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INTRODUCTION 
 

Aging remains associated with a variety of diseases, 

including infertility, degenerative diseases, and cancer 

[1]. Female ovarian reserve has been reported to decline 

progressively with advancing age [2]. Women in the 

elderly age group have a decreased follicle pool of less 

than 1,000 and show irregular ovulatory cyclic changes, 

the first clinical signs of ovarian aging [3, 4]. Ovarian 

aging results in a poor response to ovarian stimulation 

leading to reduced number and quality of remaining 

oocytes in women [5, 6]. In particular, older women (> 

40 years), are subjected to increased risks of 

chromosomal abnormalities in oocytes and adverse 

pregnancy outcomes [7, 8]. The most commonly faced 

challenge has been the effective management and 

improvement of age-related decline in female 

reproductive potential [9]. 

 

Recent research has focused on developing effective 

fertility preservation strategies, such as ovarian tissue 

and oocyte cryopreservation [10]. However, such 

attempts are likely to be effective only in women 

younger than 35 years and with good ovarian reserve. 

Because older women with poor ovarian responses 

(POR) have a declining oocyte yield in in vitro 

fertilization, high-dose follicle-stimulating hormone 

(FSH) protocols are unsuccessful [11]. Thus, 

differential pharmacological strategies are required for 

women to improve the ovarian reserve. 

 

Alternative options in integrative medicine treatment 

using natural herbs are considered effective for elderly 

women with POR. Herbal combinations have been used 

to manage infertility symptoms in human and rodent 

models [12–14]. Samul-tang (SM) is a well-known 

mixed herbal medicine comprising equal proportions of 

Paeonia lactiflora, Liqusticum striatum, Rehmannia 
glutinosa, and Angelica gigas. Pharmacological effects 

of SM include anti-inflammatory, antioxidative, anti-

stress, and anti-cancer effects [15]. The herb is 

commonly prescribed to women with gynecological 

disorders, such as irregular menstruation and 
postmenopausal syndrome, often clinically observed in 

older women with POR [16]. Anti-aging effects of three 

compounds, including P. lactiflora, R. glutinosa, and  
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ABSTRACT 
 

Samul-tang (SM), a traditional herbal medicine, is used to treat age-related human conditions, such as infertility 
and menstrual irregularities. The mechanism underlying the role of SM in ovary function needs elucidation. In 
this study, the influence of SM administration on the ovarian reserve of aged mice was investigated. Female 
BALB/c mice (8 and 40 weeks-old) were administered with distilled water (young or old group) or SM for 4 
weeks. SM administration prevented age-related ovarian follicle loss in mice. Quality of oocytes and blastocysts 
were enhanced in SM-administrated mice compared to those of non-treated old mice. Further, SM 
administration increased the pregnancy rate and number of litters. SM triggered changes in aging-related genes 
that are linked to the RAS-mediated pathway. Thus, we demonstrate that SM can be used to increase the 
oocyte yield in aged women, potentially improving age-related cognitive decline in the ovarian reserve. 
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A. gigas, have been reported using human cells and 

animal models [17–19]. Although herbal medicines are 

traditionally known to improve fertility-related 

parameters, scientific evidence supporting their use for 

age-related infertility is limited. 

 

In this study, the influence of SM administration on 

ovarian reserve for four weeks in old-aged mice was 

investigated. Further, the compensatory mechanisms of 

SM in age-related functional decline in ovary were 

uncovered using transcriptomic analysis. 

RESULTS 
 

SM improved age-related decline of serum AMH 

and FSH level 

 

Body weight changes in mice of each group were 

measured for four weeks since SM administration (Figure 

1A). SM had no effect on the body weight (Figure 1B). 

However, decreased ovary weight associated with aging 

was regained by SM administration for four weeks 

(Figure 1C). 

