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INTRODUCTION 
 

Bladder cancer is the 2
nd

 most common tumor in 

urinary system. There are 549,000 new cases of 

bladder cancer in the world, and 200,000 people  

die from this disease each year [1]. About 30% of 

patients are initially diagnosed with muscle-invasive 

bladder cancer (MIBC) [2]. Radical cystectomy 

complemented with chemotherapy is the main 

treatment option for MIBC, particularly for high-risk 

patients. The adjuvant chemotherapy can effectively 

repress the growth and prevent the recurrence of 

tumor [3, 4]. Cisplatin (DDP) and gemcitabine (GEM) 

chemotherapy (GC chemotherapy) is used as the first-

line treatment for patients with advanced MIBC. 

However, the response rate to platinum-based 

regimens does not exceed 50% [3]. Multi-drug 

resistance (MDR) is the main cause of the failure in 
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ABSTRACT 
 

Chemoresistance is the most significant reason for the failure of cancer treatment following radical 
cystectomy. The response rate to the first-line chemotherapy of cisplatin and gemcitabine does not exceed 
50%. In our previous research, elevated BMI1 (B-cell specific Moloney murine leukemia virus integration 
region 1) expression in bladder cancer conferred poor survival and was associated with chemoresistance. 
Herein, via analysis of The Cancer Genome Atlas database and validation of clinical samples, BMI1 was 
elevated in patients with bladder cancer resistant to cisplatin and gemcitabine, which conferred tumor 
relapse and progression. Consistently, BMI1 was markedly increased in the established cisplatin- and 
gemcitabine-resistant T24 cells (T24/DDP&GEM). Functionally, BMI1 overexpression dramatically promoted 
drug efflux, enhanced viability and decreased apoptosis of bladder cancer cells upon treatment with 
cisplatin or gemcitabine, whereas BMI1 downregulation reversed this effect. Mechanically, upon interaction 
with p53, BMI1 was recruited on the promoter of miR-3682-3p gene concomitant with an increase in the 
mono-ubiquitination of histone H2A lysine 119, leading to transcription repression of miR-3682-3p gene 
followed by derepression of ABCB1 (ATP binding cassette subfamily B member 1) gene. Moreover, 
suppression of P-glycoprotein by miR-3682-3p mimics or its inhibitor XR-9576, could significantly reverse 
chemoresistance of T24/DDP&GEM cells. These results provided a novel insight into a portion of the 
mechanism underlying BMI1-mediated chemoresistance in bladder cancer. 
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cancer chemotherapy and is essential for cancer 

metastasis and recurrence [5–8]. The potential 

mechanisms of MDR currently consists of the ABC 

transporter family, miRNA regulation, cancer stem 

cell initiation and so on [9]. Intracellular drug 

transport, as the primary mechanism of MDR in 

cancer cells, is mediated by MDR related genes, like 

P-glycoprotein (P-GP) and MDR-associated protein 1 

(MRP1) [10, 11]. However, the molecular mechanism 

underpinning the modulation of MDR related genes is 

still largely unclear. 

 

MiRNAs are non-coding ~22 nucleotide RNAs that 

regulate genes expression at post-transcriptional level. 

As another important mechanism of MDR, miRNAs 

take part in MDR regulation by modulating target genes 

[9]. For instance, miR-19a/b is upregulated in gastric 

cancer and regulated MDR by inhibiting PTEN [12]. 

Ectopic miR-153 in colorectal cancer mediated drug 

resistance by targeting forkhead box O3a (FOXO3a) 

[13]. Hence, the role of miRNA regulation in MDR, 

especially in MDR related genes, deserves to be further 

explored. 

 

B-cell specific Moloney murine leukemia virus 

integration region 1 (BMI1) is the main component of 

the polycomb group complex 1 (PRC1), which 

functions as an important epigenetic inhibitor of various 

regulatory genes associated with chemoresistance, 

embryogenesis, self-renewal, senescence and so on 

[14–18]. BMI1 is an oncogene and its aberrant 

expression is associated with numerous cancers and 

resistance to certain chemotherapies, which confers 

poor prognosis [19–21]. Many studies have 

demonstrated that BMI1 can stimulate cancer initiation 

[22], cell transformation [23] as well as induce 

epithelial–mesenchymal transition [24–26]. Inhibiting 

BMI1 can make cancer cells sensitive to chemotherapy 

through induction of AKT-mediated apoptosis 

pathway [27–29]. In bladder cancer, BMI1 reduction 

inhibits cell proliferation, migration, invasion [30, 31], 

stemness properties and tumorigenicity [32, 33]. In our 

previous research, elevated BMI1 expression in 

bladder cancer was correlated with poor overall 

survival [34]. Further biological analyses of The 

Cancer Genome Atlas (TCGA) database revealed 

BMI1 was increased in bladder cancer patients 

resistant to chemotherapy, which confers tumor 

relapse and progression. The oncogenic role of BMI1 

in chemoresistance of bladder cancer deserves to be 

further characterized. 

 

This research investigated the oncogenic roles of BMI1 

in GC-chemoresistant bladder cancer and potential 

functions of miRNAs in BMI1-mediated activation of 

P-GP in chemoresistant bladder cancer. 

MATERIALS AND METHODS 
 

Cell culture and establishment of resistant cell line 

 

T24 and BIU-87 cells were purchased from American 

Type Culture Collection (ATCC) and were cultured 

base on the instructions. T24 cells were grown in 

McCoy's 5A modified medium (Gibco, Grand Island, 

NY, USA, Cat. No. 16600082) and BIU-87 cells were 

grown in RPMI-1640 (Gibco, Cat. No. 22400071) with 

of 10% fetal bovine serum added (FBS, Biofluids, 

Camarillo, CA, USA). All bladder cancer cells were 

cultured in the atmosphere of 5% carbon dioxide  

at 37° C. 

