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INTRODUCTION 
 

Lung cancer is one of the leading causes of cancer-

related death worldwide and is characterized by high 

mortality and poor prognosis [1, 2]. More than one-

quarter (27%) of all cancer deaths were due to lung 

cancer in 2015 [3, 4]. Clinically, non-small cell lung 

cancer (NSCLC) accounts for most of the diagnosed 
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ABSTRACT 
 

Background: Lung adenocarcinoma (LUAD) is a heterogeneous disease characterized by high mortality and poor 
prognosis. Ferroptosis, a newly discovered iron-dependent type of cell death, has been found to play a crucial 
role in the development of cancers. However, little is known about the prognostic value of ferroptosis-related 
genes (FRGs) in LUAD. 
Methods: In the present study, RNA-seq transcriptome data of LUAD patients were obtained from The Cancer 
Genome Atlas (TCGA) database. Cox regression analysis was used to construct a multigene signature. Kaplan–
Meier survival and receiver operating characteristic (ROC) curves were utilized to assess the prognostic 
prediction efficiency of the constructed survival model. LUAD patients from the GSE30219 dataset were used 
for validation. 
Results: We found 46 differentially expressed FRGs between LUAD and adjacent normal tissues. Via univariate 
and multivariate Cox regression analyses, 5 differentially expressed FRGs were identified as being highly 
correlated with LUAD. Patients were divided into low- and high-risk groups according to the risk score. We 
found that the overall survival (OS) of patients in the high-risk group was significantly worse than that of their 
low-risk counterparts. (P < 0.0001 in the TCGA dataset and P = 0.044 in the GSE30219 cohort). In addition, gene 
set variation analysis (GSVA) of the tumor microenvironment of the two groups may explain the different 
survival of LUAD patients. 
Conclusions: Our study identified a novel FRG signature that could be used to evaluate and predict the 
prognosis of LUAD patients, which might provide a new therapeutic target for the treatment of LUAD patients. 
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cases of LUAD, and the common histologic type of 

NSCLC is responsible for ~40% of all lung cancer cases 

[5]. At present, the main clinical treatments for LUAD 

include surgical resection, chemotherapy, and radiation 

[4]. In recent years, although some progress has been 

made in terms of medical treatments, only 15% of 

LUAD patients achieve 5-year survival [6]. Numerous 

studies have demonstrated that LUAD is a highly 

heterogeneous disease with distinct genetic and 

transcriptomic characteristics among individual patients 

[3], and prognostic prediction of LUAD remains 

challenging. Therefore, it is urgent to identify novel 

prognostic gene signatures that can be used to make 

prognostic predictions and can serve as new therapeutic 

targets for the treatment of LUAD patients. 

 

Emerging evidence has shown the crucial role of 

ferroptosis in the regulation of the growth and metastasis 

of cancers, which suggests its great potential for cancer 

therapy and prognosis prediction [7–9]. Ferroptosis, an 

iron-catalyzed type of regulated cell death, is 

characterized by the accumulation of excessive 

polyunsaturated fatty acid (PUFA) peroxidation products 

to a lethal level [10]. Distinct from traditional apoptosis, 

necrosis or autophagy, ferroptosis is a novel regulated 

cell death mechanism that serves as a nexus among 

metabolism, redox biology, and disease [8, 11]. Hua 

Yuan et al. [12] found that CDGSH iron sulfur domain 

1(CISD1) in hepatocellular carcinoma cells can inhibit 

erastin-induced ferroptosis by protecting against iron-

mediated mitochondrial lipid peroxidation. BoyiGan and 

colleagues demonstrated that overexpression of the 

deubiquitinase ovarian tumor (OTU) family 

deubiquitinase ubiquitin aldehyde binding 1 (OTUB1) in 

human cancers can promote tumor progression by 

regulating the ferroptosis process in cancer cells [13]. 

Wan Seok Yang et al. showed that overexpression and 

knockdown of glutathione peroxidase 4 (GPX4) can 

modulate the lethality of 12 ferroptosis inducers, which 

indicated that GPX4 is an essential negative regulator of 

ferroptosis [14]. In addition, increasing evidence shows 

that various tumor cells are sensitive to ferroptosis. The 

induction of ferroptosis has emerged as a promising 

therapeutic alternative to trigger cancer cell death [15]. 

For instance, a study by Tesfayet al. [16] found that high 

expression of stearoyl CoA desaturase (SCD1) in 

ovarian cancer protected ovarian cancer cells from cell 

death, and the inhibition of SCD1 could promote 

ferroptosis both in vitro and in vivo, which provided a 

powerful new treatment for ovarian cancer. Moreover, 

adrenocortical carcinomas (ACCs) are characterized by 

poor survival. Alexia Belavgeni et al. found that the 

expression of GPX4 was significantly elevated in ACCs 
and that ACCs were more sensitive to ferroptosis. Thus, 

instead of traditional treatment with mitotane, it could be 

more effective to induce ferroptosis in ACC patients 

[17]. Thus, ferroptosis is a potential target for cancer 

therapy. 