 

 
 

Figure 1. Body weight changes and serum hormone levels in mice after Samul-tang (SM) administration. (A) Eight-week-old 

mice were orally administered distilled water (n=6, YC group). Forty-week-old mice were orally administered distilled water (n=6, OC group) 
or 2.5 g/kg of SM (n= 7, OC+SM group) five times a week for four weeks. Post SM administration, the mice were weighed and hormonal 
assessment was performed. (B) Body weight changes. (C) Ovary weight. (D) Serum levels of anti-Müllerian hormone (AMH), follicle-
stimulating hormone (FSH), and luteinizing hormone(LH). Data are presented as mean ± standard error of the mean. Statistical analysis was 
performed using the Student’s t-test. 
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Next, we measured the serum levels of anti-Müllerian 

hormone (AMH), FSH, and luteinizing hormone (LH) 

in each mouse group. OC mice (40-week-old mice 

orally administered distilled water) exhibited low AMH 

levels resulting in a decreased ovarian reserve (Figure 

1D). SM administration in OC+SM mice significantly 

enhanced the serum AMH levels. Although serum LH 

levels did not change, FSH levels increased 

significantly in OC+SM mice compared to those in OC 

mice (Figure 1D). It is likely that the production of 

more FSH directly stimulates the granulosa cells for 

follicular growth and development [20]. 

 

SM prevented aged-related ovarian follicle loss 

 

To investigate the protective effects of SM on ovarian 

follicle growth under aging conditions, a histological 

analysis of the ovaries excised from the mice after SM 

administration was performed (Figure 2A). Histological 

changes in YC (8-week-old mice orally administered 

distilled water), OC, and OC+SM mice were observed 

in ovarian tissues (Figure 2B). Compared to the YC 

mice, aged mice showed an overall reduction in ovarian 

follicles. OC+SM mice showed higher number of 

follicles at all stages than the OC mice (Figure 2C). 

These results suggest that SM administration prevents 

depletion of the primordial follicle pool. 

 

SM ameliorated aged-related impairment of oocyte 

quality 

 

To investigate the protective effects of SM on oogenesis 

under aging conditions, mice were hormonally 

superovulated to collect the oocytes (Figure 3A). 

Thereafter, the quantity and quality of oocytes were 

assessed (Figure 3B). Number of total oocytes retrieved

 

 
 

Figure 2. Histological analysis of ovarian follicles in mice after Samul-tang (SM) administration. (A) Eight-week-old mice were 

orally administered distilled water (n = 6, YC group). Forty-week-old mice were orally administered distilled water (n = 6, OC group) or 2.5 
g/kg of SM (n = 7, OC+SM group) five times a week for four weeks. (B) Post SM administration, both mouse ovaries were assessed 
histologically. (C) Number of ovarian follicles in different stages and the total number of ovarian follicles. Data are presented as mean ± 
standard error of the mean. Statistical analysis was performed using the Student’s t-test. 
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from the aged mice was significantly lower than that 

retrieved from the YC mice (P< 0.05; Figure 3C). 

However, the number of mature metaphase II (MII) 

oocytes, with normal chromosomes and well-organized 

spindle alignments, was significantly higher in OC+SM 

mice than in OC mice (Figure 3D, 3E). These results 

indicate that SM administration could improve the 

quality of oocytes in aged mice. 

 

SM reversed aged-induced changes in mRNA 

expression in mouse ovaries 

 

QuantSeq 3’ messenger RNA (mRNA) sequencing was 

performed to compare the mRNA expression patterns in 

ovulated ovaries obtained from YC, OC, and OC+SM 

mice (Figure 4A). Hierarchical clustering analysis 

revealed 2,389 marked differentially expressed genes 

(DEGs) in the three mice groups, with fold changes 

>1.5 (P< 0.05; Figure 4B). We specifically focused on 

393 DEGs in the OC+SM vs. OC group (Figure 4C; 

blue circle). Bioinformatic analysis was performed for 

122 upregulated genes (31.0%) and 271 downregulated 

genes (69.0%) (Supplementary Tables 1, 2). Kyoto 

Encyclopedia of Genes and Genomes pathway analysis 

of OC and OC+SM mice datasets revealed that the 

DEGs were involved in the RAS signaling pathway 

(Table 1). Expression of nine genes associated with the 

RAS signaling pathway was analyzed. The genes

 

 
 

