPs of CTLA-4 should be included. Thirdly, certain degree of heterogeneity still existed in rs5742909 polymorphism and some genetic models. Although the elimination of each single study did not distinctly alter the P value, the results must still be treated cautiously. Fourthly, inadequate raw data in some studies result in the inability to calculate the number of the genotypes and perform stratified analysis by age, gender and autoantibody status such as RF etc. As a consequence, any potential gene-environment and gene-gene interactions could not be accessed.

In conclusion, this meta-analysis suggested that rs3087243 polymorphisms were corelated with a reduced RA risk in both Asian and Caucasian populations, rs231775 polymorphisms was associated with an increased risk of RA in Asians, and rs5742909 polymorphism had no significant association with RA risk. Larger-scale studies of populations with different ethnicities are encouraged to validate the role *CTLA-4* played in the pathogenesis of RA.

MATERIALS AND METHODS

This meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [66].

Search strategy

From the databases PubMed, EMBASE, Web of Science and, the China National Knowledge Infrastructure (CNKI) and Wan Fang data, a comprehensive systematic literature retrieval was conducted to derive all relevant studies published before 10 October, 2020 (the search was constantly updated to submission). The following terms as Medical Subject Heading and free words were applied: "*CTLA-4* or cytotoxic T lymphocyte antigen-4" and "single nucleotide polymorphism or polymorphism or variant or variation" and "rheumatoid arthritis or RA". The bibliographic lists of included studies were also browsed for potential related studies. There were no restrictions on language and publication date in this study.

Inclusion and exclusion criteria

The current meta-analysis used the following inclusion criteria to screen available literatures: 1) case-control study; 2) evaluation of the associations between *CTLA-4* (rs3087243, rs231775 and rs5742909)polymorphism and RA risk; 3) with sufficient data for extract odds ratios (ORs) and 95% confidence intervals(CIs); (4) with reported allele or genotype numbers or frequencies in cases and control group; 5) with a clear diagnostic criteria. Accordingly, we excluded meaninglessness literatures if they had the following trait: 1) case report, comment, animal studies and conference abstracts; 2) with no detailed allele or genotype data; 3) duplications or no controls.

Data extraction and assess of quality

Two independent investigators respectively conducted a literature search according to the above search strategy, screened each article based on the predesigned inclusion and exclusion criteria, and extracted data from these eligible studies. It would be settled by discussion with the third party when the disagreement between investigators occurred. The following information was collected from every paper: 1) first author's surname, 2) the year of publication, 3) country or region of origin, 4) ethnicity, 5) total numbers of cases and controls, 6) genotype method, 7) diagnostic criteria, 8) polymorphism locus, 9) allele distribution or/and genotype distribution.

The methodological quality of included studies was accessed in light of the Newcastle–Ottawa Scale (NOS) for the evaluation of observational studies [67]. In brief, three broad perspectives were evaluated using the Star system (<u>http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u>). Any divergence between two investigators was solved by discussion until agreement was reached.

Statistical analysis

The strength of association of rs231775, rs5742909 and rs3087243 SNPs with RA risk was appraised via

estimating ORs with their corresponding 95% CIs. For each SNP, the pooled ORs were calculated individually for five gene models (allele model, homozygote model, heterozygote model, dominant model and recessive model). The Z test was used to evaluate the significance of the pooled ORs. p<0.05 was judged as statistically significant difference. Statistical Heterogeneity between studies was assessed by Chi square and I^2 values which range from 0% to 100%. 25%, 50%, and 75% were regarded as respectively low, moderate, and high level [68, 69]. The random -effect model was employed when the value of I^2 was more than 50%. If not, the fixed effect model was employed. Hardy-Weinberg equilibrium (HWE) was tested in the control group for all studies by Chi-square test to judge whether the selection bias existed. Potential publication bias was examined by funnel plots. Besides, the current metaanalysis had carried out subgroup analyses by the racial descent to assess the effects of ethnic background.

