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INTRODUCTION 
 

Liver cancer is the sixth most common cancer and leads 

to unacceptable mortality, with more than 800,000 

deaths reported in 2020 [1]. As the most common 

primary component of liver cancer, hepatocellular 

carcinoma (HCC) has already become a serious global 

public health problem [2]. Although multiple 

treatments, such as surgery, chemotherapy, radiotherapy 

and targeted therapy, have been developed in recent 

years, the 5-year survival rate of patients with HCC is 

unsatisfactory due to recurrence in a large proportion of 

patients after hepatectomy and diagnosis at an advanced 

stage [3]. Consequently, studies exploring novel 

therapeutic targets and developing novel prognostic 

models are urgently needed for patients with HCC. 

 

Metabolic dysregulation is one of the ten hallmarks of 

cancers, and accumulating evidence indicates that 

metabolic reprogramming plays a crucial role in the 

initiation and development of cancer [4–6]. Lipid 

metabolic reprogramming is one of the most prominent 

metabolic changes observed in cancer cells and has 

received increasing attention. As an important 

component of lipid metabolism, the accumulation of 
fatty acids has been observed, which can be used to 

satisfy the requirement for lipids to synthesize signaling 

molecules and membranes. Fatty acids are required for 
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membrane synthesis, energy storage and the generation 

of signaling molecules, and accumulating evidence 

suggests that fatty acids are indispensable for the 

initiation and development of cancers such as breast 

cancer and colorectal cancer [7–9]. Moreover, 

deregulated fatty acids might not only disturb the 

curative effect of chemotherapeutic and radiation 

treatments on patients with cancer [10, 11] but also 

affect immunotherapy, which has been a breakthrough 

in oncotherapy in recent years. Fatty acids in the tumor 

microenvironment affect the function and phenotype of 

infiltrating immune cells, which are associated with 

immunosuppression [12]. Treatments targeting 

deregulated fatty acids in cancer might slow tumor 

growth and exert synergistic effects with immune 

checkpoint inhibitors [13]. Nevertheless, the distinct 

fatty acid metabolism-related genes, prognostic value 

and relationship with immunotherapy in HCC remain 

largely unknown. 

 

In the present study, we first comprehensively analyzed 

the correlation between differentially expressed fatty 

acid metabolism-related genes and the prognosis of 

patients with HCC and constructed a prognostic model 

based on The Cancer Genome Atlas (TCGA) database. 

Then, the prognostic risk model was further validated 

using the International Cancer Genome Consortium 

(ICGC) database, and patients with HCC were divided 

into high- and low-risk groups. Moreover, the 

prognostic risk model was integrated with the clinical 

parameters of patients with HCC. Subsequently, a 

clinical prognostic model of patients with HCC was 

structured and validated from different perspectives. 

Finally, the difference in immune cell infiltration in 

high- and low-risk patients with HCC was explored. 

Taken together, our findings indicated that fatty acid 

metabolism-related genes might be potential prognostic 

markers and therapeutic targets in patients with HCC 

and further improve the efficacy of treatment in patients 

with HCC through personalized treatment. 

 

RESULTS 
 

Identification of fatty acid metabolism-related genes 

in patients with HCC 

 

To identify genes related to fatty acid metabolism, the 

intersection of the three gene sets related to fatty acid 

metabolism was filtered, and 309 genes were extracted 

after the overlapping genes were removed (Figure 1A). 

The “Limma” R package was used to identify 12,450 

differentially expressed genes (DEGs) from TCGA and 

2,939 DEGs from the ICGC database (Figure 1B, 1C). 

 

After excluding data from patients with a follow-up 

time of less than 90 days, the fatty acid metabolism-

related genes and the corresponding expression profile 

were filtered in 329 patients with HCC in TCGA. First, 

105 fatty acid metabolism-related genes correlated with 

overall survival (OS) were identified by performing a 

univariate Cox proportional hazard analysis. Next, 47 

differentially expressed fatty acid metabolism-related 

genes correlated with OS were selected by intersecting 

the DEGs, and 105 fatty acid metabolism-related genes 

were correlated with the OS of patients in TCGA 

(Figure 2A). Then, the 47 selected fatty acid 

metabolism-related genes were validated by analyzing 

DEGs in the ICGC database, and 26 genes were filtered 

(Figure 2B). 