 

To isolate cisplatin- and gemcitabine-resistant T24 

cells, 2 × 10
7
 cells were seeded in medium 

supplemented with cisplatin (DDP) at 0.05 µg/ml and 

incubated for 24h. The residual living cells were 

expanded over 3 days without DDP followed by 

treatment with gemcitabine (GEM) at 0.2 µg/ml for 24h. 

The residual viable cells were expanded over 3 days in 

normal medium. A second and third round of selection 

was performed in a similar manner with increasing 

concentration of DDP and GEM. Finally, the resistant 

cells could be stably cultured in medium with DDP at 

0.5 µg/ml or GEM at 2.5 µg/ml. 

 

Clinical tissues and patient information 

 

240 paraffin sections of bladder cancer tissues and 8 

fresh bladder cancer specimens were collected at Sun 

Yat-Sen University Cancer Center from 2000 to 2010. 

The clinical data of these specimens are shown in Table 

1. Prior informed consents were obtained from patients 

and the approvals by the Institutional Research Ethics 

Committee were gained. 

 

Immunohistochemistry 

 

Immunohistochemical analysis (IHC) was carried out in 

240 human bladder cancer tissues using an anti-BMI1 

(Abcam, Cat. No. ab126783) and anti-P-GP (Abcam, 

Cat. No. ab170904) as described previously [35, 36]. 

The immunostaining degree of paraffin sections was 

evaluated and averaged by two independent researchers, 

who were not informed of histopathological charac-

teristics and patients’ information. The positive degree 

of staining was assessed: 0 (no positive tumor cells 

(PTCs)), 1 (<10% PTCs), 2 (10-50% PTCs), and 3 

(>50% PTCs). The intensive degree of staining was 

estimated: 0 (no staining), 1 (weak, light yellow), 2 

(moderate, yellowish brown), and 3 (strong, brown). 

The staining index (SI) was calculated: staining index = 

staining intensity × proportion of positive tumors 

staining. According to the heterogeneity measurement 
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Table 1. Correlation between BMI1 expression and clinicopathological 
characteristics of 240 bladder cancer specimens. 

Characteristics 
BMI1 

P-value 
Higher expression Lower expression 

BMI expression - 118 122 - 

Gender 
male 80 87 

0.55 
female 38 35 

Age (years) 
≤ 65 55 59 

0.76 
> 65 63 63 

No. of tumors 
single 90 92 0.87 

multiple 28 30  

Stage 

T2 5 12 

< 0.001 T3 45 67 

T4 68 33 

Grade 
low 41 80 < 0.001 

high 77 42  

Lymph node 

positive 61 43 
0.005 

negative 40 70 

not available 17 19  

 

of relapse-free survival rate by log-rank test statistics, 

the cut-off value was selected to define the high or low 

expression of BMI1. An optimal cut-off value was 

determined. The SI ≥ 6 was defined as high-expressing 

tumours, and the SI < 6 was defined as low-expressing 

tumours. 

 

Cell proliferation/cytotoxicity test 
 

Cells were treated with/without DDP or GEM at 

indicated concentration for 48 hours. At the end of drug 

exposure, 10 µl Cell Counting Kit-8 (BS350A, 

Biosharp, Hefei, Anhui, China) solutions were 

supplemented to each well including 100 µl medium. 

After 1.5-hour incubation absorbance was measured at 

450 nm. 

 

Cell cycle assay 
 

Wash cells twice by ice-cold phosphate buffer saline 

and fix them overnight with cold 70% ethanol. And 

then the cells were mixed with 100 µg/ml propidium 

iodide (PI) and incubated in dark for 30 minutes. 

Upon addition with 400 µl phosphate buffer saline, 

cells were analyzed by flow cytometry for cycle 

detection. 

 

Dye efflux test 
 

The cells in six-well plates were washed twice by 

phosphate buffer saline. Then cells were incubated with 

2 μg/ml rhodamine 123 (Sigma-Aldrich, Cat. No. 

R8004) in the dark for 30 minutes. After that, cells were 

visualized by inverted fluorescence microscope every 

10 min or analyzed by flow cytometry for detection of 

fluorescence levels of rhodamine 123. The experiments 

were carried out in triplicate. The experimental results 

were consistent and considered to be statistically 

significant. 

 

Annexin V apoptosis assay 
 

The apoptosis detecting kits (KeyGEN Biotech, 

Nanjing, China) were applied to detect tumor cell 

apoptosis. In short, cells were implanted in a six-well 

plate, cultured for 24 h and supplemented with at 5 

µg/ml or GEM at 25 µg/ml. The cells were added with 

5 µl Annexin V-FITC, and then treated with 5 µl PI 

reagents. Upon addition of 400 µl phosphate buffer 

saline, the cells were examined by flow cytometry to 

detect apoptosis cells. Annexin V-FITC-positive  

but PI-negative cells were regarded as apoptosis  

cells. 

 

Real-time quantitative reverse transcription (qRT-

PCR) 
 

Extract RNA from cells or bladder cancer tissues 

using TRIzol reagent (Invitrogen). Transcribe 

reversely RNA with a miRNA 1
st
-Strand Synthesis 

Kit (TaKaRa, Cat.NO.638313) for miRNA detection. 

The qRT-PCR for miRNA was carried out on  

an Mx3005P thermal cycler using a PCR kit  

(TaKaRa, Cat. NO. RR820A). Sample intensities were 
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normalized to RNU6B snRNA abundance. Data were 

analyzed using Applied Mx3005P Software and using 

the relative cycles to threshold method. The primer 

used for detecting miR-3682-3p expression was  

listed as follows: TGATGATACAGGTGGAGG 

TAGGT. 

 

Western blotting (WB) analysis 
 

WB was carried out base on the standard protocol, as 

mentioned earlier [37]. The primary antibodies were 

applied as followed: anti-BMI1 (Abcam, Cat. No. 

ab126783), anti-P-GP (Abcam, Cat. No. ab170904) 

and anti-p53 (Abcam, Cat. No. ab1101). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 

Proteintech, Cat. No. 60004-1-Ig) was used as a 

loading control. 