The above statistical analyses were performed using Review Manager 5.3 software (Nordic Cochrane Centre, Cochrane Collaboration, Copenhagen). All the P values were 2-sided and P<0.05 signified statistically significance.

Supplementary information

Additional file 1: Supplementary Table 1. Quality assessment of included studies according to the Newcastle-Ottawa Scale.

AUTHOR CONTRIBUTIONS

J.X. and H. L. conceived and designed this study. C. Z., S.G, X. Y., Z. S. and S. L. performed the experiments. C. Z., S.G analyzed the data. C. Z. and H. L. draft the manuscript. X.S. and J.X. revised the paper. All authors have contributed to the final version and approved the final manuscript.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

FUNDING

This study is supported by National Natural Science Foundation of China, Nos.81772396.

REFERENCES

 Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016; 388:2023–38. <u>https://doi.org/10.1016/S0140-6736(16)30173-8</u> PMID:<u>27156434</u>

- Minichiello E, Semerano L, Boissier MC. Time trends in the incidence, prevalence, and severity of rheumatoid arthritis: A systematic literature review. Joint Bone Spine. 2016; 83:625–30. <u>https://doi.org/10.1016/j.jbspin.2016.07.007</u> PMID:27616690
- Cross M, Smith E, Hoy D, Carmona L, Wolfe F, Vos T, Williams B, Gabriel S, Lassere M, Johns N, Buchbinder R, Woolf A, March L. The global burden of rheumatoid arthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014; 73:1316–22. <u>https://doi.org/10.1136/annrheumdis-2013-204627</u> PMID:24550173
- MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K, Silman AJ. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000; 43:30–37.

https://doi.org/10.1002/1529-0131(200001)43:1<30:: AID-ANR5>3.0.CO;2-B PMID:10643697

 Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, Yoshida S, Graham RR, Manoharan A, Ortmann W, et al, and RACI consortium, and GARNET consortium. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014; 506:376–81. <u>https://doi.org/10.1038/nature12873</u>

PMID:24390342

- Kim K, Bang SY, Lee HS, Bae SC. Update on the genetic architecture of rheumatoid arthritis. Nat Rev Rheumatol. 2017; 13:13–24. <u>https://doi.org/10.1038/nrrheum.2016.176</u> PMID:27811914
- Leng RX, Di DS, Ni J, Wu XX, Zhang LL, Wang XF, Liu RS, Huang Q, Fan YG, Pan HF, Wang B, Ye DQ. Identification of new susceptibility loci associated with rheumatoid arthritis. Ann Rheum Dis. 2020; 79: 1565–71.

https://doi.org/10.1136/annrheumdis-2020-217351 PMID:<u>32868391</u>

 Costenbader KH, Chang SC, De Vivo I, Plenge R, Karlson EW. Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of geneenvironment interactions with heavy cigarette smoking. Arthritis Res Ther. 2008; 10:R52. <u>https://doi.org/10.1186/ar2421</u> PMID:<u>18462498</u>

 Luterek-Puszyńska K, Malinowski D, Paradowska-Gorycka A, Safranow K, Pawlik A. CD28, CTLA-4 and CCL5 gene polymorphisms in patients with rheumatoid arthritis. Clin Rheumatol. 2017; 36:1129–35. <u>https://doi.org/10.1007/s10067-016-3496-2</u> PMID:<u>27988812</u>