 

Construction and assessment of a prognostic model 

based on selected fatty acid metabolism-related 

genes 

 

The 26 filtered genes were further included in the least 

absolute shrinkage and selection operator (LASSO) 

logistic regression algorithm (Figure 3A), cross-

validation was conducted, and 11 prognostic signatures 

were screened to forecast an individual’s prognostic risk 

(Figure 3B). The heatmap of 11 genes is shown in 

Figure 3C, and the correlation network of the 11 genes 

is shown in Figure 3D. Then, 6 independent prognostic 

genes were further screened by performing a 

multivariable Cox regression analysis of the 11 

prognostic signatures, and a prognostic model was 

constructed. Risk score = (-0.081×level of the ADH4 

mRNA)+(0.339×level of the ELOVL1 mRNA)+(0.137× 

level of the ME1 mRNA+(0.397×level of the ACACA 

mRNA)+(-0.330×level of the ACADS mRNA)+(-

0.417×level of the ACSL6 mRNA). Three hundred 

twenty-nine patients with HCC were separated into 

high-risk (n=164) and low-risk (n=165) groups by the 

median risk score as the cutoff value. The OS of the two 

groups was significantly different in the Kaplan-Meier 

(K-M) analysis (P<0.001) (Figure 4A). A receiver 

operating characteristic (ROC) curve was constructed to 

estimate the model and assess the reliability of the risk 

score, and the areas under the curve (AUCs) at 1 year, 2 

years and 3 years were 0.800, 0.714 and 0.697, 

respectively (Figure 4C–4E). Moreover, principal 

component analysis (PCA) and t-distributed stochastic 

neighbor embedding (t-SNE) analysis were performed 

to identify low-risk patients and high-risk patients. As 

shown in Figure 5A–5D, patients with HCC were 

divided into different risk groups with a relatively clear 

resolution. 

 

Validation of the risk model in patients with HCC 

 
To further validate the risk model, the risk model was 

used to assess patients in the ICGC database according 

to the median risk score of the 6 genes in TCGA. The P 
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Figure 1. Identification of differential expressed fatty acid metabolic genes in HCC. (A) Venn diagram of three fatty acid metabolic 
gene sets. (B) Differential expressed genes of HCC patients in TCGA. (C) Differential expressed genes of HCC patients in ICGC. 

 

 
 

Figure 2. Identification of differentially expressed fatty acid metabolic genes correlated with OS in HCC. (A) Differentially 

expressed fatty acid metabolic genes correlated with OS in TCGA. (B) Further validation in ICGC. 
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value for the K-M analysis of the high-risk and low-risk 

groups was less than 0.001 in the ICGC database 

(Figure 4B). Meanwhile, the AUCs for 1 year, 2 years 

and 3 years were 0.732, 0.687 and 0.682, respectively 

(Figure 4F–4H). PCA and t-SNE analysis were also 

conducted to test the risk model based on the ICGC 

database. As shown in Figure 5E–5H, high-risk and 

low-risk patients were divided by different analyses. 

 

Functional enrichment analysis of the screened genes 

 

The most highly enriched molecular functions of the 6 

screened genes were nicotinamide adenine dinucleotide 

(NAD) binding, oxidoreductase activity and fatty acid 

activity (Figure 6A). The involvement of these 

molecular functions in fatty acid metabolism has been 

previously reported [14, 15]. Moreover, the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis suggested that the 6 genes might participate in 

pathways related to fatty acids (Figure 6B). 

 

Integrated analysis of the risk score and clinical 

parameters of patients with HCC 

 

Comprehensive data were extracted for 306 patients by 

integrating the clinical data and risk score of patients

 

 
 

Figure 3. Identification of fatty acid metabolic signatures by LASSO regression algorithm in HCC. (A) LASSO coefficient profiles of 

the 26 fatty acid metabolic genes. (B) Cross-validation for tuning parameter selection in the proportional hazards model. (C) The heatmap of 
the 11 fatty acid metabolic genes. (D) The correlation of the 11 fatty acid metabolic genes. 
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with HCC in TCGA database. First, univariate Cox 

regression analyses were conducted to filter the 

parameters (age, sex, stage, grade and risk score), and 

two factors (stage and risk score) were identified to be 

correlated with the OS of patients with HCC (P<0.001) 

(Figure 7A). Then, the stage and risk score were 

suggested to be independent prognostic parameters of 

patients with HCC by the multivariable Cox regression

 

 
 