 

Moreover, with the utilization of bioinformatics 

techniques, researchers have developed some survival 

models based on ferroptosis-related genes for the 

prognostic prediction of cancer patients, including those 

with glioma [18], HCC [15] and clear cell renal cell 

carcinoma [19]. However, the role of ferroptosis-related 

genes in LUAD patients remains unknown. In the 

present study, we downloaded mRNA expression 

profiles and corresponding clinical data of LUAD 

patients from the TCGA database. Then, we constructed 

a prognostic multigene signature model including 

differentially expressed ferroptosis-related genes from 

the TCGA cohort, and the model was validated in the 

GSE30219 cohort. Finally, we analyzed the immune 

cell components of the tumor microenvironment to 

explore the underlying mechanisms of the difference in 

OS of individual LUAD patients. 

 

METHODS 
 

Data collection 

 

RNA-seq expression data and clinical information of 

510 LUAD tissues and 58 normal lung tissues were 

acquired from TCGA website. The RNA-seq expression 

profiles were normalized using the scale method 

provided in the “limma” R package. The GSE30219 

dataset from the GEO database was used as the external 

validation cohort. 

 

Detection of FRGs 

 

According to previously published studies, 60 

ferroptosis-related genes were retrieved [9, 11, 20, 21]. 

The “limma” R package was used to identify 

differentially expressed FRGs between tumor tissues and 

adjacent normal tissues, with a false discovery rate 

(FDR) < 0.05 in the TCGA cohort. A total of 46 

differentially expressed FRGs were identified in tumor 

tissues versus adjacent normal tissues on the basis of 

available mRNA expression data of LUAD from TCGA. 

 

Consensus clustering 

 

By utilizing the “ConsensusClusterPlus” R package, 

LUAD patients from the TCGA dataset were split into 

two clusters in an unbiased and unsupervised manner 

[22]. To obtain a robust classification, the optimal number 

of clusters was further validated according to the total 

within sum of squares (WSS) and gap statistics. The 

differences in immune cells and the tumor immune 

microenvironment among the three clusters were 

compared by the K-W test or the Wilcoxon rank-sum test. 
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Gene signature building and bioinformatics analysis 

 

On the basis of the differentially expressed FRGs 

determined from the TCGA dataset, univariate Cox 

analysis was conducted in LUAD patients to screen 

survival-related FRGs, and FRGs with P values < 0.05 

were retained. Finally, we conducted multivariate 

analysis to identify the optimal prognostic FRGs for the 

prognostic model. The risk scores of the LUAD patients 

were calculated based on the normalized gene 

expression levels and the Cox regression coefficients of 

the 5 selected FRGs. The formula was as follows: Risk 

score = esum (each gene’s expression × corresponding coefficient). A total 

of 501 LUAD patients were divided into high-risk and 

low-risk groups according to the median value of the 

risk score. By performing Kaplan–Meier survival 

analysis, we examined the survival of the two groups. 

Time-dependent receiver operating characteristic (ROC) 

curves were utilized to verify the prognostic 

performance of the model for overall survival (OS). 

 

The immunoscore of each patient was calculated with 

the ESTIMATE algorithm in the R “estimate package.” 

The fraction of twenty-two immune cell types for  

each contained sample was yielded through cell type 

identification by estimating relative subsets of  

RNA transcripts (CIBERSORT; https://cibersortx. 

stanford.edu/). An algorithm with 1,000 permutations 

was adopted. Only samples with a CIBERSORT p < 

0.05 were included for subsequent analysis of the 

differential immune infiltration levels among the 

subgroups grouped by clustering subtypes and risk 

scores. 

 

The effects of CNAs of the 5 FRGs on the immune cell 

infiltration levels were evaluated by applying the Tumor 

Immune Estimation Resource (TIMER, https://cistrome. 

shinyapps.io/timer/), which consists of six immune cell 

types (i.e., B cells, CD8+ T cells, CD4+ T cells, 

macrophages, neutrophils, and dendritic cells). GISTIC 

2.0 data were utilized in the TIMER. 

 

GSVA 

 

Using the FRGs as reference genes and setting the p 

value < 0.05, we conducted GSVA to measure the 

signaling pathway variation score for clusters 1/2 by 

using the “GSVA” R package [23]. The enrichment 

score was calculated as the magnitude difference 

between the largest positive and negative random walk 

deviations. 

 

Experimental validation 

 

To verify five FRGs expression profiles in LUAD and 

adjacent normal tissues, we conducted the 

experimental validation in 5 LUAD patients’ specimens 

who received operation at the First Affiliated Hospital 

of Wenzhou Medical University. The paired adjacent 
normal tissues were used as control. All procedures 

were performed in accordance with the ethical standards 

of the institutional and/or national research committee 

and with the Helsinki declaration, and approved by the 

Ethics Committee of the said hospital (Permit No. 

2018014). Informed consent was obtained from all 

included patients. 