- Klocke K, Sakaguchi S, Holmdahl R, Wing K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci USA. 2016; 113:E2383–92. <u>https://doi.org/10.1073/pnas.1603892113</u> PMID:27071130
- 11. Sansom DM. IMMUNOLOGY. Moving CTLA-4 from the trash to recycling. Science. 2015; 349:377–78. https://doi.org/10.1126/science.aac7888 PMID:26206917
- Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003; 423:506–11. https://doi.org/10.1038/pature01621

https://doi.org/10.1038/nature01621 PMID:12724780

- Zhernakova A, Eerligh P, Barrera P, Wesoly JZ, Huizinga TW, Roep BO, Wijmenga C, Koeleman BP. CTLA4 is differentially associated with autoimmune diseases in the Dutch population. Hum Genet. 2005; 118:58–66. <u>https://doi.org/10.1007/s00439-005-0006-z</u> PMID:<u>16025348</u>
- 14. Walker EJ, Hirschfield GM, Xu C, Lu Y, Liu X, Lu Y, Coltescu C, Wang K, Newman WG, Bykerk V, Keystone EC, Mosher D, Amos CI, et al. CTLA4/ICOS gene variants and haplotypes are associated with rheumatoid arthritis and primary biliary cirrhosis in the Canadian population. Arthritis Rheum. 2009; 60:931–37. <u>https://doi.org/10.1002/art.24412</u> PMID:<u>19333938</u>
- Schulz S, Zimmer P, Pütz N, Jurianz E, Schaller HG, Reichert S. rs2476601 in PTPN22 gene in rheumatoid arthritis and periodontitis-a possible interface? J Transl Med. 2020; 18:389. <u>https://doi.org/10.1186/s12967-020-02548-w</u> PMID:33059697
- 16. Yang J, McGovern A, Martin P, Duffus K, Ge X, Zarrineh P, Morris AP, Adamson A, Fraser P, Rattray M, Eyre S. Analysis of chromatin organization and gene expression in T cells identifies functional genes for rheumatoid arthritis. Nat Commun. 2020; 11:4402. <u>https://doi.org/10.1038/s41467-020-18180-7</u> PMID:<u>32879318</u>
- Barton A, Myerscough A, John S, Gonzalez-Gay M, Ollier W, Worthington J. A single nucleotide polymorphism in exon 1 of cytotoxic T-lymphocyteassociated-4 (CTLA-4) is not associated with rheumatoid arthritis. Rheumatology (Oxford). 2000; 39:63–66.

https://doi.org/10.1093/rheumatology/39.1.63 PMID:10662875

- Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW, Wolfe F, Kastner DL, Alfredsson L, Altshuler D, Gregersen PK, Klareskog L, Rioux JD. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet. 2005; 77:1044–60. https://doi.org/10.1086/498651 PMID:16380915
- Plant D, Flynn E, Mbarek H, Dieudé P, Cornelis F, Arlestig L, Dahlqvist SR, Goulielmos G, Boumpas DT, Sidiropoulos P, Johansen JS, Ørnbjerg LM, Hetland ML, et al. Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers. Ann Rheum Dis. 2010; 69:1548–53. https://doi.org/10.1136/ard.2009.121020

PMID:20498205

- Liu CP, Jiang JA, Wang T, Liu XM, Gao L, Zhu RR, Shen Y, Wu M, Xu T, Zhang XG. CTLA-4 and CD86 genetic variants and haplotypes in patients with rheumatoid arthritis in southeastern China. Genet Mol Res. 2013; 12:1373–82. <u>https://doi.org/10.4238/2013.April.25.8</u> PMID:23661460
- 21. Han S, Li Y, Mao Y, Xie Y. Meta-analysis of the association of CTLA-4 exon-1 +49A/G polymorphism with rheumatoid arthritis. Hum Genet. 2005; 118: 123–32. https://doi.org/10.1007/s00439-005-0033-9 PMID:16133179
- Lee YH, Bae SC, Choi SJ, Ji JD, Song GG. Association between the CTLA-4 +49 A/G polymorphism and susceptibility to rheumatoid arthritis: a meta-analysis. Mol Biol Rep. 2012; 39:5599–605. <u>https://doi.org/10.1007/s11033-011-1364-3</u> PMID:22179750
- 23. Li X, Zhang C, Zhang J, Zhang Y, Wu Z, Yang L, Xiang Z, Qi Z, Zhang X, Xiao X. Polymorphisms in the CTLA-4 gene and rheumatoid arthritis susceptibility: a metaanalysis. J Clin Immunol. 2012; 32:530–39. <u>https://doi.org/10.1007/s10875-012-9650-y</u> PMID:22354566
- 24. Elshazli R, Settin A, Salama A. Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) +49 A>G gene polymorphism in Egyptian cases with rheumatoid arthritis. Gene. 2015; 558:103–07. <u>https://doi.org/10.1016/j.gene.2014.12.046</u> PMID:25542810
- 25. Sameem M, Rani A, Bashir R, Riaz N, Batool SA, Irfan S, Arshad M, Nawaz SK. CTLA-4+49 Polymorphism and Susceptibility to Rheumatoid Arthritis in Pakistani Population. Pak J Zool. 2015; 47:1731–37.