Figure 3. Quality and quantity of mouse oocytes retrieved after Samul-tang (SM) administration. (A) Eight-week-old mice were 

orally administered distilled water (n = 6, YC group). Forty-week-old mice were orally administered distilled water (n = 10, OC group) or 2.5 
g/kg of SM (n = 10, OC+SM group) five times a week for four weeks. Post SM administration, the mice were superovulated via hormonal 
stimulation. (B) Oocytes retrieved from the YC, OC, and OC+SM mice at 18 h after hCG injection. Number of retrieved oocytes (C), mature 
metaphase II (MII) oocytes (D), and MII oocytes with normal chromosomal and spindle alignment (E), retrieved from the three different 
groups of mice. Data are presented as mean ± standard error of the mean. Statistical analysis was performed using the Student’s t-test. 
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include fibroblast growth factor receptor 2 (Fgfr2), 

guanine nucleotide binding protein gamma 8 (Gng8), 

RAS protein activator like 1 (Rasal1), RAS protein-

specific guanine nucleotide-releasing factor 1 and 2 

(Rasgrf1 and Rasgrf2), neurofibromatosis 1 (Nf1), 

fibroblast growth factor 13 (Fgf13), Src homology 

 2 domain-containing transforming protein C3  

(Shc3), and epidermal growth factor (Egf). Fgfr2, 

Rasgrf2, and Egf were downregulated in OC mice; 

however, their expression levels were restored with 

SM administration (Figure 5A). Likewise, SM 

administration also restored the expression levels of 

Shc3 and Rasal1, which were initially upregulated in 

OC mice (Figure 5B). Expression of Nf1 and Fgf13 in 

the ovaries of OC+SM mice decreased significantly 

compared to that in the ovaries of YC and OC mice 

(Figure 5C). Gng8 and Rasgrf1 expressions increased 

significantly in OC+SM mice than in the ovaries of 

OC mice (Figure 5C). These genes were validated by 

quantitative polymerase chain reaction (qPCR) using 

the fluorescent probe-based TaqMan assay (Figure 6). 

Different expression patterns of Gng8 and Rasgrf1 
were observed in sequencing data. Given the filtering 

of transcriptomics technologies for quality measures, 

including fold-change >1.5 and P < 0.05, this study 

obtained varying results from sequencing and  

qPCR analysis [21]. These findings suggest that 

 SM administration ameliorates the age-related 

deterioration of ovarian function via genetic 

regulation. 

 

SM improved aged-induced decline in blastocyst 

developmental competence 

 

To investigate whether SM enhances the developmental 

competence under aging conditions, superovulated mice 

were mated with fertile males. At 1.5 days post coitum 

(dpc), 2-cell embryos were flushed from the oviduct and 

cultured to obtain blastocysts for three days. At 4.5  

dpc, blastomeres and DNA fragmentation in blastocysts  

were stained to assess developmental competence 

(Figure 7A). 

 

 
 

Figure 4. Hierarchical clustering and analysis of differentially expressed messenger RNAs (mRNAs). (A) QuantSeq 3’ mRNA 

analysis was performed to compare the gene expression in ovulated ovaries of YC (n = 6), OC (n = 6), and OC+SM (n = 6) mice. (B) 
Hierarchical clustering among the mRNA expression profiles showing 2,389 differentially expressed mRNAs in the three groups, with a 
fold-change >1.5 and P< 0.05. (C) Venn diagram presenting the numbers of differentially expressed mRNAs between OC vs. YC and 
OC+SM vs. OC pairs. YC: 8-week-old control mice; OC: 40-week-old mice; OC+SM: 40-week-old mice orally administered Samul-tang. Up, 
upregulated genes between compared sets; Contra, contraregulated genes between compared sets; Down, downregulated genes 
between compared sets. 
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Table 1. Functional annotation of differentially expressed genes. 

Term P-value Genes 

Mmu05034: Alcoholism 5.58E-04 
Gng8, Hist4h4, Hist1h4a, Npy, Hist1h2bf, Hist2h2ac, 

Creb3l2, Hist1h4d, shc3, Hist1h2bq 

Mmu04014: Ras signaling 

pathway 
0.00051931 

Fgfr2, Gng8, Rasal1, Rasgrf1, Rasgrf2, Nf1, Fgf13, 

Shc3, Egf 

Mmu04911: Insulin secretion 0.0179786 Gcg, Slc2a2, Creb3l2, Cacna1f, Pclo 

Mmu05322: Systemic lupus 

erythematosus 
0.0286335 

Hist4h4, Hist1h4a, Hist1h2bf, Hist2h2ac, Hist1h4d, 

Hist1h2bq 

Kyoto Encyclopedia of Genes and Genomes analysis was performed to identify the potential signaling pathway 
of the differentially expressed genes. 