 

Plasmids, retrovirus infection, and transduction 
 

BMI1 gene was amplified by PCR from cDNA and 

cloned into pSin-EF2 vectors. Three BMI1-targeting 

shRNA sequences (RNAi#1: AGAACAGATTGGATC 

GGAA; and RNAi#2: AGACCACTACTGAATATAA; 

RNAi#3: TACATTTATACCTGGAGAA) were cloned 

into SUPER.retro.puro vectors (OligoEngine, USA) to 

construct the respective pSUPER.retro.BMI1-RNAi(s). 

T24 or BIU-87 cells were seeded in the P100 plate, and 

then transducted with 10 µg plasmids. Cell lines stably 

expressing BMI1 or BMI1 shRNA were constructed 

through retrovirus infection of HEK293T cells and 

selected using 0.5 mg/ml puromycin. 

 

CRISPR/cas9 generation of BMI1−/− cells 
 

Lentiviral CRISPR–Cas9 vectors that mediated BMI1 

gene editing were purchased from Beyotime 

Biotechnology (Beyotime, Shanghai, China). The 

targeted sequence of sgRNA was GACAATACTTGCT 

GGTCTCC. After 48h lentiviral transfection, cells were 

screened using puromycin. To screen for clones with 

BMI1 gene disruption, total genomic DNA was 

extracted and genomic PCR of BMI1 gene was 

performed with primers: forward: 5'-CCACCTGATGT 

GTGTGCTTTG-3'; reversed: 5'-TTCAGTAGTGGTCT 

GGTCTTGT-3'. PCR products were analysed on 1% 

agarose gel supplemented with ethidium-bromide and 

immunoblots were performed to confirm BMI1 

depletion. 

 

miRNA microarray assay analysis 

 

miRNA expression profiles of two different cell 

samples (T24/DDP&GEM vs. T24/DDP&GEM-

sgBMI1 cells) were established by SHBIO 

Technology Corporation (Shanghai, China). The 

procedures were carried out base on manufacturer's 

recommendations. 

 

Prediction of miRNAs targeting ABCB1 gene 
 

MiRWalk 2.0, a comprehensive database of predicted 

and validated miRNA-target interactions, was used to 

predict the binding sites by microRNAs in 3’-UTR of 

ABCB1 gene [38]. 

 

Luciferase reporter test 
 

293T cells were implanted in 96-well plate for 24h. 

ABCB1 3’-UTR-luciferase plasmid and renilla 

plasmid (Promega) were transducted into cells with 

lipofectamine 3000 (Invitrogen). Then the luciferase 

and renilla signals were detected with Dual 

Luciferasel Reporter Test Kit (Promega) base on the 

protocols. 

 

Co-immunoprecipitation (co-IP) assay 
 

The indicated cells were lysed, and then immuno-

precipitated by anti-BMI1 (Abcam, Cat. No. ab126783) 

and anti-p53 (Abcam, Cat. No. ab1101) antibodies. 

Then the immune complexes were detected by anti-

BMI1 (Abcam, Cat. No. ab126783) and p53 (Abcam, 

Cat. No. ab1101) antibodies, and visualized with an 

ECL analysis system. 

 

Chromatin immunoprecipitation (ChIP) 

 

ChIP test was carried out with an EZ ChlP Kit (Abcam, 

Cambridge, MA, USA, Cat. No. ab500) base on the 

protocol. In short, 5×10
6
 cells were cross-linked with 

1% formaldehyde for 15 minutes. Cross-linked 

chromatin was sonicated and then incubated using anti-

IgG, anti-p53 (Abcam, Cat. No. ab1101), anti-BMI1 

(Abcam, No. ab126783) or anti-H2AK119ub1 (CST, 

Cat. No. 8240). The immunoprecipitated DNA was 

purified and quantified by RT-PCR to detect the binding 

level of p53, which was standardized to 0.5% input. The 

primer used for ChlP test was listed below: miR-3682-
3p promoter:  

 

5'-GGTTTACAGATAAGACTGGGAATG-3',  

5'-CTTTCTGCCCATTTCCAC-3'. 

 

Statistical analysis 
 

The statistical methods contained t test, Fisher’s exact 

test, χ
2
 test and log-rank test. Univariate and 

multivariate analyses were used with a Cox regression 

model. Statistical analysis was carried out using SPSS 

11.0 software. The data represented mean ± SD;  

P ≤ 0.05 was considered to be statistically significant. 
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RESULTS 
 

Ectopic BMI1 in bladder cancer tissues from 

patients resistant to chemotherapy correlated with 

poor prognosis 
 

In our previous research, elevated BMI1 expression was 

related to poor overall survival in bladder cancer [34]. 

For further investigating the regulation role of BMI1 in 

human bladder cancer, we firstly analysed BMI1 levels 

in bladder cancer tissues from TCGA-bladder urothelial 

carcinoma (BLCA) database. According to the available 

clinical information from TCGA-BLCA dataset, 102 

patients with complete response to chemotherapy and 

13 patients with partial response to chemotherapy were 

included for analysis. Here, patients with complete 

response to chemotherapy were defined as chemo-

sensitive patients, while patients with partial response to 

chemotherapy were defined as chemo-resistance. BMI1 

expression was significantly elevated in 13 patients 

resistant to chemotherapy compared with that in 102 

patients sensitive to chemotherapy (Figure 1A), 

suggesting the association of BMI1 with chemo-

resistance. In particular, patients with high BMI1 levels 

had a worse relapse-free survival rate than patients with 

low BMI1 levels (Figure 1B). These data suggested that 

ectopic BMI1 may be an indicator of chemoresistance 

and poor prognosis of bladder cancer. 

 

In order to verify the above analysis, we examined 

BMI1 expression in 240 archived, paraffin-embedded 

bladder cancer specimens using IHC staining. 

Consistently, the level of BMI1 in tumor tissues from 

patients resistant to GC chemotherapy was significantly 

higher than that sensitive to GC chemotherapy (Figure 

1C). Quantitative IHC score analysis further 

corroborated the elevated BMI1 expression in bladder 

cancer tissues from patients resistant to GC chemo-

therapy (Figure 1D). 