- 26. Vernerova L, Spoutil F, Vlcek M, Krskova K, Penesova A, Meskova M, Marko A, Raslova K, Vohnout B, Rovensky J, Killinger Z, Jochmanova I, Lazurova I, et al. A Combination of CD28 (rs1980422) and IRF5 (rs10488631) Polymorphisms Is Associated with Seropositivity in Rheumatoid Arthritis: A Case Control Study. PLoS One. 2016; 11:e0153316. <u>https://doi.org/10.1371/journal.pone.0153316</u> PMID:<u>27092776</u>
- Fattah SA, Ghattas MH, Saleh SM, Abo-Elmatty DM. Cytotoxic T-lymphocyte-associated protein 4 gene polymorphism is related to rheumatoid arthritis in Egyptian population. Arch Physiol Biochem. 2017; 123:50–53. <u>https://doi.org/10.1080/13813455.2016.1230135</u> PMID:27808571
- 28. Seidl C, Donner H, Fischer B, Usadel KH, Seifried E, Kaltwasser JP, Badenhoop K. CTLA4 codon 17 dimorphism in patients with rheumatoid arthritis. Tissue Antigens. 1998; 51:62–66. <u>https://doi.org/10.1111/j.1399-0039.1998.tb02947.x</u> PMID:<u>9459504</u>
- 29. Gonzalez-Escribano MF, Rodriguez R, Valenzuela A, Garcia A, Garcia-Lozano JR, Nuñez-Roldan A. CTLA4 polymorphisms in Spanish patients with rheumatoid arthritis. Tissue Antigens. 1999; 53:296–300. <u>https://doi.org/10.1034/j.1399-0039.1999.530311.x</u> PMID:<u>10203024</u>
- Matsushita M, Tsuchiya N, Shiota M, Komata T, Matsuta K, Zama K, Oka T, Juji T, Yamane A, Tokunaga K. Lack of a strong association of CTLA-4 exon 1 polymorphism with the susceptibility to rheumatoid arthritis and systemic lupus erythematosus in Japanese: an association study using a novel variation screening method. Tissue Antigens. 1999; 54:578–84. <u>https://doi.org/10.1034/j.1399-0039.1999.540607.x</u> PMID:<u>10674972</u>
- Yanagawa T, Gomi K, Nakao EI, Inada S. CTLA-4 gene polymorphism in Japanese patients with rheumatoid arthritis. J Rheumatol. 2000; 27:2740–42. PMID:11128657
- 32. Hadj Kacem H, Kaddour N, Adyel FZ, Bahloul Z, Ayadi H. HLA-DQB1 CAR1/CAR2, TNFa IR2/IR4 and CTLA-4 polymorphisms in Tunisian patients with rheumatoid arthritis and Sjögren's syndrome. Rheumatology (Oxford). 2001; 40:1370–74. https://doi.org/10.1093/rheumatology/40.12.1370 PMID:<u>11752507</u>
- Milicic A, Brown MA, Wordsworth BP. Polymorphism in codon 17 of the CTLA-4 gene (+49 A/G) is not associated with susceptibility to rheumatoid arthritis in British Caucasians. Tissue Antigens. 2001; 58:50–54.