 

Total RNA was extracted from paired LUAD tumor 

and normal tissues using TRIzol Reagent (Invitrogen) 

by following the manufacturer’s instructions 

(Invitrogen) and 1 μg of total RNA was used to 

perform reverse transcription with Prime Script RT 

reagent (TOYOBO). Then qRT-PCR was performed 

with SYBR Green Dye (Applied Biosystems) in 

triplicate and GAPDH was used as an internal control. 

Relative quantitation was calculated using the 2-ΔΔCt 

method. The primers used in this study were as 

follows: CISD1 forward, 5′-

AAGCTGTGTACTGCCGTTGT-3′ and reverse, 5′-

CAGAGGGCCCACATTGTCTC-3′; NCOA4 forward, 

5′-GAGGTGTAGTGATGCACGGAG-3′ and reverse, 

5′-GACGGCTTATGCAACTGTGAA-3′; PHKG2 

forward, 5′-AGGTCCATCATGCGGTCTCT-3' and 

reverse, 5′-AGTCGGATCTGCATATTGTCATC-3′; 

ACSL3 forward, 5′-

ATGGAAAACCAACCTCATAGCAA-3′ and reverse, 

5′-GCCATCCCAGTTATACCAGCAA-3′; PEBP1 

forward, 5′-CTACACCTTGGTCCTGACAGA-3′ and 

reverse, 5′-GAGCCCACATAATCGGAGAGG-3′; 

GAPDH forward, 5′-

CAGGGCTGCTTTTAACTCTGGTAA-3′ and 

reverse, 5′-GGGTGGAATCATATTGGAACATGT-3′. 

 

Statistical analysis 

 

Statistical analysis was carried out using R version 3.6.1 

The expression levels of FRGs in tumor and normal 

tissues were compared with one-way ANOVA. Survival 

curves were generated using the Kaplan–Meier method, 

and differences between groups were compared with the 

log rank test. All statistical tests were considered to be 

statistically significant at p < 0.05 (two-sided). 

 

RESULTS 
 

Identification of Ferroptosis-Related Genes (FRGs) 

in LUAD 
 

First, the methods used for data collection and analysis 
of FRGs in LUAD are summarized in the flow chart 

shown in Figure 1. According to previous studies, we 

collected 60 ferroptosis-related genes (Supplementary 
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Table 1). Then, to determine prognosis-specific FRGs 

for LUAD, we systematically analyzed and compared 

RNA-seq data of 510 LUAD tissues and 58 normal 

adjacent tissues from TCGA. Then, using the conditions 

of |log2fc|≥1 and FDR/adjusted P < 0.05, we identified 

a total of 46 differentially expressed FRGs 

(Supplementary Table 2). As shown in a heatmap 

(Figure 2A) and volcano plot (Figure 2B), different 

expression levels of FRGs between LUAD and normal 

tissues were evident. 

 

FRG-based clusters significantly associated with the 

survival and immune features of patients with 

LUAD 

 

As shown in Figure 2A, the expression of FRGs was 

remarkably heterogeneous among LUAD patients. We 

suspect that variations in the expression of FRGs may 

be predictive of different clinical outcomes in individual 

patients. Thus, we performed unsupervised consensus 

analysis by using the “commonclusterplus” package. 

Based on the expression levels of FRGs from the TCGA 

database, LUAD patients were classified into two 

clusters (k = 2 was identified as the optimal clustering 

stability by testing k = 2 to 9; Figure 3A). The Kaplan–

Meier curves showed that cluster 2 had significantly 

worse OS than cluster 1 (P = 0.017; Figure 3B). In the 

past few years, accumulating research has shown the 

potential association between ferroptosis and the TME, 

which is vital for the survival of cancer cells [5]. Given 

these findings, to investigate the effects of the 

expression of FRGs on the TME in LUAD, we 

evaluated the immune infiltrate level and immune and 

stromal scores of immune cells from the two clusters 

using the CIBERSORT and ESTIMATE computational 

methods. Subsequently, the fraction of 21 immune cell 

types of the two clusters were analyzed (Figure 3C). 

Cluster 1 showed higher infiltration levels of memory 

CD4 resting T cells, regulatory T cells (Tregs), 

monocytes, resting dendritic cells and resting mast cells, 

 

 
 

Figure 1. Flow chart of the data collection and analysis of FRGs in LUAD. 
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whereas cluster 2 showed higher infiltration levels of 

naive B cells, CD8 T cells, follicular helper T cells, and 

M0 macrophages. The ESTIMATE score was 

calculated as the sum of the immune score and stromal 

score. From Figure 3D, we observed that the immune 

score, stromal score and ESTIMATE score of cluster 1 

were significantly higher than those of cluster 2, which 

suggested that the different TMEs in the two clusters 

might result in different survival of LUAD patients. 