 

No significant difference in the number of 2-cell 

embryos and developed blastocysts was observed 

between 1.5 to 4.5 dpc (Figure 7B, 7C). However, the 

number of blastomeres per blastocyst increased 

significantly. Number of apoptotic cells was lower in 

OC+SM mice than in OC mice (Figure 7D, 7E). 

Apoptotic index decreased in blastocysts obtained 

from OC+SM mice compared to OC mice (Figure 7F). 

These results indicate that blastocysts with elevated 

total cell number and decreased apoptotic index could 

affect the implantation potential in vivo and pregnancy 

outcomes. 

 

SM improved implantation potential in aged mice 

 

To investigate whether SM enhances the implantation 

potential in vivo under aging conditions, superovulated 

mice were mated with fertile males. Pregnancy rate, 

number and weight of litter were assessed at 9.5 dpc 

(Figure 8A). 

 

 
 

Figure 5. Differentially expressed mRNAs involved in RAS signaling pathway. Fluorescence intensities indicating the expression 
levels of Fgfr2, Rasgrf1, Egf, Rasal1, Sch3, Nf1, Fgf13, Gng8, and Rasgrf2 in the ovaries of YC, OC, and OC+SM mice. (A) Aging-induced 
downregulated expression of Fgfr2, Rasgrf2 and Egf were restored with SM administration. (B) Aging-induced upregulated expression of 
Rasal1 and Sch3 were restored with SM administration. (C) Expression of Nf1, Fgf13, Gng8, and Rasgrf1 were changed by SM administration 
in OC mice. Data are presented as mean ± standard error of the mean. Statistical analysis was performed using the Student’s t-test. YC: 8-
week-old control mice; OC: 40-week-old mice; OC+SM: 40-week-old mice orally administered Samul-tang. 
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The pregnancy rate was significantly higher in 

OC+SM mice than in OC mice (Figure 8B). 

Furthermore, SM administration enhanced the number 

of litters having weight similar to OC mice weight 

(Figure 8C, 8D). 

DISCUSSION 
 

Age-related fertility is characterized by gradual decline 

in ovarian follicle quantity and oocyte quality since 

birth [22]. Decrease in fertility enhances the risk of

 

 
 

Figure 6. Validation of expression of differentially expressed mRNAs involved in ovarian function. Quantitative polymerase 

chain reaction was performed to validate the expression of Fgfr2, Rasgrf1, Egf, Rasal1, Sch3, Nf1, Fgf13, Gng8, and Rasgrf2 in the ovaries of 
YC, OC and OC+SM mice. (A) Aging-induced downregulated expression of Fgfr2, Rasgrf2 and Egf were restored with SM administration.  
(B) Aging-induced upregulated expression of Rasal1 and Sch3 were restored with SM administration. (C) Expression of Nf1, Fgf13, Gng8, and 
Rasgrf1 were changed by SM administration in OC mice. Data are presented as mean ± standard error of the mean. Statistical analysis was 
performed using the Student’s t-test. YC: 8-week-old control mice; OC: 40-week-old mice; OC+SM: 40-week-old mice orally administered 
Samul-tang. 
 

 
 

Figure 7. Quality and quantity of mouse blastocysts retrieved after Samul-tang (SM) administration. Forty-week-old mice were 

orally administered distilled water (n = 13, OC group) or 2.5 g/kg of SM (n =13, OC+SM group) five times a week for four weeks. Post SM 
administration, the mice were superovulated via hormonal stimulation and mated with fertile males. At 1.5 days post coitum (dpc), 2-cell 
embryos were collected and cultured up to blastocyst stage for three days. (A) Blastocyst quality was evaluated by assessing the stained 
nuclei and DNA fragmentation in blastocysts from each mice group. Number of collected 2-cell embryos at 1.5 dpc (B) and cultured 
blastocysts at 4.5 dpc (C). (D–F) Blastocyst developmental competence was assessed from the number of blastomeres and apoptotic nuclei, 
and apoptotic index. Data are presented as mean ± standard error of the mean. Statistical analysis was performed using the Student’s t-test. 
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reproductive failure [23]. Pharmacological research on 

anti-ovarian aging agents for women who suffer from 

POR or premature ovarian failure has gained significant 

momentum [24]. Thus, new strategies or approaches to 

prevent ovarian aging are urgently needed. 