Figure 4. K-M survival analysis and ROC curves of risk prognostic model in HCC patients. (A, B) K-M survival analysis of risk 
prognostic model of HCC patients in TCGA and ICGC. (C–E) ROC curves analysis of risk prognostic model of HCC patients at 1 year, 2 years and 
3 year in TCGA. (F–H) ROC curves analysis of risk prognostic model of HCC patients at 1 year, 2 years and 3 year in ICGC. 
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Figure 5. The validation of the risk prognostic model in HCC patients. (A–D) t-SNE, PCA, survival status scatter plots and risk score 

distribution shown the power prognostic ability of the risk prognostic model in TCGA. (E–H) t-SNE, PCA, survival status scatter plots and risk 
score distribution shown the power prognostic ability of the risk prognostic model in ICGC. 
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Figure 6. Representative results of GO and KEGG analyses. (A) The molecular functions of the 6 screened genes. (B) The potential 

biological pathways of the screened genes. 
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Figure 7. Identification independent prognostic parameters in HCC patients. (A, B) The univariate and multivariate Cox regression 
analysis of clinical parameters in patients with HCC. (C, D) ROC curves of risk score and clinical characteristics predicting 3- and 5-year survival 
in HCC patients. 
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algorithm (P<0.001) (Figure 7B). Figure 7C, 7D shows 

the highly sensitive and specific predictive performance 

of the risk score determined using the ROC curve 

analysis. 

 

Construction and assessment of the nomogram for 

patients with HCC 

 

The risk score and stage were included in the 

construction of a nomogram with an optimal 

concordance index (C-index, 0.709) to further analyze 

the ability of independent prognostic factors to estimate 

individual OS (Figure 8A). The application of the 

nomogram to patients in the ICGC database also 

showed a satisfactory predictive effect (C-index, 0.727). 

In addition, the performance of the nomogram in 

predicting the 3- and 5-year OS rates of patients with 

HCC was calculated. A ROC curve analysis was 

performed to validate the practicability of the 

nomogram, and the AUCs were computed for 3- and 5-

year survival (0.725 and 0.724, respectively) (Figure 

8B, 8C). The calibration plot was close to the ideal 

curve (Figure 8D, 8E). Moreover, decision curve 

analysis (DCA), a novel reliable evaluation tool to 

quantify clinical values, showed that the nomogram 

obtained a better net benefit than a single independent 

predictive parameter (Figure 8F, 8G). Collectively, the 

prognostic capacity of the tumor prognostic model was 

verified from multiple perspectives. 

 

Conjoint analysis of the tumor mutation burden and 

immune cell infiltration in patients with HCC 

 

The tumor mutation burden (TMB) has been 

suggested to be a marker for identifying patients with 

cancer who might benefit from immunotherapy and 

has been used to predict the curative effect of immune 

checkpoint inhibitors [16]. After intersecting the ID 

code of 364 HCC samples related to single nucleotide 

variation (SNV) and high- and low-risk patients with 

HCC, the SNV data of 156 high-risk HCC samples 

and 161 low-risk HCC samples were obtained. Figure 

9A, 9B shows the difference in TMB in the high- and 

low-risk groups of patients with HCC. Moreover, the 

correlation analysis indicated that the TMB was 

positively correlated with the risk score (R=0.14; 

P=0.012) (Figure 9C). The 5-year survival rate of the 

low-risk and low-TMB group was better than that of 

the high-risk and high-TMB group (P <0.001)  

(Figure 9D). 

 

The infiltration of 22 immune cell types in high- and 

low-risk patients with HCC is shown in Figure 10, 
which suggested a potential difference in the immune 

microenvironment in patients with HCC. Moreover, 

different types of immune cells infiltrated different risk 

groups. In high-risk patients with HCC, higher 

expression of markers of M0 macrophages (P<0.001), 

follicular helper T cells (P=0.003), resting dendritic 

cells (P=0.017), memory B cells (P<0.001) and 

neutrophils (P<0.001) was observed (Figure 11A–11E), 

while lower expression of markers of M2 macrophages 

(P<0.01), resting mast cells (P<0.01), monocytes 

(P<0.01), resting NK cells (P<0.01), CD8 T cells 

(P=0.027), gamma delta T cells (P<0.01) and naive B 

cells (p=0.017) were observed than in the low-risk 

group (Figure 11F–11L). 