Next, to elucidate the potential biological mechanisms 

 

 
 

Figure 2. Identification of FRGs in LUAD in the TCGA cohort. (A) Heatmap of differentially expressed FRGs between 510 LUAD 

tissues and 58 normal adjacent tissues. (B) Volcano plot of the 46 differentially expressed FRGs identified in LUAD. The red and green points 
in the plot represent upregulated and downregulated FRGs, respectively. 
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resulting in the differences in the TME and OS between 

the two clusters, we performed GSVA (Supplementary 

Table 3). Heat maps showed that upregulation of the 

malignant hallmarks of tumors, including the Wnt/β-

catenin signaling pathway, p53 pathway, KRAS 

signaling pathway, TGF-β signaling pathway, and 

PI3K/AKT/mTOR signaling pathway, was dynamically 

related to cluster 1 (Supplementary Figure 1). 

According to the above results, we can infer that these 

signaling pathways may be involved in the different 

 

 
 

Figure 3. Consensus clustering analysis of FRGs in LUAD. (A) Consensus clustering matrix for k = 2. (B) Kaplan–Meier curves of the 

overall survival (OS) of patients with LUAD in two clusters (cluster 1/2) (P = 0.017). (C) The infiltrating levels of 21 immune cell types in two 
clusters (cluster 1/2). *p < 0.05 and **p < 0.01. (D) Immune score and stromal score of FRG-based clusters. 
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TMEs of clusters 1 and 2. These results provide further 

support that variations in FRG expression affect the 

prognosis of LUAD patients. 

 

Construction and validation of the FRG-based 

prognostic model for LUAD patients in the TCGA 

and GSE30219 cohorts 

 

To better elucidate the underlying relationship between 

FRGs and the prognosis of patients with LUAD, 

univariate Cox regression analysis of the expression of 

FRGs from the TCGA dataset was conducted. The 

results suggested that high expression of ACSL3, GSS, 

PGD, FANCD2, SLC7A11, GCLC, CISD1, and 

ATP5MC3 was associated with worse survival rates of 

patients with LUAD compared to that of healthy 

individuals. However, high expression of PEBP1, 

DPP4, ALOX15, GLS2, NCOA4 and PHKG2 was 

correlated with better survival rates in LUAD patients 

(Figure 4A and Supplementary Table 4). Furthermore, 

multivariate regression analysis of these candidate 

FRGs showed that PEBP1, ACSL3, NCOA4, PHKG2, 

and CISD1 were independent prognostic factors for OS 

(Table 1). Then, based on the multivariate Cox 

regression results, we built a prognostic signature using 

the five candidate genes. 

 

Using the risk scores calculated by the formula 

presented in the Methods section, LUAD patients were 

divided into a high-risk group (n = 250) and a low-risk 

group (n = 251) according to the median cutoff value. 

We used the Kaplan–Meier method and log-rank tests 

to explore the relationship between the risk score and 

the prognosis of LUAD patients. The results showed 

that patients in the high-risk group had a lower 

survival rate than that of patients in the low-risk group 

(P < 0.0001) (Figure 4B). Using ROC curve analysis, 

we determined the prognostic prediction efficiency of 

the survival model for LUAD patients. As shown in 

Figure 4C, the AUC was 0.723 at 1 year, 0.711 at 2 

years, and 0.707 at 3 years. We then used the 

GSE30219 cohort to validate the predictive 

performance of the prognostic signature. Consistent 

with the above results, patients with LUAD in the 

high-risk group had reduced survival compared with 

that of patients in the low-risk group (Figure 4D, P = 

0.044). In addition, the AUC of the 5-gene signature 

was 0.617 at 1 year, 0.603 at 2 years, and 0.557 at 3 

years (Supplementary Figure 2). 

 

Effects of genetic alterations of the FRG-based 

signatures on immune cell infiltration 

 
To estimate the effects of the 5 FRG-based signatures 

on the LUAD immune microenvironment, the 

relationship between the risk score and the infiltration 

of different immune cell types was further explored. 

Subsequently, the fraction of 21 immune cell types were 

analyzed and compared between the high-risk and low-

risk groups (Figure 5A). We found that four kinds of 

immune cells showed higher infiltration levels in the 

high-risk group, including CD4 memory-activated T 

cells, M0 macrophages, M1 macrophages and activated 

dendritic cells, and three kinds of immune cells showed 

higher infiltration levels in the low-risk group, including 

resting mast cells, activated mast cells and eosinophils. 

Then, based on the ESTIMATE algorithm, we 

calculated the immune and stromal scores. The results 

showed that the high-risk group had higher immune and 

stromal scores than those of the low-risk group (Figure 

5B). These results confirmed that FRG-based risk 

signatures were implicated in the LUAD immune 

microenvironment. 

 

To elucidate the underlying mechanisms by which the 

risk score was related to different immune cell 

infiltrations, the effects of somatic cell copy number 

alterations (CNAs) of the five FRG-based signatures on 

immune cell infiltration were further analyzed. We 

observed that the infiltration levels of B cells, CD8+ T 

cells, CD4+ T cells, macrophages, neutrophils and 

dendritic cells in the TME in LUAD patients were 

obviously influenced by arm-level deletion and arm-

level gain of the five identified FRGs-based signature, 

which further demonstrated that the five FRGs played 

an important role in the regulation of the TME in 

LUAD patients (Figure 6). 