 

Progressive decline in tissue homeostasis and biological 

function with aging contributes to increased risk of 

miscarriage, degenerative diseases, and death [25]. 

Some of the well-known causes of aging include 

oxidative damage caused by generation of free radicals 

and reactive oxygen species (ROS), and genetic 

instability-driven genome damage [26]. Oxidative 

deterioration of DNA, proteins, and lipids by ROS and 

free radical overproduction has been reported in aged 

ovaries [27]. Genetic defects in DNA repair systems are 

considered responsible for the senescent phenotype 

causing aging syndromes, such as premature aging [28, 

29]. SM comprises numerous active components, 

including gallic acid, paeoniflorin, and ferulic acid. 

These compounds contain several hydroxyl groups that 

scavenge the overproduced free radicals [30, 31]. 

 

RAS signaling modulates the balance between ROS and 

antioxidants to prevent cellular senescence or apoptosis 

[32, 33]. Balanced GDP/GTP cycling maintains the 

RAS-mediated signaling, which plays a critical role in 

controlling the normal cellular proliferation and 

survival. RAS also plays a critical role in the events 

associated with ovulation and luteinization in 

preovulatory follicles [34]. Its activity is regulated by 

multiple guanine nucleotide exchange factors, such as 

RAS-GRF2 and GTPase-activating proteins, such as 

Nf1 and Rasal1 [35]. The qPCR results revealed that 

downregulated Rasgrf2 and upregulated Rasal1 and 

Shc3 inactivate the RAS-mediated signaling cascades in 

ovarian follicle development and oocyte maturation in 

aged ovaries. Interestingly, the altered expression of 

these genes was restored with SM administration in 

aged mouse ovaries. EGF also acts through the 

RAS/ERK pathway to regulate protein homeostasis by 

promoting the expression of antioxidant genes [36]. 

EGF signaling is not only essential for normal ovarian 

steroid oogenesis and oocyte maturation but is also 

required to induce cumulus cell expansion in vitro 
during the ovulatory process [37]. Egf expression in 

aged ovaries receiving SM administration was 

significantly upregulated compared to that in untreated 

ovaries. SM likely prevents cell senescence and 

enhances ovarian reserve by activating Ras in aged 

women. 

 

Active RAS-mitogen-activated protein kinase pathway 

can largely regulate FGF signaling, which is known 

 to be associated with several developmental processes, 

including cellular proliferation, differentiation, 

angiogenesis, and migration [38]. Fgf13, one of the 

genes whose expression is decreased by SM, plays an 

important role in the reconstruction and degradation of 

the extracellular matrix in infertile aged women [39]. In 

addition, bidirectional dialog between Fgf2 in oocytes 

and several Fgfr in granulosa cells is essential for early

 

 
 

Figure 8. In vivo implantation potential after Samul-tang (SM) administration. Forty-week-old mice were orally administered 
distilled water (n = 20, OC group) or 2.5 g/kg of SM (n = 10, OC+SM group) five times a week for four weeks. Post SM administration, the mice 
were superovulated via hormonal stimulation and mated with fertile males. (A) At 9.5 days post coitum (dpc), the uterus from mice of both 
the groups was collected to assess the implantation potential. (B) Pregnancy rates. (C) Number of litters. (D) Weight of litters. Data are 
presented as mean ± standard error of the mean. Statistical analysis was performed using the Student’s t-test. The significance of difference 
in pregnancy rates was determined using Fisher’s exact test. 
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ovarian folliculogenesis and granulosa cell growth [40]. 

Restored Fgfr2 expression by SM could pose as 

 an evidence for potential oocyte developmental 

competence. Functional assays revealed that loss of 

endothelial Fgfr1 and Fgfr2 results in impaired 

neovascularization in adult mice [41]. Aged patients 

exhibit decreased ovarian stromal blood flow owing to a 

marked reduction in the number and caliber of blood 

vessels with changes in endothelial cells [42]. 

Insufficient supply of growth factors owing to 

decreased blood flow causes follicular arrest and 

ovarian fibrosis in aged women with POR [43, 44]. SM-

induced changes in FGF signaling could drive tissue 

repair in aged ovaries pre- or post-ovulation [45, 46]. 