 

DISCUSSION 
 

Convincing evidence has shown that one of the 

hallmarks of tumor cells, namely, metabolic 

dysregulation, contributes to abnormal cell biological 

behaviors, such as cell growth, angiogenesis, 

proliferation and invasion [4]. Abnormal glycolytic 

metabolism has already been confirmed in various 

tumors and has been widely used in clinical diagnosis 

and treatment [17]. Fatty acid metabolism, an important 

component of energy metabolism, has received 

increasing attention, and this metabolic pathway 

participates in energy production, membrane synthesis 

and signal transduction in tumor initiation and 

progression [7]. As a molecularly heterogeneous 

malignant tumor, the molecular characteristics of HCC 

are correlated with tumor biological behaviors [18]. 

Therefore, key molecular markers related to fatty acid 

metabolism in HCC must be identified. 
 

Currently, gene signatures that correlate with the 

prediction of prognosis based on specific characteristics 

have become a hotspot in cancer research [19–21]. To 

the best of our knowledge, we have built a novel risk 

prediction model for HCC based on fatty acid 

metabolism-related genes and further constructed a 

clinical predictive model for patients with HCC that 

might be used to assess the individual’s prognosis. 
 

In the present study, we first systematically 

investigated fatty acid metabolism-related genes in 

patients with HCC. The 26 fatty acid metabolism 

DEGs related to OS in patients with HCC were 

identified with strict filter standards, and the TCGA 

and ICGC databases were used for validation. 

Furthermore, the LASSO regression algorithm was 

used to further filter the core genes related to fatty 

acid metabolism in patients with HCC. Multivariable 

Cox regression analysis was further used to identify 6 

independent prognostic signatures, and a risk score 

model was constructed. The LASSO regression 
algorithm and multivariable Cox regression analysis 

are beneficial to avoid overfitting and improve the 

clinical practicability of the prognostic model. 
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Figure 8. Nomogram to predict 3- and 5- year OS and its validation in HCC patients. (A) Nomogram to predict 3- and 5- year OS of 
HCC patients. (B, C) ROC curves to assess the accuracy of nomogram to predict 3- and 5- year OS in HCC patients. (D, E) Calibration plot 
analysis to assess the accuracy of nomogram to predict 3- and 5- year OS in HCC patients. (F, G) DCA to assess the accuracy of nomogram to 
predict 3- and 5- year OS in HCC patients. 
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Most of the 6 signature genes have been suggested to be 

involved in multiple cancers. However, the roles of 

these genes in determining the prognosis of HCC 

remain to be explored. ADH4 and ACADS were 

previously suggested to be related to HCC. Alcohol 

dehydrogenase 4 (ADH4) is mainly correlated with 

ethanol oxidation in the presence of intoxicating levels 

of alcohol and hydroxyl fatty acids [22, 23]. A few

 

 
 

Figure 9. The differences of TMB in high and low risk HCC patients. (A) The TMB in high risk HCC patients. (B) The TMB in low risk 
HCC patients. (C) The TMB was positively correlated with the risk score in patients with HCC. (D) The OS of the HCC patients of high risk and 
high TMB were lower than those in HCC patients with low risk and low TMB. 

 

 
 

Figure 10. The immune infiltration of 22 immune cell types in high and low risk patients with HCC. 
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studies reported that ADH4 might be a tumor suppressor 

and independent prognostic factor for HCC [24]. Our 

study again verified this speculation and further 

explored the ability of the gene to predict the risk score 

of patients with HCC. ACADS is a key short variant of 

the acyl-CoA dehydrogenase (ACAD) gene family and 

might be a methylation biomarker in HCC. The 

expression level of ACADS was negatively correlated 

with the DNA methylation level [25]. However, as a 

key metabolic enzyme, the role of ACADS in fatty acid 

metabolism in patients with HCC is unclear. The 

present study explored the role of ACADS in fatty acid 

metabolism in patients with HCC and included it in the 

construction of a risk score model. 

 

In addition, elongation of very-long-chain fatty acids 1 

(ELOVL1) is a single elongase catalyzing the synthesis 

of both saturated very-long-chain fatty acids (VLCFAs) 

and monounsaturated VLCFAs [26]. ELOVL enzymes, 

including ELOVL1, play different roles, possess charac-

teristic substrate specificities and show differential 

expression patterns in mammalian tissues. ELOVL1 is 

expressed in multiple organs, including the lungs, 

kidney, skin and stomach, and dysfunctional ELOVL1 

proteins have been suggested to be correlated with 

different types of human diseases [27, 28]. ELOVL1 has 

been suggested to be involved in various diseases, 

including cancers. However, the role of this gene related 

to fatty acid metabolism in HCC has not been reported 

in previous studies. In the present study, ELOVL1 was 

upregulated. The gene correlated with OS and was 

included in the construction of the prognostic risk 

model for patients with HCC, which further suggested 

the importance of the roles of the gene in the origination 

and development of HCC. Thus, the genes related to 

fatty acid metabolism might be potential therapeutic and 

prognostic targets in HCC, and further exploration of 

the relationships between the genes and HCC is 

warranted. 