 

Clinical experimental validation 

 

We performed the validation in clinical specimens 

following the steps described in the Method. We 

verified the five FRGs (PEBP1, ACSL3, NCOA4, 

PHKG2, CISD1) which constructed the survival model 

of LUAD patients. As the PCR results showed ACSL3 

was up-regulated and the PEBP1, CISD1 and NCOA4 

were significantly down-regulated in the LUAD tissues. 

There was no statistical significance in the expression of 

PHKG2 between the normal and LUAD specimens. The 

details of the five genes were visualized in Figure 7A–

7E. 

 

DISCUSSION 
 

It is well known that lung cancer is responsible for more 

deaths than any other type of cancer worldwide. 

NSCLC accounts for almost 80% of lung cancer 

patients, approximately 50% of whom have LUAD 

[24]. The survival rate of LUAD patients remains poor 

despite improvements have been made in therapeutic 

regimens. The complex etiologic factors, along with the 

high-level heterogeneity of LUAD, make the prognostic 
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prediction challenging. Therefore, there is an urgent 

need to develop novel prognostic models. 

 

Increasing evidence has shown that ferroptosis, an iron-

dependent type of regulated cell death, plays a crucial 

role in tumorigenesis and cancer therapeutics. However, 

the profile of the effect of ferroptosis in LUAD has yet 

to be clarified. In our study, we found that most FRGs 

(46/60) were differentially expressed between LUAD 

tumor tissue and adjacent normal tissue. On the basis of 

 

 
 

Figure 4. Construction of the FRG-based survival model for prognostic prediction of LUAD. (A) Univariate Cox regression analysis 

showing the hazard ratios (HRs) with 95% confidence intervals (CIs) and p values for 14 FRGs. (B) Kaplan–Meier survival curves showing the 
overall survival of high- and low-risk LUAD patients divided according to the risk score calculated using the new survival model based on the 
expression of 5 FRGs. (C) ROC curve analysis showing the prognostic prediction efficiency of the new survival model. (D) Kaplan–Meier 
survival curves analysis of the GSE30219 cohort. 
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Table 1. Detailed information of specific FRGs involved in final prognostic model by multivariate analysis. 

Gene 
Multivariate Cox regression analysis 

coefficient 
HR 95% CI  P-value 

PEBP1 0.60412 0.465798 0.783518 0.000145 –0.50398 

ACSL3 1.491651 1.137512 1.956042 0.003832 0.399883 

NCOA4 0.433056 0.307214 0.610446 1.77E-06 –0.83689 

PHKG2 0.54366 0.377357 0.783253 0.00107 –0.60943 

CISD1 1.697829 1.227416 2.348532 0.001385 0.529351 

Abbreviations: FRGs: ferroptosis-related genes; OS: overall survival; HR: hazard ratio; CI: confidence interval. 

 

univariate and multivariate Cox regression analyses, we 

constructed a novel prognostic model that included 5 

FRGs from the TCGA database. The FRG-based 

signature was well validated in an external cohort. 

These results indicated the crucial role of ferroptosis in 

LUAD and confirmed that the FRG-based prognostic 

model proposed in this study could improve survival 

predictions of patients with LUAD. 

The prognostic model proposed in the present study is 

composed of 5 ferroptosis-related genes (PEBP1, 

ACSL3, NCOA4, PHKG2, CISD1). Ferroptosis is a 

complicated metabolic process involving ROS, iron, 

and PUFAs. The genes associated with these processes 

can modulate sensitivity to ferroptosis. A 

comprehensive summary of the genes and pathways 

involved in ferroptosis-related metabolism was

 

 

 
Figure 5. Immune infiltration in the high-risk and low-risk groups in the TCGA cohort. (A) The infiltrating levels of 21 immune cell 

types in the two groups (cluster 1/2). *p < 0.05 and **p < 0.01. (B) Immune score and stromal score of the two groups. 
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conducted by Behrouz Hassannia et al. in 2019. 

NCOA4, CISD1, and PHKG2 were related to iron 

metabolism, and ACSL3 and PEBP1 were associated 

with lipid metabolism [11]. 

 

Phosphatidylethanolamine-binding protein 1 (PEBP1), a 

scaffold protein inhibitor that binds to the two isoforms 

of 15-lipoxygenase (15-LO), can promote ferroptosis in 

asthma, kidney injury, and brain trauma [25]. Acyl-

coenzyme A synthetase long-chain family member 3 

(ACSL3), a fatty acid-activating enzyme, participates in 

activating exogenous monounsaturated fatty acids 

(MUFAs) by transforming them into fatty acyl-CoAs, 

which can promote a ferroptosis-resistant cell state by 

 

 
 

Figure 6. Effects of genetic alterations of FRG-relevant signatures on immune cell infiltration. (A–E) ACSL3 (A), CISD1 (B), 