 

Interestingly, the pregnancy rates were higher in aged 

mice receiving SM administration. Successful 

implantation requires good quality of implanting 

embryo and appropriate structural and functional 

remodeling of the endometrium [47]. Although SM 

administration did not increase the number of 2-cell 

embryos and blastocysts, it enhanced the scope to 

implant competent blastocysts with more cell divisions. 

 

This study aimed to prevent age-specific decline in 

functional ovarian reserve using an aged mouse model. 

However, functional analysis and clinical studies are 

still warranted to develop strategies or approaches that 

could improve conditions or delay ovarian aging. 

Identification of the potential regulatory genes 

highlighted the SM-induced epigenetic regulation in 

age-related cognitive decline in ovarian reserve and 

implantation potential. SM restores the homeostatic 

balance to revitalize ovarian function under aging 

condition through the RAS signaling pathway. In 

conclusion, SM could be helpful in increasing the 

oocyte yield in aged women by potentially improving 

the age-related cognitive decline in ovarian reserve. 

 

MATERIALS AND METHODS 
 

Mice 

 

All experiments and analyses were conducted in 

accordance with the relevant guidelines and regulations. 

Experimental protocols concerning animals were 

approved by the Institutional Animal Care and Use 

Committee of the Korea Institute of Oriental Medicine, 

Daejeon, Korea (approval number 19-061). Female 

BALB/c mice aged 8 and 40 weeks (Central Lab 

Animal Inc., Seoul, Korea) were housed under specific 

pathogen-free conditions. To investigate the effect of 

SM (Hanpoong, Iksan, Korea), the old mice were orally 

administered either distilled water (OC group) or 2.5 

g/kg of SM (OC+SM group) five times a week for four 

weeks. 

Mice from the OC and OC+SM groups were separated 

within the same cage to synchronize their hormonal 

cycles [48]. All mice were sacrificed after completion of 

SM administration. Ovaries were removed, weighed, 

and immediately placed in 4% paraformaldehyde 

(Biosesang, Seongnam, Korea) or liquid nitrogen for 

histological or RNA sequencing, respectively. 

 

Enzyme-linked immunosorbent assay (ELISA) for 

hormonal assessment 

 

Post SM administration, blood samples were collected 

from the mice and sera were separated and stored at -80 

°C until analysis. The serum concentrations of AMH, 

FSH, and LH were measured using hormone-specific 

ELISA kits from Ansh Lab (Webster, TX, USA), 

Cusabio Biotech Co. (Wuhan, China), and Endocrine 

technologies (Newark, CA, USA), respectively, 

according to the standard protocols and manufacturers’ 

instructions. For AMH, the inter-assay coefficients of 

variation (CV) was <10%, with a sensitivity of 0.06 

ng/mL. For FSH, both intra- and inter-assay CVs were 

<15% with a sensitivity of 2.5 mIU/mL. For LH, the 

intra- and inter-assay CVs were 7% and 15%, 

respectively, and the functional sensitivity was 5.2 

mIU/mL. 

 

Histological assessment of ovarian follicles 

 

Post SM administration, ovaries from YC, OC and 

OC+SM groups were serially sectioned to obtain 5-μm-

thick tissue sections. These sections were then subjected 

to hematoxylin and eosin staining. Primordial, primary, 

secondary, and preovulatory follicles, with visible 

oocytes, were counted in every tenth stained section to 

avoid repeated counting of the same follicle. The 

follicular stages were classified as previously described 

[49]: primordial follicles, with a single flat layer of 

granulosa cells surrounding the oocyte; primary 

follicles, with a single cuboidal granulosa cell layer; 

secondary follicles, with at least two granulosa cell 

layers and a theca layer; and preovulatory follicles, with 

a complete antrum and theca layer. 

 

Assessment of oocyte quantity and quality 

 

Post SM administration, the mice were superovulated 

with an intraperitoneal injection of 5 IU of pregnant 

mare serum gonadotropin (PMSG; Prospec, Rehovot, 

Israel). Another injection of 5 IU of human chorionic 

gonadotropin (hCG; Prospec) was administered 48 h 

later. Oocytes were collected 18 h post-hCG injection in 

preincubated human tubal fluid medium (Irvine 
Scientific, CA, USA). Oocytes were fixed with 4% 

paraformaldehyde (Biosesang), permeabilized with 

0.5% Triton X-100 (Sigma–Aldrich, St. Louis, MO, 
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USA) for 10 min, and blocked with phosphate-buffered 

saline containing 3% bovine serum albumin 

(GenDEPOT, TX, USA). Thereafter, the oocytes were 

incubated with a rabbit anti-α-tubulin antibody (1:200; 

Cell Signaling Technology, MA, USA) and 

subsequently mounted on slides using VECTASHIELD 

antifade mounting medium with 4,6-diamidino-2-

phenylindole (Vector Laboratories, Peterborough, UK) 

to visualize the chromosomes using a fluorescence 

microscope (BX51; Olympus, Tokyo, Japan). Oocytes 

with well-organized bipolar spindles and tightly aligned 

chromosomes at metaphase were scored as normal. 