 

After a risk predictive model was constructed based on 

the selected 6 genes, ROC curve, PCA and t-SNE

 

 
 

Figure 11. The different immune infiltration in the high and low risk HCC patients. (A–E) The expression of five types of immune 
cells is higher in high risk group compared with low risk group. (F–L) The expression of seven types of immune cells is higher in low risk group 
compared with high risk patients. 
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analyses were together used to suggest that patients with 

HCC could be divided into high- and low-risk groups 

with an optimistic definition based on the model. Then, 

the risk score was integrated with the clinical 

parameters (age, sex, stage, and grade) of patients with 

HCC, and the risk and stage were identified as 

independent prognostic factors, which further indicated 

the practicability of the model. 

 

Next, we included the risk score based on the core fatty 

acid metabolism-related genes and stage to construct a 

tumor predictive model, and a nomogram was 

produced. The accuracy of the nomogram in calculating 

an individual’s prognosis was assessed using the C-

index, ROC curve, calibration plot analysis and DCA. 

DCA is a novel method for evaluating predictive 

models and better meets clinical requirements than a 

ROC curve analysis [29, 30]. The four validation 

methods together showed the practicability of the 

nomogram at different levels. The nomogram designed 

to predict the prognosis of patients with HCC was more 

accurate than the models reported in some previous 

studies with a better C-index (0.709 VS 0.676) and 

AUC for 3 years (0.725 VS 0.694) and 5 years (0.724 

VS 0.667) [31, 32]. The construction of the model 

might help to identify patients with HCC and a poor 

prognosis and assist with the timely implementation of 

interventions. 

 

Tumor immunotherapy is only effective for some 

patients with HCC, although the therapy has been 

shown to be a crucial therapeutic method by 

activating the body’s own immune system. In recent 

years, a high TMB has been suggested to be 

correlated with the curative effect of immune 

checkpoint inhibitor treatments [33]. Moreover, the 

level of fatty acids in the microenvironment affects 

the function and phenotype of infiltrating immune 

cells [12, 34]. Studies have suggested that the effect 

of immunotherapy might be improved by regulating 

fatty acid metabolism in patients with cancer. In the 

present study, 12 types of infiltrating immune cells 

were identified between high- and low-risk patients 

with HCC, which might be beneficial for 

individualized immunotherapy and further improve-

ments in the therapeutic effect. 

 

Certainly, the potential limitations of the study should 

be noted. First, the follow-up time of the validation 

dataset from the ICGC database was insufficient, and 

thus the nomogram based on TCGA database must be 

validated using additional external datasets. Second, the 

in-depth molecular mechanisms of the fatty acid 
metabolism-related genes, including the genes included 

in prognostic models, must be further verified in 

experimental studies. In addition, the study was based 

only on research data from public databases, which 

might contribute to selection bias. Therefore, a 

multicenter and large-scale study should be 

implemented to further validate the clinical utility of our 

model. 

 

In summary, for the first time, this study established and 

validated a novel prognostic model based on 6 fatty acid 

metabolism-related genes and further constructed a 

clinical prognostic model for patients with HCC using 

strict standards. Moreover, the differences in infiltrating 

immune cells between high- and low-risk patients with 

HCC were explored, which might be helpful in 

providing a synergistic effect when administering 

treatments targeting fatty acid metabolism and 

immunotherapy. Therefore, our findings suggest that the 

novel fatty acid-related gene signature might be 

beneficial to the development of individualized 

treatments and improve the OS of patients with HCC. 

 

MATERIALS AND METHODS 
 

Patients and clinical data collection 

 

Messenger RNA (mRNA) sequencing data from 

patients with HCC were obtained from TCGA database 

(https://portal.gdc.cancer.gov/) (374 HCC samples and 

50 normal liver samples) and the ICGC database 

(https://icgc.org/) (243 HCC samples and 202 normal 

liver samples). In addition, the clinical information of 

patients with HCC (n=377, and 260, respectively) was 

downloaded from the TCGA and ICGC databases. 