https://doi.org/10.1034/j.1399-0039.2001.580110.x PMID:<u>11580858</u>

- 34. Lee YH, Choi SJ, Ji JD, Song GG. No association of polymorphisms of the CTLA-4 exon 1(+49) and promoter(-318) genes with rheumatoid arthritis in the Korean population. Scand J Rheumatol. 2002; 31:266–70. https://doi.org/10.1080/030097402760375142 PMID:12455815
- 35. Vaidya B, Pearce SH, Charlton S, Marshall N, Rowan AD, Griffiths ID, Kendall-Taylor P, Cawston TE, Young-Min S. An association between the CTLA4 exon 1 polymorphism and early rheumatoid arthritis with autoimmune endocrinopathies. Rheumatology (Oxford). 2002; 41:180–83. https://doi.org/10.1093/rheumatology/41.2.180 PMID:<u>11886967</u>
- 36. Lee CS, Lee YJ, Liu HF, Su CH, Chang SC, Wang BR, Chen TL, Liu TL. Association of CTLA4 gene A-G polymorphism with rheumatoid arthritis in Chinese. Clin Rheumatol. 2003; 22:221–24. https://doi.org/10.1007/s10067-003-0720-7 PMID:14505215
- Barton A, Jury F, Eyre S, Bowes J, Hinks A, Ward D, Worthington J. Haplotype analysis in simplex families and novel analytic approaches in a case-control cohort reveal no evidence of association of the CTLA-4 gene with rheumatoid arthritis. Arthritis Rheum. 2004; 50:748–52.

https://doi.org/10.1002/art.20118 PMID:15022315

- 38. Liu MF, Wang CR, Chen PC, Lin TL. CTLA-4 gene polymorphism in promoter and exon-1 regions is not associated with Chinese patients with rheumatoid arthritis. Clin Rheumatol. 2004; 23:180–81. <u>https://doi.org/10.1007/s10067-003-0776-4</u> PMID:<u>15045639</u>
- Miterski B, Drynda S, Böschow G, Klein W, Oppermann J, Kekow J, Epplen JT. Complex genetic predisposition in adult and juvenile rheumatoid arthritis. BMC Genet. 2004; 5:2. <u>https://doi.org/10.1186/1471-2156-5-2</u> PMID:15018649
- 40. Orozco G, Torres B, Núñez-Roldán A, González-Escribano MF, Martín J. Cytotoxic T-lymphocyte antigen-4-CT60 polymorphism in rheumatoid arthritis. Tissue Antigens. 2004; 64:667–70. <u>https://doi.org/10.1111/j.1399-0039.2004.00318.x</u> PMID:15546339
- Lei C, Dongqing Z, Yeqing S, Oaks MK, Lishan C, Jianzhong J, Jie Q, Fang D, Ningli L, Xinghai H, Daming R. Association of the CTLA-4 gene with rheumatoid

arthritis in Chinese Han population. Eur J Hum Genet. 2005; 13:823–28. https://doi.org/10.1038/sj.ejhg.5201423 PMID:15841095

- 42. Feng ZL. [CTLA-4 gene A/G(49) polymorphism association with SLE and RA and expression of soluble CTLA-4 in patients with SLE and with RA]. Shandong University. 2005.
- Suppiah V, O'Doherty C, Heggarty S, Patterson CC, Rooney M, Vandenbroeck K. The CTLA4+49A/G and CT60 polymorphisms and chronic inflammatory arthropathies in Northern Ireland. Exp Mol Pathol. 2006; 80:141–46. https://doi.org/10.1016/j.yexmp.2005.09.004