 

The association of BMI1 level and the clinicopathologic 

characteristics of bladder cancer were further evaluated 

among 240 bladder cancer specimens. 118 (49.17%) 

had high BMI1 expression, while 122 (50.83%) had low 

BMI1 expression (Table 1). The statistical analyses 

indicated that upregulated BMI1 expression was related 

to higher clinical stage, grade and lymph node (LN) 

metastasis (P < 0.01), but not with gender, age or 

multiplicity (Table 1). BMI1 expressions in bladder 

cancer tissues were inversely related to relapse-free 

survival (P < 0.001, Figure 1E) and progression-free 

survival (P < 0.001, Figure 1F). Furthermore, the 

expression level of BMI1 was an independent prognosis 

factor for bladder cancer (P < 0.05) similar to clinical 

grade, stage, multiplicity and LN metastasis (Tables 2, 

3). Taken together, BMI1 upregulation in bladder 

cancer involves in chemoresistance and is related to 

poor prognosis for bladder cancer. 

 

Inhibition of BMI1 up-regulation reversed the 

chemoresistance in T24/DDP&GEM cells 

 

In order to better mimic the characteristics of clinical 

bladder cancer resistant to GC chemotherapy, we 

established a bladder cancer cell lines, named 

T24/DDP&GEM, resistant to cisplatin and gemcitabine 

by alternately exposing T24 cells to cisplatin or 

gemcitabine. The drug resistance of T24/DDP&GEM 

cells was confirmed by cell proliferation and apoptosis 

assays upon treatment with cisplatin or gemcitabine 

(Figure 2A, 2B). The half maximal inhibitory 

concentration (IC50) of T24/DDP&GEM cells for 

cisplatin and gemcitabine was significantly increased 

compared with T24 cells (Table 4). Of note, BMI1 

expression was significantly higher in resistant 

T24/DDP&GEM cells than that in T24 cells (Figure 

2C), which was consistent with the elevated BMI1 

expression in bladder cancer tissues of patients resistant 

to GC chemotherapy. These data supported the crucial 

role of BMI1 in GC chemoresistant bladder cancer. 

 

For further investigating the biological role of BMI1 in 

GC chemoresistant bladder cancer, we knock-downed 

BMI1 in T24/DDP&GEM cells, which was named 

T24/DDP&GEM-sgBMI1 cells using CRISPR/Cas9 

system (Figure 2D). Intriguingly, BMI1 knockdown 

reversed the chemoresistance of T24/DDP&GEM cells. 

Depletion of BMI1 reduced viability and promoted 

apoptosis of T24/DDP&GEM cells when treated  

with cisplatin (Figure 2E, 2F). Under observation in 

inverted fluorescence microscope, the fluorescent 

intensity of rhodamine 123 dye was decreased more 

slowly in T24/DDP&GEM-sgBMI1 cells than that in 

T24/DDP&GEM cells (Figure 2G). Consistently, the 

retention rate of fluorescent dye was elevated in 

T24/DDP&GEM-sgBMI1 cells as detected by flow 

cytometry (Figure 2H), which suggested that BMI1 

mediated chemoresistance of bladder cancer probably 

via promotion of drug efflux. 

 

BMI1 enhanced the chemoresistance in bladder 

cancer cells 
 

For investigating the roles of BMI1 in bladder cancer 

chemoresistance, we knock-downed or overexpressed 

BMI1 in T24 and BIU-87 cells, respectively (Figure 3A, 

3B). Upon treatment with cisplatin, BMI1-over-

expressing cells presented a higher viability and lower 

apoptosis as assessed by the cell counting kit-8 analysis 

(Figure 3C) and Annexin V/flow cytometry apoptosis 

assay (Figure 3E), whereas BMI1-downregulating cells 

reduced the viability and increased the apoptosis  
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Figure 1. Elevated BMI1 in GC-chemoresistant bladder cancer conferred poor prognosis. (A) BMI1 mRNA expression in bladder 
cancer tissues of patients partial response to chemotherapy versus patients complete response to chemotherapy from TCGA-BLCA database. 
(B) Relapse-free survival of patients in TCGA-BLCA dataset with low versus high levels of BMI1 mRNA. (C) IHC analysis of BMI1 protein 
expression in bladder cancer tissues of patients resistant to GC chemotherapy and that sensitive to GC chemotherapy, magnification, ×200 & 
×400. (D) Statistical quantification of the IHC score of BMI1 staining in bladder cancer specimens from patients resistant versus sensitive to 
GC chemotherapy. (E) Relapse-free survival of patients with bladder cancer with low versus high BMI1 expression. (F) Progression-free 
survival of patients with bladder cancer with low versus high BMI1 expression. *P < 0.05. GC: Cisplatin and Gemcitabine; TCGA: The Cancer 
Genome Atlas; BLCA: Bladder Urothelial Carcinoma; IHC: Immunohistochemistry; TPM: Transcripts Per Million. 
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Table 2. Univariate and multivariate analyses of tumor-specific mortality in patients 
with bladder cancer by cox-regression analysis. 

Characteristics 
Univariate  Multivariate 

HR (95%CI) P-value  HR (95%CI) P-value 

Gender: male, female 0.85 (0.62, 1.11) 0.361  - - 

Age (years): ≤ 65, > 65 0.81 (0/62, 1.02) 0.141  - - 

No. of tumors: single, multiple 3.17 (1.76, 5.37) 0.021  2.57 (1.62, 3.13) 0.022 

Stage: T2, T3, T4 3.56 (1.63, 4.93) 0.011  3.13 (1.29, 5.61) 0.003 

Grade: low, high 2.77 (1.32, 4.05) 0.033  2.99 (1.73, 5.03) 0.035 

Lymph node: negative, positive 3.79 (2.32, 5.29) 0.001  3.58 (1.93, 6.02) 0.003 

BMI1 expression 2.81 (1.61, 4.02) 0.019  2.73 (1.93, 3.85) 0.013 

 

Table 3. Univariate and multivariate analyses of tumor progression in patients with 
bladder cancer by cox-regression analysis. 