 

Acquisition of fatty acid metabolism-related genes in 

patients with HCC 

 

Three gene sets related to fatty acid metabolism 

(Hallmark fatty acid metabolism genes, KEGG fatty 

acid metabolism pathways, and Reactome fatty acid 

metabolism genes) were acquired from the Molecular 

Signature Database v7.2 (MSigDB), and fatty acid 

metabolism-related genes were retrieved after over-

lapping genes were removed [35]. The “Limma” R 

package was used to filter DEGs with a false discovery 

rate (FDR) <0.05 and fold change >2 [36]. 
 

Construction and assessment of the risk score 

predictive model 
 

The expression profile of fatty acid metabolism-related 

genes was extracted from the sequencing data of HCC 

and nontumor liver tissues in TCGA. After excluding 

patients with a follow-up time of less than 90 days, the 
survival data were integrated with sequencing data for 

fatty acid metabolism-related genes from patients with 

HCC in TCGA database. A univariate Cox regression 

https://portal.gdc.cancer.gov/
https://icgc.org/
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analysis was used to screen fatty acid metabolism-

related genes associated with OS in patients with HCC 

(P<0.05), and then DEGs related to fatty acid 

metabolism were filtered by matching the DEGs in 

patients with HCC from TCGA. 

 

To further improve the accuracy, the filtered fatty acid 

metabolism-related genes in patients with HCC were 

proven to be DEGs in the ICGC database. To avoid 

overfitting, the LASSO logistic regression algorithm 

was used to further filter core fatty acid metabolism-

related genes correlated with OS. 

 

Moreover, multivariable Cox regression analyses were 

subsequently conducted to identify independent 

prognostic genes and construct a risk score predictive 

model for patients with HCC based on TCGA database. 

Then, the model was tested in the ICGC database to 

further validate the feasibility of the model. Moreover, 

multiple test methods were conducted. Patients with 

HCC were separated into high-risk and low-risk groups 

according to the median risk score, and the K-M method 

was used to analyze the difference in survival. ROC, 

PCA, and t-SNE analyses were used to further validate 

the feasibility of the risk score predictive model in 

patients with HCC. 

 

Functional enrichment analysis of the independent 

prognostic genes 

 

Gene Ontology (GO) analysis is a major bioinformatics 

tool for annotating genes and gene functions [37]. 

KEGG is a collection of databases that contain 

information about genomes, biological pathways, 

diseases, and chemical substances [38]. The GO 

analysis and KEGG pathway enrichment analysis of the 

independent prognostic genes were conducted using the 

“clusterProfiler” package [39]. An FDR value<0.05 was 

considered statistically significant. 

 

Integrated analysis of the risk score predictive model 

and clinical parameters of patients with HCC 

 

The following inclusion criteria for clinical factors were 

used to completely identify independent pretreatment 

predictors in patients with HCC: 1) neoadjuvant 

radiotherapy or chemotherapy was not received; 2) the 

follow-up time was more than 90 days; and 3) an 

operation was performed on all patients with HCC. The 

clinical information (age, sex, grade and stage) and risk 

score of patients with HCC (n=306) were integrated 

according to the ID of patients with HCC after 

excluding missing data. Then, univariate and 
multivariable Cox regression analyses were conducted 

to identify independent prognostic indicators among the 

clinical factors (P<0.05). 

Construction and assessment of the nomogram for 

patients with HCC 

 

To further investigate individual OS, the “nomogram” R 

package was used to build a predictive model for 

patients with HCC based on the independent clinical 

parameters. The C-index, ROC curve, calibration plot 

and DCA were used to weigh the prognostic ability of 

the nomogram from multiple perspectives. 
 

Conjoint analysis of immune cell infiltration and the 

risk score in patients with HCC 
 

The SNV data for patients with HCC were downloaded 

from TCGA database, and the TMB was calculated. 

Spearman’s correlation analysis was used to explore the 

correlation between the risk score and TMB. K-M 

analysis was used to analyze the 5-year survival rate 

between patients with a high TMB and risk score and 

patients with a low TMB and risk score. Moreover,  

the “Cell Type Identification by Estimating Relative 

Subsets of RNA Transcripts (CIBERSORT)” 

deconvolution algorithm with 1,000 permutations was 

applied to quantify 22 types of tumor-infiltrating 

lymphocytes (TILs) in the microenvironment of high- 

and low-risk patients with HCC [40]. 
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