NCOA4 (C), PEBP1 (D) and PHKG2 (E). *p < 0.05, **p < 0.01, and ***p < 0.001. 
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suppressing lipid ROS accumulation [26]. Nuclear 

receptor coactivator 4 (NCOA4) is known to be a 

selective cargo receptor for the selective autophagic 

turnover of ferritin in ferroptosis [27]. A study 

conducted by Wen Hou et al. demonstrated  

that overexpression of NCOA4 increased ferritin 

degradation and thus promoted ferroptosis by increasing 

iron levels, resulting in oxidation [28]. Similarly, Gao 

and colleagues [29] reported that NCOA4 contributed to 

ferroptosis by regulating cellular iron and accumulating 

cellular ROS. Phosphorylase kinase G2 (PHKG2) 

encodes the catalytic subunit of the phosphorylase 

kinase (PHK) complex. Knockdown of PHKG2 can 

influence the level of ROS or affect cellular iron 

homeostasis, leading to a reduction in lipid peroxidation 

upon erastin treatment [30]. CISD1, a mitochondrial 

protein located in the outer membrane, has been shown 

to negatively regulate erastin-induced ferroptosis in 

HCC by limiting mitochondrial iron uptake and 

therefore suppress ferroptosis [12, 15]. Recent studies 

also revealed that high expression of CISD1 contributes 

to the growth of breast cancer cells by mediating iron 

and reactive oxygen homeostasis in mitochondria [31–

33], which is believed to be a promising target for 

cancer therapy. In conclusion, previous studies have 

reported that PHKG2, PEBP1 and NCOA4 are positive 

regulators that promote ferroptosis in some kinds of 

cancers, whereas the remaining two genes (ACSL3 and 

CISD1) suppress ferroptosis in cells. However, very 

little research has addressed the relationship these five 

ferroptosis genes with LUAD. In our prognostic model 

of LUAD, we surprisingly found that ACSL3 and 

CISD1 were promoters of ferroptosis, whereas the 

remaining three genes were suppressors of ferroptosis, 

which was opposite of the results acquired in other 

cancers. Whether these genes play a role in the 

prognosis of LUAD patients by influencing ferroptosis 

remains to be elucidated. 
 

The tumor microenvironment (TME) mainly functions 

as “fertile soil” for the growth of cancer cells [34]. In 

the past few years, accumulating research has shown the 

potential association between ferroptosis and the TME, 

which is vital for the survival of cancer cells [35]. The 

TME is abundant with different types of immune cells, 

such as tumor-associated macrophages (TAMs), NK 

cells, and T cells and so on, are critical for the 

maintenance of iron homeostasis. Stefaniaet al. [36] 

found that M2 macrophages could disrupt iron 

homeostasis in cancer cells due to their iron-releasing 

properties, which influenced the survival of cancer 

cells. Thus, iron metabolism in M2 macrophages may 

provide a potential therapeutic target for suppressing 

tumor growth. In addition, it has been reported that 

increased Tregs or macrophages are related to poor 

prognosis of patients with hepatocellular cancer [37, 

38]; similarly, these two types of immune cells were 

also found to be increased in LUAD patients in the 

high-risk group in our research (Figure 5A). Another 

study also found that Th1 cells, natural killer T cells and 

 

 
 

Figure 7. The relative expression levels of the five genes in normal and LUAD tissues. The ACSL3 (A) was up-regulated 

significantly and CISD1 (B), NCOA4 (C) and PEBP1 (D) were down-regulated in the LUAD tissues. No significant differences were observed in 
the PHKG2 (E). *P < 0.05; **P < 0.01, ns: not significant. 
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monocytes were involved in the maintenance of iron 

homeostasis [39]. Therefore, the regulation of 

ferroptosis may present us with a new therapeutic 

opportunity to treat cancer. Recently, a study 

demonstrated that the TME played a crucial regulatory 

role in the initiation and progression of LUAD [5], 

which might be responsible for its heterogeneity, 

leading to diverse clinical outcomes and therapeutic 

responses in LUAD patients [40, 41]. The results of Bi 

et al. implied that the immunoscore and immune cell 

infiltration levels in the TME influenced the survival of 

LUAD patients, which might provide novel insight into 

overcoming the problem of making survival predictions 

of LUAD patients using the TME [5]. 

 

In the past few years, antitumor immunotherapy has 

drawn increasing attention and achieved considerable 

success in the clinic. In particular, immune checkpoint 

blockade has revolutionized cancer treatment [42]. 

Emerging evidence has revealed the strong relationship 

between ferroptosis and tumor immunity [43, 44]. A 

study published in Nature by Wang et al. [45] first 

demonstrated that activated CD8+ T cells could play an 

important role in antitumor immunotherapy by initiating 

ferroptosis in cancer cells. Mechanistically, the authors 

confirmed that interferon gamma (IFN-γ) released from 

activated CD8+ T cells impaired the uptake of cystine by 

cancer cells, therefore enhancing lipid peroxidation and 

promoting ferroptosis [46], which offers a new direction 

for cancer immunotherapy from a ferroptosis perspective. 