Characteristics 
Univariate  Multivariate 

HR (95%CI) P-value  HR (95%CI) P-value 

Gender: male, female 0.94 (0.81, 1.09) 0.213  - - 

Age (years): ≤ 65, > 65 0.84 (0.67, 1.19) 0.421  - - 

No. of tumors: single, multiple 1.93 (1.51, 3.07) 0.021  1.73 (1.24, 2.39) 0.047 

Stage: T2, T3, T4 2.85 (1.79, 4.21) < 0.001  2.39 (1.88, 3.77) 0.003 

Grade: low, high 1.45 (1.03, 1.93) 0.043  2.33 (1.66, 3.30) 0.041 

Lymph node: negative, positive 3.72 (1.99, 5.35) < 0.001  2.79 (1.53, 4.33) 0.001 

BMI1 expression 4.01 (2.01, 7.31) < 0.001  3.03 (1.73, 5.37) 0.005 

 

rate (Figure 3D, 3F). These results indicated that BMI1 

could enhance chemoresistance of bladder cancer cells, 

while BMI1 knockout could increase the sensitivity  

to chemotherapy. Furthermore, as detected by flow 

cytometry, the retention rate of fluorescent dye 

rhodamine 123 was significantly decreased in BMI1-

overexpressing cells (Figure 3G), whereas significantly 

increased in BMI-silenced cells (Figure 3H). These 

findings supported the above-mentioned viewpoint that 

BMI1 increased chemoresistance probably via 

promotion of drug efflux, which was associated with 

ABC transporter family. Taking together, BMI1 knock-

down reversed the chemoresistance of T24/DDP&GEM 

cells. 

 

miR-3682-3p directly suppressed ABCB1 gene, 

contributing to BMI1-mediated chemoresistance in 

bladder cancer cells. 
 

Next we explored the potential mechanism 

underpinning BMI1-mediated promotion of drug  

efflux, which was associated with ABC transporter 

family. This family has at least 48 members [39], 12 of 

which are considered to be putative drug transporters 

[40]. Then these 12 human ABC-transporters were 

examined by qRT-PCR and ABCB1 gene level was 

significantly decreased in T24/DDP&GEM cells  

upon BMI1 knockdown (Figure 4A). Western Blot 

assay further confirmed the reduction of P-GP  

protein in T24/DDP&GEM-sgBMI1 cells (Figure 4B). 

Analogously, BMI1 overexpression increased  

P-GP protein in bladder cancer cells (Figure 4C), 

whereas BMI1 knockdown decreased its expression  

(Figure 4D). 

 

Given the important regulatory role of miRNAs in 

silencing of gene expression, especially in MDR related 

genes [9], we explored the potential regulation of 

miRNAs in P-GP reduction. A comprehensive database, 

miRWalk 2.0, including miRWalk, RNA22, miRMap, 

Microt4, and TargetScan, were applied to predict 

miRNAs potentially inhibiting ABCB1 gene by binding 

to its 3'-UTR. And then, six candidate microRNAs 

(miR-3915, miR-4326, miR-5582-5p, miR-455-3p, 

miR-3682-3p, and miR-3921) were predicted (Figure 

4E). Notably, among these microRNAs, miR-3682-3p 

was detected by miRNA arrays to be significantly over-

expressed in T24/DDP&GEM-sgBMI1 cells relative to 

T24/DDP&GEM cells (Figure 4F). Subsequent q-RT-

PCR further confirmed the increased expression of 

miR-3682-3p in T24/DDP&GEM-sgBMI1 cells (Figure 

4G). Consistently, in another two bladder cancer cells, 
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T24 and BIU-87, miR-3682-3p was detected by q-RT-

PCR to be highly expressed upon BMI1 knockdown, 

whereas miR-3682-3p was down-regulated after 

overexpressing BMI1 (Figure 4H). To investigate 

whether miR-3682-3p can specifically inhibit ABCB1 

gene, we constructed an ABCB1 3'-UTR plasmid 

(H9688) that included a 3'-UTR of ABCB1 downstream 

of the luciferase gene and a mutant plasmid (H9689) 

 

 
 

Figure 2. Inhibition of BMI1 overexpression reversed the chemoresistance in GC-resistant T24 cells. (A) Cell proliferation 
changes of T24 and T24/DDP&GEM cells assessed by cell counting kit-8 assays after treatment with 2 μg/ml DDP or 25 μg/ml GEM. (B) 
Apoptosis of T24 and T24/DDP&GEM cells detected by the Annexin V/flow cytometric apoptosis assay after treatment with 2 μg/ml DDP or 
25 μg/ml GEM. (C) Western Blot analysis of BMI1 protein in T24 and T24/DDP&GEM cells. (D) Western Blot detection of BMI1 protein in 
T24/DDP&GEM cells upon BMI1 knockout using CRISPR/Cas9 system. (E) Cell proliferation changes of T24/DDP&GEM cells upon knockout of 
BMI1 were assessed by cell counting kit-8 assays after treatment with 2 μg/ml DDP. (F) Apoptosis of T24/DDP&GEM-sgBMI1 and 
T24/DDP&GEM cells detected by the Annexin V/flow cytometric apoptosis assay after treatment with 2 μg/ml DDP. (G) Under observation in 
inverted fluorescence microscope, the fluorescent intensity of dye in indicated cells after transfection with rhodamine 123. (H) The retention 
rate of rhodamine 123 dye in down-regulating BMI1 or vector control T24/DDP&GEM cells detected by flow cytometry. *P < 0.05. **P < 0.01. 
***P < 0.001. GC: cisplatin and gemcitabine; DDP: cisplatin; GEM: gemcitabine. 
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Table 4. The half maximal inhibitory concentration 
(IC50) values and resistance index (RI) of 
T24/DDP&GEM and T24 cells. 