PMID:<u>16248997</u>

- 44. Takeuchi F, Kawasugi K, Mori M, Nakaue N, Kobayashi N, Kuwata S, Murayama T, Matsuta K. The genetic contribution of CTLA-4 dimorphisms in promoter and exon 1 regions in Japanese patients with rheumatoid arthritis. Scand J Rheumatol. 2006; 35:154–55. <u>https://doi.org/10.1080/03009740500407651</u> PMID:<u>16641053</u>
- 45. Zhou Y, Xiao LS. [Association of the polymorphism of CTLA-4 gene with systemic lupus erythematosus or rheumatoid arthitis in the Chinese population]. Immunol J. 2007; 3:349–50.
- 46. Tsukahara S, Iwamoto T, Ikari K, Inoue E, Tomatsu T, Hara M, Yamanaka H, Kamatani N, Momohara S. CTLA-4 CT60 polymorphism is not an independent genetic risk marker of rheumatoid arthritis in a Japanese population. Ann Rheum Dis. 2008; 67:428–29. <u>https://doi.org/10.1136/ard.2007.079186</u> PMID:<u>18292106</u>
- 47. Barton A, Eyre S, Ke X, Hinks A, Bowes J, Flynn E, Martin P, Wilson AG, Morgan AW, Emery P, Steer S, Hocking LJ, Reid DM, et al, and YEAR Consortium, and BIRAC Consortium. Identification of AF4/FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibility genes. Hum Mol Genet. 2009; 18:2518–22.

https://doi.org/10.1093/hmg/ddp177 PMID:19359276

- Daha NA, Kurreeman FA, Marques RB, Stoeken-Rijsbergen G, Verduijn W, Huizinga TW, Toes RE. Confirmation of STAT4, IL2/IL21, and CTLA4 polymorphisms in rheumatoid arthritis. Arthritis Rheum. 2009; 60:1255–60. https://doi.org/10.1002/art.24503 PMID:19404967
- 49. Kelley JM, Hughes LB, Faggard JD, Danila MI, Crawford MH, Edberg Y, Padilla MA, Tiwari HK, Westfall AO, Alarcón GS, Conn DL, Jonas BL, Callahan LF, et al. An African ancestry-specific allele of CTLA4 confers

protection against rheumatoid arthritis in African Americans. PLoS Genet. 2009; 5:e1000424. <u>https://doi.org/10.1371/journal.pgen.1000424</u> PMID:<u>19300490</u>. Retraction in: PLoS Genet. 2009; 5. <u>https://doi.org/10.1371/annotation/80bd7285-9d2d-403a-8e6f-9c375bf977ca</u> PMID:<u>20020059</u>

 Muñoz-Valle JF, Valle Y, Padilla-Gutiérrez JR, Parra-Rojas I, Rangel-Villalobos H, Vázquez del Mercado M, Ledezma-Lozano IY, Villafan-Bernal JR, Armendáriz-Borunda J, Pereira-Suárez AL. The +49A>G CTLA-4 polymorphism is associated with rheumatoid arthritis in Mexican population. Clin Chim Acta. 2010; 411: 725–28.

https://doi.org/10.1016/j.cca.2010.02.001 PMID:20138855

- 51. Benhatchi K, Jochmanová I, Habalová V, Wagnerová H, Lazúrová I. CTLA4 exon1 A49G polymorphism in Slovak patients with rheumatoid arthritis and Hashimoto thyroiditis-results and the review of the literature. Clin Rheumatol. 2011; 30:1319–24. <u>https://doi.org/10.1007/s10067-011-1752-z</u> PMID:21503616
- 52. Danoy P, Wei M, Johanna H, Jiang L, He D, Sun L, Zeng X, Visscher PM, Brown MA, Xu H. Association of variants in MMEL1 and CTLA4 with rheumatoid arthritis in the Han Chinese population. Ann Rheum Dis. 2011; 70:1793–97. https://doi.org/10.1136/ard.2010.144576

PMID:21784728

53. El-Gabalawy HS, Robinson DB, Daha NA, Oen KG, Smolik I, Elias B, Hart D, Bernstein CN, Sun Y, Lu Y, Houwing-Duistermaat JJ, Siminovitch KA. Non-HLA genes modulate the risk of rheumatoid arthritis associated with HLA-DRB1 in a susceptible North American Native population. Genes Immun. 2011; 12:568–74.