Likewise, in vitro, Cao and colleagues identified that 

intracellular accumulation of oxidized lipids in tumor-

associated dendritic cells (DCs) impaired the ability of 

DCs to present antigens, thus leading to dysfunction of 

CD8+ T cells in triggering an immune response. As a 

result, we can infer that ferroptosis of cancer cells may be 

regulated by CD8+ T cells and DCs through oxidized 

lipids and PUFAs within cells, which suggests future 

potential therapeutic avenues [47, 48]. Together, these 

new findings provide new insight into ferroptosis as a 

potential target for cancer immunotherapy. 

 

Inevitably, there are several limitations in our study. 

First, based on retrospective data from the TCGA 

database, we constructed a survival model based on 

FRGs for making prognostic predictions of LUAD 

patients. Validation of the model was performed using 

retrospective data from the GSE30219 cohort. Thus, we 

need more prospective data to verify the clinical 

application value of our FRG-based survival model. 

Second, there are a lot of excellent methods to perform 

the regression analysis better than lasso, especially the 

network-regularized regression method [49], it is a 
drawback of our study that we didn’t take such an 

approach. In addition, we did not perform experiments 

to investigate the molecular mechanism underlying the 

5 identified ferroptosis-related genes (PEBP1, ACSL3, 

NCOA4, PHKG2, CISD1) and their effects on the 

development and survival of LUAD patients. Further 

studies that include molecular mechanism experiments 

are required to elucidate the relationship between the 

risk score and immune activity of LUAD. 

 

CONCLUSIONS 
 

In conclusion, a novel prognostic model of 5 

ferroptosis-related genes was constructed in this study. 

This model was shown to be independently associated 

with OS in both the TCGA and GSE30219 cohorts, 

providing a candidate model for predicting survival of 

LUAD patients. Our study may provide insight into the 

identification of therapeutic targets for LUAD. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Heatmaps of the GSVA results of two clusters (clusters 1/2) in the TCGA cohort. 
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Supplementary Figure 2. The ROC curve analysis of the GSE30219 cohort. 
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Supplementary Tables 
 

Supplementary Table 1. There were 60 FRGs identified from previous literature. 
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Supplementary Table 2. A total of 46 differentially expressed FRGs identified between the 510 LUAD tissues and 58 
normal adjacent tissues with adj P value < 0.05. 

Gene Con Mean Treat Mean Log FC P Value Fdr 

LPCAT3 3.159412 2.3466 –0.81281 5.02E-27 4.77E-26 

GPX4 6.544112 6.888866 0.344754 1.23E-06 2.06E-06 

G6PD 4.257216 5.075513 0.818296 2.09E-06 3.40E-06 

CBS 0.092336 0.223733 0.131396 0.00029 0.000394 

PEBP1 7.485216 6.98014 –0.50508 1.77E-14 4.38E-14 

ACSL3 3.739216 3.959468 0.220251 0.006011 0.007614 

DPP4 3.488111 4.058837 0.570726 0.001083 0.001435 

CD44 6.034208 4.905438 –1.12877 1.81E-22 9.36E-22 

GSS 4.147503 4.954165 0.806662 9.01E-28 1.28E-26 

ALOX15 2.358251 0.957525 –1.40073 3.43E-12 6.74E-12 

GLS2 0.207865 0.322023 0.114158 0.005949 0.007614 

RPL8 8.804998 9.509746 0.704748 5.57E-14 1.22E-13 

PGD 5.81347 6.212381 0.398911 0.010224 0.012669 

TFRC 5.22247 4.080503 –1.14197 4.60E-18 1.87E-17 

CHAC1 1.018744 1.721919 0.703175 6.37E-16 1.82E-15 

FDFT1 4.921858 4.564213 –0.35765 4.53E-06 6.80E-06 

FANCD2 0.702023 1.504381 0.802358 1.53E-29 8.74E-28 

EMC2 3.38608 3.656837 0.270758 2.52E-06 4.00E-06 

ZEB1 2.862145 1.767656 –1.09449 3.60E-25 2.94E-24 

ACSL4 4.86119 3.849839 –1.01135 9.01E-20 3.95E-19 

ALOX5 5.421907 3.605919 –1.81599 2.39E-28 6.67E-27 

SLC7A11 0.538602 1.839077 1.300475 6.91E-18 2.62E-17 

AIFM2 2.175042 2.791287 0.616244 5.04E-16 1.51E-15 

KEAP1 4.090052 4.257769 0.167717 4.89E-05 6.96E-05 
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HMGCR 3.841814 3.205199 –0.63662 1.57E-17 5.59E-17 