Cells 
IC50 (µg/ml) 

Cisplatin Gemcitabine 

T24/DDP&GEM 4.93 ± 0.42 45.97 ± 3.35 

T24 1.16 ± 0.24 0.73 ± 0.12 

RI (T24/DDP&GEM : T24) 4.25 62.97 

DDP: Cisplatin; GEM: Gemcitabine; T24/DDP&GEM cells: 
cisplatin- and gemcitabine-resistant T24 cells. 

 

that contained a mutant site in predicted binding site. 

Luciferase reporter assay showed that compared to the 

control groups, miR-3682-3p markedly inhibited 

luciferase activities of reporters including 3'-UTR of 

ABCB1, while miR-3682-3p had no influence on 

luciferase activities of reporters including the mutant 3'-

UTR of ABCB1 (Figure 4I). These data indicated that 

ABCB1 was a miR-3682-3p target and miR-3682-3p 

was involved in BMI1-mediated chemoresistance by 

directly binding to ABCB1 3'-UTR and suppressing its 

expression. 

 

BMI1 epigenetically repressed transcription of miR-

3682-3p upon interaction with p53 

 

Next we investigated the potential mechanism 

underlying BMI1-mediated reduction of miR-3682-

3p. Given the crucial role of BMI1 in transcriptionally 

silencing genes [41], we supposed that BMI1 

repressed miR-3682-3p transcription probably via 

interference with its regulators. Then we predicted the 

potential transcription regulators that could interact 

with BMI1, as well as regulate miR-3682-3p 

expression by Biological General Repository for 

Interactionh Datasets (BioGRID) and JASPAR 

database. Of these proteins, p53 aroused great interest 

as it have been reported to interact with BMI1 [42], 

and BMI1 loss results in the upregulation of p53 

targets [43, 44]. Herein, co-IP assay validated the 

interaction of BMI1 with p53 in T24 cells (Figure 

5A). According to the predicted binding sites of miR-
3682-3p gene, ChIP assay was performed and 

confirmed that p53 could directly associate with the 

promoter of miR-3682-3p gene (Figure 5B). 

Interestingly, silencing p53 significantly decreased 

BMI1 occupancy on miR-3682-3p gene promoter 

(Figure 5C). Furthermore, BMI1 overexpression 

decreased miR-3682-3p promoter-driven reporter 

activity in T24 cells, whereas silencing BMI1 had the 

opposite effects (Figure 5D). These results presented 

evidence that BMI1 could interact with p53 and 

repress miR-3682-3p transcription. 

BMI1 is a major component of PRC1, which was 

shown to function as a transcriptional repressor 

through catalyzing the mono-ubiquitination of histone 

H2A lysine 119 (H2AK119ub1), an epigenetic marker 

related to gene suppression [45–47]. ChIP showed 

that BMI1 occupancy on the miR-3682-3p promoter 

was increased and accompanied by increased 

H2AK119ub1 upon BMI1 up-regulation (Figure 5E, 

5F). Consistent with these results, RNAi of BMI1 

significantly decreased the occupancy of BMI1 on the 

promoter as well as those of H2AK119ub1 (Figure 

5E, 5F). Collectively, these results suggested that 

BMI1, interacted with p53, could repress the 

transcription of miR-3682-3p through H2AK119 

mono-ubiquitination. 

 

To further validate that BMI1-mediated chemo-

resistance took place through suppression of ABCB1 

by miR-3682-3p, we blocked ABCB1 expression in 

T24/DDP&GEM cells by transfecting the cells with 

miR-3682-3p mimics or P-GP inhibitor, tariquidar 

(XR-9576). As shown in Figure 5G–5I, inhibition of 

ABCB1 via transfecting with miR-3682-3p mimics or 

by its inhibitor XR-9576 significantly decreased 

viability (Figure 5G), promoted apoptosis (Figure 5H) 

and decreased dye efflux (Figure 5I) in BMI1-

transduced cells. These experiments showed that  

miR-3682-3p could directly inhibit ABCB1 gene 

through targeting its 3'-UTR, contributing to  

BMI1-mediated chemoresistance of bladder cancer  

cells. 

 

Clinical relevance among BMI1/miR-3682-3p/P-GP 

axis in bladder cancer specimens 
 

Next, we analyzed whether the BMI1/miR-3682-3p/ 

P-GP axis found in bladder cancer cells were relevant 

in clinical. Eight fresh bladder cancer tissue 

specimens were collected and detected by q-RT-PCR 

and western blot (Figure 6A). BMI1 protein level 

correlated negatively with miR-3682-3p level  

(P = 0.024, R
2
 = 0.602), and correlated positively  
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with P-GP protein level (P = 0.040, R
2
 = 0.531),  

while miR-3682-3p expression correlated negatively 

with P-GP protein level (P = 0.046, R
2 

= 0.512,  

Figure 6B). These results indicated that up-regulation 

of BMI1 in bladder cancer contributed to miR- 

3682-3p reduction, which in turn increased P-GP 

expression to enhance the chemoresistance of bladder  

cancer. 

 

 
 

Figure 3. BMI1 enhanced the chemoresistance of bladder cancer cells. (A, B) Western blot analysis of BMI1 in the indicated BMI1-
transduced, BMI1-silenced, or vector control cells. GAPDH was used as the loading control. (C, D) Cell proliferation changes of BMI1-
overexpressing, BMI-silenced or vector control cells assessed by cell counting kit-8 assays after treatment with 2 μg/ml DDP. (E, F) Apoptosis 
of T24 and BIU-87 cells upon BMI1 up-regulation or knock-down was determined by the Annexin V/flow cytometric apoptosis assay after 
treatment with 2 μg/ml DDP for 72h. (G, H) The retention rate of rhodamine 123 in up-regulating BMI1, down-regulating BMI1 or vector 
control cells detected by flow cytometry. *P < 0.05. GAPDH: glyceraldehyde3-phosphate dehydrogenase; DDP: cisplatin. 
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Aberrant BMI1 amplification contributes to BMI1 

overexpression and chemoresistance in bladder 

cancer, which confers poor prognosis 
 

The BMI1 locus is located on chromosome 10p12.2, 

that is generally amplified in multiple cancers [23, 48–

50]. Compared with the BMI1 copy number variation 

(CNV) in bladder cancer patients sensitive to 

chemotherapy in TCGA data sets, BMI1 locus was 

highly amplified in bladder cancer patients resistant to 

chemotherapy (P = 0.0254, Figure 7A–7D), suggesting 

that ectopic BMI1 amplification involved in the 

 