 

RNA sequencing for mRNA expression 

 

Post SM administration, ovaries were collected from the 

mice post-ovulation, and total RNA was extracted using 

TRIzol reagent (Invitrogen, Carlsbad, CA, USA), 

according to the manufacturers’ protocol. The purity 

and integrity of the extracted RNA were evaluated using 

a NanoDrop ND-2000 spectrophotometer (Thermo 

Fisher Scientific, Waltham, MA, USA) and Agilent 

2100 bioanalyzer (Agilent Technologies, Amstelveen, 

The Netherlands). All samples showed high purity 

(optical density (OD)260/OD280> 1.80) and integrity 

(RNA integrity number >7.0). Sequencing was 

performed using the Illumina NextSeq 500 platform. A 

fold-change value >1.5 and a P-value <0.05 were 

considered thresholds to identify DEGs. 

 

Validation of selected DEGs in the ovaries 

 

To confirm the mRNA microarray results, validation 

was performed on significant genes of interest (Fgfr2, 

Gng8, Rasal1, Rasgrf1, Rasgrf2, NF1, Fgf13, Shc3, and 

Egf) using real-time qPCR. Complementary DNA 

(cDNA) was synthesized from the extracted total RNA 

using iScript cDNA Synthesis kit (Bio-Rad 

Laboratories, Hercules, CA, USA), according to the 

manufacturers’ protocol. qPCR was performed in a final 

reaction volume of 20 µL using a QuantStudio 6 Flex 

Real-time PCR system with fluorescent probe-based 

TaqMan assays, according to the manufacturers’ 

protocol (Thermo Fisher Scientific). The cycle 

threshold was normalized and compared using 

glyceraldehyde 3-phosphate dehydrogenase as the 

internal standard. 

 

Assessment of in vitro developmental competence 

 

Post SM administration, the mice were superovulated 

with an intraperitoneal injection of 5 IU of PMSG, 

followed by 5 IU of hCG 48 h later. Superovulated mice 
were mated with fertile male mice, and the day of 

vaginal plugging was designated as 0.5 dpc. At 1.5 dpc, 

2-cell embryos were collected and cultured up to the 

blastocyst stage for three days. DNA fragmentation was 

determined by transferase dUTP nick end labeling 

(Promega, WI, USA). Blastocyst quality was assessed 

using the following three parameters: number of 

blastomeres, DNA fragmentation, and apoptotic index 

per blastocyst. The apoptotic index was calculated for 

each blastocyst as follows: apoptotic index= (number of 

TUNEL-positive nuclei/total number of nuclei) × 100. 

 

Assessment of in vivo implantation potential 

 

Post SM administration, superovulation and mating 

were achieved as described above. The day of vaginal 

plugging was designated as 0.5 dpc. At 9.5 dpc, 

pregnant mice were sacrificed to assess the implantation 

potential following three parameters: pregnancy rate, 

total number of litter, and litter weight. 

 

Statistical analysis 

 

Data are presented as mean ± standard error of the 

mean. The significance of difference between two 

groups was determined by a Student’s t-test using 

GraphPad Prism version 8.4.0 (GraphPad Software, La 

Jolla, CA, USA). The significance of difference 

between the expected frequencies was determined using 

Fisher’s exact test. A P-value < 0.05 was considered 

statistically significant. 

 

Data availability 

 

The datasets generated and/or analyzed during the 

current study are available from the corresponding 

author upon reasonable request. 
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SUPPLEMENTARY MATERIALS 
 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. List of genes upregulated in OC+SM mice compared with their expression in OC mice. 

 

Supplementary Table 2. List of genes downregulated in OC+SM mice compared with their expression in OC 
mice. 

 