CRYAB 3.704674 1.928149 –1.77652 3.51E-28 6.67E-27 

NCOA4 6.144397 5.644094 –0.5003 2.02E-14 4.79E-14 

HMOX1 5.277925 4.590963 –0.68696 2.69E-06 4.14E-06 

STEAP3 3.333276 4.064916 0.73164 4.13E-13 8.42E-13 

NQO1 3.429814 5.714839 2.285025 2.38E-23 1.36E-22 

GCLC 1.880546 3.063667 1.183121 7.79E-12 1.48E-11 

NFS1 1.777912 2.386447 0.608535 1.21E-27 1.38E-26 

FTH1 8.465463 8.137851 –0.32761 8.08E-06 1.18E-05 

PTGS2 4.179196 3.367837 –0.81136 5.98E-05 8.31E-05 

TP53 3.562903 4.018418 0.455515 6.00E-10 1.07E-09 

NOX1 0.374526 0.776181 0.401655 2.56E-17 8.57E-17 

SLC1A5 4.795671 5.466592 0.670922 2.12E-16 6.70E-16 

GOT1 3.664455 4.52046 0.856006 2.28E-23 1.36E-22 

CS 4.339807 4.722226 0.382419 3.50E-11 6.44E-11 

HSPB1 7.181479 7.930812 0.749333 5.05E-14 1.15E-13 

PHKG2 1.850388 2.547034 0.696646 3.47E-24 2.47E-23 

CISD1 2.683009 3.149152 0.466143 6.42E-14 1.35E-13 

NFE2L2 4.857844 4.427938 –0.42991 1.21E-14 3.27E-14 

ATP5MC3 3.952662 4.4678 0.515138 1.36E-14 3.52E-14 

CARS 2.234765 2.709365 0.4746 3.62E-22 1.72E-21 

GCLM 2.483958 3.155553 0.671595 2.59E-09 4.47E-09 

 

 

Supplementary Table 3. The GSVA results in two clusters (cluster1/2) in TCGA dataset. 

Id Log FC Ave Expr T P Value adj.P.Val B 

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY –0.12439 –0.04013 –12.5544 1.17E-31 5.85E-30 60.98507 

HALLMARK_ADIPOGENESIS –0.09228 –0.06732 –11.1868 4.15E-26 2.03E-24 48.31816 

HALLMARK_FATTY_ACID_METABOLISM –0.0992 –0.05793 –10.4683 2.41E-23 1.16E-21 42.0136 

HALLMARK_XENOBIOTIC_METABOLISM –0.07355 –0.0452 –8.61505 8.97E-17 4.22E-15 27.06837 

HALLMARK_CHOLESTEROL_HOMEOSTASIS –0.08923 –0.0809 –8.59963 1.01E-16 4.64E-15 26.95273 

HALLMARK_HEME_METABOLISM –0.06282 –0.07123 –8.35957 6.14E-16 2.76E-14 25.17307 

HALLMARK_PEROXISOME –0.06174 –0.04912 –8.14164 3.06E-15 1.35E-13 23.59048 

HALLMARK_PI3K_AKT_MTOR_SIGNALING –0.06342 –0.06412 –7.57823 1.68E-13 7.25E-12 19.64987 

HALLMARK_UV_RESPONSE_UP –0.05034 –0.04669 –7.55563 1.97E-13 8.27E-12 19.49645 

HALLMARK_ESTROGEN_RESPONSE_LATE –0.05688 –0.05315 –7.42486 4.83E-13 1.98E-11 18.61592 

HALLMARK_BILE_ACID_METABOLISM –0.07118 –0.06607 –7.4066 5.47E-13 2.19E-11 18.49392 

HALLMARK_ANDROGEN_RESPONSE –0.07252 –0.08439 –6.71009 5.23E-11 2.04E-09 14.02504 

HALLMARK_OXIDATIVE_PHOSPHORYLATION –0.0925 –0.02326 –6.29895 6.52E-10 2.48E-08 11.56034 

HALLMARK_ESTROGEN_RESPONSE_EARLY –0.05285 –0.05997 –5.70771 1.95E-08 7.23E-07 8.251375 

HALLMARK_MTORC1_SIGNALING –0.06535 –0.01653 –5.27857 1.94E-07 6.97E-06 6.029441 

HALLMARK_P53_PATHWAY –0.041 –0.05822 –4.66923 3.88E-06 0.000136 3.143607 
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HALLMARK_SPERMATOGENESIS –0.0423 –0.01905 –4.6555 4.14E-06 0.000141 3.08229 

HALLMARK_PROTEIN_SECRETION –0.05754 –0.05715 –4.39619 1.34E-05 0.000443 1.95559 

HALLMARK_DNA_REPAIR –0.03859 –0.00917 –4.11694 4.48E-05 0.001435 0.809281 

HALLMARK_UV_RESPONSE_DN –0.0528 –0.09663 –4.04061 6.16E-05 0.00191 0.508204 

HALLMARK_HYPOXIA –0.03702 –0.05444 –3.3353 0.000915 0.027441 –2.02172 

HALLMARK_TGF_BETA_SIGNALING –0.04466 –0.08957 –3.20737 0.001424 0.041309 –2.43114 

HALLMARK_KRAS_SIGNALING_DN –0.02526 –0.03956 –3.16511 0.001644 0.046023 –2.56298 

HALLMARK_WNT_BETA_CATENIN_SIGNALING –0.03848 –0.04962 –3.14145 0.00178 0.04805 –2.63608 

 

 

 

Please browse Full Text version to see the data of Supplementary Table 4. 

 

Supplementary Table 4. The results of the univariate Cox regression analysis. 

 