 
 

Figure 4. BMI1 activated P- glycoprotein via suppression of miR-3682-3p. (A) qRT-PCR detection of 12 human ABC-transporters, 
which are associated with drug transport, in T24/DDP&GEM cells upon BMI1 knockdown. (B) Western blot detection of BMI1 and P-GP in 
T24/DDP&GEM and T24/DDP&GEM-sgBMI1 cells. (C, D) Western blot analysis of BMI1 and P-GP in overexpressing, downregulating BMI1 or 
vector control cells (T24 and BIU-87). (E) A Venn diagram showing the overlap of candidate miRNAs that were predicted by miRWalk2.0 to 
potentially bind to the ABCB1 3'-UTR. (F) Heatmap of 6 candidate miRNAs expression in miRNA microarray assay analysis between 
T24/DDP&GEM and T24/DDP&GEM-sgBMI1 cells. (G) Quantification analysis of miR-3682-3p expression by q-RT-PCR in T24/DDP&GEM and 
T24/DDP&GEM-sgBMI1 cells. (H) Detection of miR-3682-3p expression by q-RT-PCR in overexpressing, downregulating or vector control cells 
(T24 and BIU-87). (I) Results of luciferase reporter assay in HEK293T cells with co-transfection of ABCB1 3'-UTR vector (H9688) or mutant 
control vector (H9689). *P < 0.05. **P < 0.01. ***P < 0.001. DDP: cisplatin; GEM: gemcitabine; P-GP: P-glycoprotein. 
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chemoresistance of bladder cancer. Consistently, BMI1 

mRNA level was significantly related to BMI1 CNV 

(Figure 7C–7E). CNV in BMI1 expression correlated with 

neither p53 gene CNV nor p53 mRNA expression 

(Supplementary Figure 1). Importantly, bladder cancer 

with BMI1 amplification predicted a worse survival than 

those without BMI1 amplification (P = 0.0383; Figure 

7F). Collectively, aberrant BMI1 amplification contributes 

to BMI1 overexpression and chemoresistance in bladder 

cancer, which confers poor prognosis. 

 

 
 

Figure 5. Interacted with p53, BMI1 epigenetically repressed transcription of miR-3682-3p. (A) Co-IP assay showing the 
interaction of BMI1 with p53 in T24 cells. (B) ChIP assay showing the nucleotide regions of miR-3682-3p promoter that are physically 
associated with p53. Upper panel: schematic illustration of predicted p53-bound sites and PCR-amplified fragments of the miR-3682-3p 
promoter; lower panel: ChIP assays were performed using p53 antibody to validate p53-bound miR-3682-3p promoter regions. IgG was used 
as a negative control. (C) ChIP-qPCR analysis showing enrichment of p53 at miR-3682-3p promoter in the indicated cells. (D) miR-3682-3p 
promoter luciferase reporter plasmids, Renilla pRL-TK plasmids, vector, or BMI1 were transfected into T24 cells. After 48 h, cells were 
subjected to a luciferase reporter assay. (E, F) ChIP-qPCR analysis of BMI1 (E) and H2AK119ub1 (F) at promoter of miR-3682-3p in T24 cells. 
(G) Cell proliferation changes of T24/DDP&GEM cells transfected with miR-3682-3p mimics, ABCB1 inhibitor XR-9576, or negative control 
were assessed by cell counting kit-8 assays after treatment with 2 μg/ml DDP. (H) Apoptosis of the indicated cells detected by the Annexin 
V/flow cytometric apoptosis assay after treatment with 2 μg/ml DDP. (I) The retention rate of Rhodamine 123 in the indicated cells detected 
by flow cytometry. *P < 0.05. **P < 0.01. ***P < 0.001. Co-IP: co-immunoprecipitation; ChIP: chromatin immunoprecipitation; DDP: cisplatin. 
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DISCUSSION 
 

This research mainly revealed that upon interaction with 

p53, BMI1 epigenetically repressed transcription of 

miR-3682-3p, which in turn increased P-GP expression, 

resulting in the enhanced drug efflux and chemo-

resistance of bladder cancer cells. BMI1 was detected to 

be over-expressed in bladder cancer specimens from 

GC-chemoresistant patients, which was consistent with 

the elevated BMI1 expression in established GC-

resistant T24/DDP&GEM cells. BMI1 up-regulation, 

which could be attributed to the amplification of gene 

loci on the 10p12.2 chromosome, was related to the 

relapse and progression of bladder cancer. Herein, this 

study uncovered a novel mechanism underlying BMI1 

up-regulation and BMI1-mediated activation of P-GP in 

GC-chemoresistant bladder cancer, and represented this 

protein as a potential target for GC-chemoresistant 

patients with bladder cancer. 

 

BMI1 is a core component of PRC1 complex, which 

could function as an E3 ubiquitin ligase that transfers 

the mono-ubiquitination mark to the C-terminal tail of 

histone H2A at K118/K119 [51–54]. The complex is 

required to maintain the transcriptionally repressive 

state of many genes through catalyzing the 

H2AK119ub1, an epigenetic marker related to gene 

suppression [45–47, 51]. Ectopic H2AK119ub1 

expression has been correlated with the poor prognosis 

of some tumors [55]. BMI1 enhanced the enzymatic 

activities of RING1B to mono-ubiquitinate H2AK119 

and repress gene transcription [51]. Knockout of Bmi-1 

results in a decrease in H2AK119ub1 [56] concomitant 

with derepression of Hox gene silencing [45, 57]. BMI1 

is frequently up-regulated in a variety of cancer, and its 

over-expression is associated with poor prognosis  

[19, 58]. Multiple researches have shown that BMI1 is 

involved in chemoresistance, while inhibiting BMI1 can 

make cancer cells sensitive to chemotherapy [27, 28, 

59]. Consistently, our study revealed that BMI1 was 

overexpressed in GC-chemoresistant bladder cancer 

tissues, which confers poor prognosis. Overexpressing 

BMI1 significantly enhanced, whereas silencing BMI1 

attenuated drug efflux and chemoresistance of bladder 

cancer cells. Mechanically, upon interaction with p53, 

BMI1 overexpression increased its occupancy on miR-
3682-3p gene promoter concomitant with an increase in 

H2AK119ub1, leading to the reduced transcription of 

miR-3682-3p gene followed by derepression of ABCB1 

gene. 