https://doi.org/10.1038/gene.2011.30 PMID:21614018

- 54. AlFadhli S. Overexpression and secretion of the soluble CTLA-4 splice variant in various autoimmune diseases and in cases with overlapping autoimmunity. Genet Test Mol Biomarkers. 2013; 17:336–41. <u>https://doi.org/10.1089/gtmb.2012.0391</u> PMID:<u>23448385</u>
- 55. Tang MJ, Zhou ZB. Association of the CTLA-4 +49A/G polymorphism with rheumatoid arthritis in Chinese Han population. Mol Biol Rep. 2013; 40:2627–31. <u>https://doi.org/10.1007/s11033-012-2349-6</u> PMID:<u>23264071</u>
- 56. Torres-Carrillo N, Ontiveros-Mercado H, Torres-Carrillo NM, Parra-Rojas I, Rangel-Villalobos H, Ramírez-Dueñas MG, Gutiérrez-Ureña SR, Valle Y, Muñoz-Valle JF. The -319C/+49G/CT60G haplotype of CTLA-4 gene confers susceptibility to rheumatoid arthritis in

Mexican population. Cell Biochem Biophys. 2013; 67:1217–28. https://doi.org/10.1007/s12013-013-9640-6 PMID:23703660

- 57. Walker LS, Sansom DM. Confusing signals: recent progress in CTLA-4 biology. Trends Immunol. 2015; 36:63–70. <u>https://doi.org/10.1016/j.it.2014.12.001</u> PMID:<u>25582039</u>
- Cope AP, Schulze-Koops H, Aringer M. The central role of T cells in rheumatoid arthritis. Clin Exp Rheumatol. 2007 (Suppl 46); 25:S4–11. PMID:17977483
- 59. Cao J, Zou L, Luo P, Chen P, Zhang L. Increased production of circulating soluble co-stimulatory molecules CTLA-4, CD28 and CD80 in patients with rheumatoid arthritis. Int Immunopharmacol. 2012; 14:585–92. https://doi.org/10.1016/j.intimp.2012.08.004

PMID:22917707

- Choi IS, Yoo HS, Collisson EW. Evaluation of expression patterns of feline CD28 and CTLA-4 in feline immunodeficiency virus (FIV)-infected and FIV antigeninduced PBMC. J Vet Sci. 2000; 1:97–103. <u>https://doi.org/10.4142/jvs.2000.1.2.97</u> PMID:<u>14614304</u>
- 61. Zhang W, Wang F, Wang B, Zhang J, Yu JY. Intraarticular gene delivery of CTLA4-FasL suppresses experimental arthritis. Int Immunol. 2012; 24:379–88. <u>https://doi.org/10.1093/intimm/dxs041</u> PMID:<u>22354915</u>
- Cutolo M, Soldano S, Montagna P, Sulli A, Seriolo B, Villaggio B, Triolo P, Clerico P, Felli L, Brizzolara R. CTLA4-Ig interacts with cultured synovial macrophages from rheumatoid arthritis patients and downregulates cytokine production. Arthritis Res Ther. 2009; 11:R176. <u>https://doi.org/10.1186/ar2865</u> PMID:<u>19930661</u>

- 63. Körmendy D, Hoff H, Hoff P, Bröker BM, Burmester GR, Brunner-Weinzierl MC. Impact of the CTLA-4/CD28 axis on the processes of joint inflammation in rheumatoid arthritis. Arthritis Rheum. 2013; 65:81–87. https://doi.org/10.1002/art.37714 PMID:23045162
- 64. Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S, Russell A, Dougados M, Emery P, Nuamah IF, Williams GR, Becker JC, Hagerty DT, Moreland LW. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med. 2003; 349:1907–15. https://doi.org/10.1056/NEJMoa035075 PMID:14614165
- 65. Li G, Shi F, Liu J, Li Y. The effect of CTLA-4 A49G polymorphism on rheumatoid arthritis risk: a meta-analysis. Diagn Pathol. 2014; 9:157. <u>https://doi.org/10.1186/s13000-014-0157-0</u> PMID:25128482
- Moher D, Liberati A, Tetzlaff J, Altman DG, and PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009; 339:b2535. <u>https://doi.org/10.1136/bmj.b2535</u>
- 67. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010; 25:603–05. https://doi.org/10.1007/s10654-010-9491-z
 PMID:20652370