 

ABCB1 is a member of the superfamily of ATP-binding 

cassette transporters. As an important MDR related 

gene, ABCB1 gene encodes P-GP protein and 

 

 
 

Figure 6. Clinical relevance among BMI1/miR-3682-3p/P-GP axis in human bladder cancer. (A) qRT-PCR or Western Blot detection 
of BMI1, P-GP and miR-3682-3p expression in 8 freshly collected human bladder cancer samples. (B) Correlation analyses among BMI1/miR-
3682-3p/P-GP in these 8 bladder cancer tissues. P-GP: P-glycoprotein. 
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participates in intracellular drug efflux, leading to 

decreased drug accumulation and development of 

resistance to anticancer drugs [60–64]. Ectopic P-GP 

level was inversely related to the prognosis in bladder 

cancer [64]. Herein, our study identified a novel 

microRNA post-translationally regulating P-GP 

overexpression in GC-chemoresistant patients with 

bladder cancer. Suppression of miR-3682-3p by BMI1 

restored P-GP expression in bladder cancer, resulting in 

the chemoresistant to GC, and tumor relapse and 

progression. 

 

Currently, most of the chemotherapies for bladder 

cancer are platinum-based combined regimens in clinic, 

 

 
 

Figure 7. Aberrant BMI1 amplification contributed to BMI1 overexpression and chemoresistance in bladder cancer.  
(A, B) Analysis of BMI1 copy number variant (CNV) in bladder cancer patients resistant to chemotherapy (A) and that sensitive to 
chemotherapy (B) in TCGA-BLCA data sets. (C, D) BMI1 gene CNV and corresponding mRNA expression in bladder cancer patients resistant 
chemotherapy (C) vs. that sensitive to chemotherapy (D) in TCGA-BLCA data sets (P = 0.0254). (E) BMI1 gene CNV and corresponding mRNA 
expression in a TCGA bladder cancer data set (P < 0.001). (F) Kaplan-Meier analysis of overall survival for patients with amplified or non-
amplified BMI1 expression (P = 0.0383). *P < 0.05. **P < 0.01. ***P < 0.001. CNV: copy number variation; TCGA: The Cancer Genome Atlas; 
BLCA: Bladder Urothelial Carcinoma. 
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owing to the low response rate of single drug therapy 

[65–67]. As the first-line treatment, combined 

chemotherapy of cisplatin and gemcitabine is the most 

commonly used for advanced MIBC patients, but its 

response rate is still not more than 50% [3]. In this 

study, we established T24/DDP&GEM cells resistant to 

cisplatin and gemcitabine, and investigated the 

regulation role of BMI1/miR-3682-3p/P-GP axis in 

T24/DDP&GEM cells and in bladder cancer tissues of 

patients resistant to GC chemotherapy. Suppression of 

P-GP by miR-3682-3p mimics or XR-9576 could 

significantly reverse BMI1-mediated chemoresistance 

of bladder cancer cells, presenting miR-3682-3p or XR-

9576 as a potential adjuvant agent in GC-chemo-

resistant bladder cancer with ectopic BMI1 expression. 

XR-9576, also named tariquidar, is the 3
rd

 generation of 

P-GP inhibitors. XR-9576 has high affinity with P-GP, 

can bind to P-GP non-competitively and strongly 

suppresses its activity [68]. XR-9576 did not interfere 

with the pharmacokinetics of doxorubicin, paclitaxel, or 

vinorelbine in chemotherapy of patients with solid 

tumours [69, 70]. Several clinical trials using XR-9576 

in combination with chemotherapy revealed that XR-

9576 is a potent P-GP antagonist without significant 

side effects [69–72], representing XR-9576 as a 

promising treatment for MDR bladder cancer with 

ectopic BMI1 expression. 
 

This study demonstrated that the elevated BMI1 

expression observed in GC-resistant patients with 

bladder cancer could be due to genomic amplification of 

10p12.2, which conferred poor prognosis. BMI1 

overexpression dramatically promoted drug efflux, 

enhanced viability and decreased apoptosis of bladder 

cancer cells upon chemotherapy with DDP or GEM, 

whereas BMI1 downregulation reversed this effect. 

Mechanically, miR-3682-3p was identified as a 

downstream target of p53. Upon interaction with p53, 

BMI1 could repress the transcription of miR-3682-3p 

gene following an increase in H2AK119ub1, leading to 

derepression of ABCB1 gene. Moreover, suppression of 

P-GP by miR-3682-3p mimics or XR-9576 could 

significantly reverse BMI1-mediated chemoresistance 

of bladder cancer cells. The results provided a novel 

insight into the portion of mechanism underlying BMI1-

mediated chemoresistance in bladder cancer, presenting 

BMI1 as a valuable prognosis indicator and potential 

therapeutic target for GC-resistant bladder cancer. 
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Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. (A) Correlation analyses of CNV in BMI1 expression with p53 gene CNV in chemo-resistant (left) and chemo-
sensitive (right) bladder cancer specimens from TCGA dataset. (B) BMI1 gene CNV and p53 mRNA expression in a TCGA-BLCA data set (P = 
0.737). CNV: copy number variant; TCGA: The Cancer Genome Atlas; BLCA: Bladder Urothelial Carcinoma. 