PMID:19622551

- Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21:1539–58. <u>https://doi.org/10.1002/sim.1186</u> PMID:<u>12111919</u>
- 69. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327:557–60. <u>https://doi.org/10.1136/bmj.327.7414.557</u> PMID:12958120

SUPPLEMENTARY MATERIALS

Supplementary Table

Supplementary Table 1. Quality assessment of included studies according to the Newcastle-Ottawa Scale.

		Seleo	ction		Comparability	Exposure					
Study	Adequate definition of cases	Representati veness of cases	Selection of controls	Definition of controls	Control for important or additional factor	Exposure assessment	Same method of ascertainment for all subjects	Non-response rate			
Seid C	*	-	*	*	*	*	*	*			
Gonzalez-Escribano MF	*	-	-	*	*	*	*	*			
Matsushita M	*	-	*	*	*	*	*	*			
Barton A 2000	*	-	*	*	*	*	*	*			
Yanagawa T	*	-	-	*	*	*	*	*			
Hadj KH	*	-	*	*	*	*	*	*			
Milicic A	*	-	*	*	**	*	*	*			
Lee YH	*	-	-	*	*	*	*	*			
Vaidya B	*	-	-	*	*	*	*	*			
Lee CS	*	-	-	*	*	*	*	*			
Barton A 2004	*	-	*	*	*	*	*	*			
Liu MF	*	-	-	*	*	*	*	*			
Miterski B	*	-	*	*	*	*	*	*			
Orozeo G	*	-	*	*	*	*	*	*			
Feng ZL	*	-	-	*	*	*	*	*			
Lei C	*	_	*	*	**	*	*	*			
Plenge RM	*	_	*	*	**	*	*	*			
Zhernakova A	*	_	_	*	*	*	*	*			
Suppiah V	*	_	*	*	*	*	*	*			
Takeuchi F	*	_	_	*	*	*	*	*			
Zhou V	*	_		*	*	*	*	*			
Costenbader KH	*	_	*	*	*	*	*	*			
Tsukahara S	*		*	*	**	*	*	*			
Parton A 2000	*	-	*	*	**	*	*	*			
Daha NA	*	-		*	**	*	*	*			
Kallay IM	*	-	-	*	*	*	*	*			
Weller EI	*	-	*	*	**	*	*	*			
Walker EJ	*	-		*	*	*	*	*			
Munoz-vane JF	*	-	-	*	**	*	*	*			
Plant D	*	-		*	*	*	*	*			
Bennatchi K	*	-	-	ጥ •	т Ф	*	Υ *	т Ф			
Danoy P	*	-	т Ф	で 少	т Ф	*	Υ *	т Ф			
El-Gabalawy	*	-	*	*	*	*	*	*			
AlFadhli S	*	-	-	*	*	*	*	*			
Liu CP	*	-	*	*	*	*	*	*			
Tang MJ	*	-	*	*	**	*	*	*			
Torres-Carrillo N	*	-	*	*	*	*	*	*			
Sameem M	*	-	-	*	*	*	*	*			
Elshazli R	*	-	-	*	*	*	*	*			
Luterek-Puszyńska K	*	-	*	*	**	*	*	*			
Vernerova L	*	-	*	*	**	*	*	*			
Fattah SA	*	-	*	*	*	*	*	*			
Schulz S	*	-	-	*	*	*	*	*			

A study could be awarded a one or zero star for every item except for the item "Control for important factor or additional factor".