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INTRODUCTION 
 

Prolonged administration of D-galactose (D-gal) and 

beryllium salts induces aging in experimental animal 

models and in vitro primary cell cultures and is used to 

identify mechanisms underlying the natural aging 

process [1–4]. Previous studies show that cognitive 

decline in D-galactose-induced aging model mice is 

related to reduced nerve growth factor (NGF) protein 

levels and increased reactive oxygen species (ROS) in 

the brain, both of which cause degeneration of the 
hippocampal neurons and reduce neurogenesis [3, 4]. 

Recent studies have also shown that the composition 

and number of human gut microbiota significantly 

changes during the aging process [5]. 

Cistanche deserticola is an herb that grows mainly in 

the North-Western desert region of China and is used in 

traditional Chinese medicine. It is commonly known as 

“ginseng of the desert.” Cistanche deserticola extracts 

contain several pharmacologically active compounds, 

including phenylethanoid glycosides, iridoids, lignose, 

oligosaccharides, polysaccharides, and amino acids; 

these compounds are associated with anti-inflammatory, 

anti-oxidative, anti-senescent, neuroprotective, and 

immunomodulatory properties [6, 7]. For example, 

polysaccharides extracted from Cistanche deserticola 

have been used in traditional Chinese medicine to treat 

colorectal cancer [8]. A wide range of weakly toxic 

polysaccharides with useful bioactivities have been 

isolated from several organisms, such as Chuanqiong 
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ABSTRACT 
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cognitive decline, gut microbial dysbiosis, peripheral inflammation, and oxidative stress. In this model of age-
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galactose-treated mice by restoring gut microbial homeostasis, thereby reducing oxidative stress and peripheral 
inflammation. The beneficial effects of CDPS in these aging model mice were abolished through ablation of gut 
microbiota with antibiotics or immunosuppression with cyclophosphamide. Serum metabolomic profiling 
showed that levels of creatinine, valine, L-methionine, o-Toluidine, N-ethylaniline, uric acid and proline were all 
altered in the aging model mice, but were restored by CDPS. These findings demonstrated that CDPS improves 
cognitive function in a D-galactose-induced aging model in mice by restoring homeostasis of the gut microbiota-
brain axis, which alleviated an amino acid imbalance, peripheral inflammation, and oxidative stress. CDPS thus 
shows therapeutic potential for patients with memory and learning disorders, especially those related to gut 
microbial dysbiosis. 
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polysaccharide, Ganoderma lucidum polysaccharide, 

and Lycium barbarum polysaccharide [9–11]. CDA-

0.05 is a galactoglucan isolated from Cistanche 
deserticola that promotes growth of several beneficial 

intestinal bacteria, including several species of 

Bacteroides and Lactobacillus [12]. 

 

The underlying mechanisms of the normal aging 

process are also implicated in several human diseases 

such as neurodegenerative disorders, coronary 

atherosclerosis, type 2 diabetes (T2DM), and 

hypertension [13, 14]. Recent studies have shown that 

changes in the intestinal flora play a significant role in 

human aging [15]. Several studies have shown that 

prolonged administration of D-galactose in 

experimental mice and rats mimics normal aging 

process and is a useful model to study aging-related 

phenotypes such as cognition decline [16]. Moreover, 

D-galactose-induced aging model mice show changes in 

the composition of gut microbiota [17]. Therefore, we 

hypothesized that changes in the gut microbiota 

composition may cause cognitive decline in the D-

galactose-induced aging model mice, and investigated if 

Cistanche deserticola polysaccharides (CDPS) may 

alleviate cognitive decline by restoring gut microbiota 

dysbiosis. 

 

RESULTS 
 

D-galactose-induced aging model mice demonstrate 

cognitive decline and gut microbial dysbiosis 

 

We analyzed behavioral performance of wild-type 

(WT) mice and those treated with 150 mg D-gal per 

Kg body weight for 2 months (model or Mod) using 

novel object recognition and Morris water maze 

(MWM) tests. The preferential index values in the 

novel object recognition test were significantly 

reduced in the Mod group mice compared to the WT 

group mice (Figure 1A, 1B). MWM test results 

showed that the escape latency time after sixth day 

was significantly increased in the Mod group 

compared to the WT group (Figure 1C, 1D). 

Moreover, target platform crossings and swimming 

times within the target quadrant were significantly 

reduced in the Mod group compared to the WT group 

(Figure 1E, 1F). These results demonstrated significant 

decline in the learning and memory abilities of the D-

gal-induced aging model mice. 

 

We then analyzed the differences in the abundance and 

composition of the gut microbial phyla, genera and 

species in the fecal samples of the Mod and WT groups 

of mice using 16S ribosomal RNA (rRNA) sequencing 

data from fecal samples. The predominant intestinal 

flora in the WT and Mod group mice were Firmicutes 

and Bacteroides. However, the abundance of 

Bacteroides was significantly reduced and the 

abundance of Firmicutes was significantly increased in 

the Mod group compared to the WT group (Figure 2A). 

Next, we performed linear discriminant analysis (LDA) 

to determine LDA effect size (LEfSe) scores followed 

by Kruskal-Wallis and Wilcoxon tests to evaluate the 

relative abundance of different taxa in the WT and Mod 

group mice. The LDA results are shown in Figure 2B. 

Furthermore, we constructed cladograms showing 

differential enrichment of various genera and species 

belonging to the Bacteriodes and Firmicutes phyla in 

the WT and model groups (Figure 2C). Overall, our 

results demonstrated impaired cognitive ability and gut 

microbial dysbiosis in the D-galactose-induced aging 

model mice. 

 

CDPS treatment improves cognitive ability in the D-

gal-induced aging model mice 

 

We analyzed if CDPS treatment alleviates cognitive 

decline in D-gal-induced aging model mice. During the 

2 months of administration, the body weight was 

measured every other day. The body weights of the 

model and CDPS groups of mice were similar (Figure 

3A). Conduct behavioral experiments after the last dose. 

Novel object recognition and Morris water maze test 

results showed that short-term memory was 

significantly higher in the CDPS groups of mice 

compared to the model group of mice; long-term 

memory in the CDPS group of mice was higher but 

statistically insignificant compared to the model group 

of mice (Figure 3B, 3C). This suggested that CDPS 

treatment abrogated loss of short-term object 

recognition memory in D-gal treated mice. 

 

The spatial learning and memory of these mice were 

evaluated by Morris water maze test, and the results 

showed that the escape latency times of the CDPS 

group of mice were comparable to the WT group of 

mice and significantly shorter than the Mod group 

mice (Figure 3D). Furthermore, escape latency times 

were significantly lower on the sixth day post-CDPS 

administration compared to the model group (Figure 

3E). The swimming time within the target quadrant 

was significantly higher in the CH and CM groups 

compared to the model group. The CL group is higher 

than the model group but no statistical significance 

(Figure 3F). Moreover, the number of platform 

crossings was significantly higher in the CM and CL 

groups compared to the model group. However, the 

CH group is higher than the model group and no 

statistical significance (Figure 3G). These results 
demonstrated that CDPS treatment improved spatial 

learning and memory in the D-gal-induced aging 

model mice. 
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Figure 1. Prolonged administration of D-galactose induces learning and memory impairment in mice. (A, B) Novel object 

recognition test results show preferential index values for WT and model group mice after ( A) 24 h training and (B) 1 h testing phase. 
(C–F) Morris water maze test results show (C) latency in learning phase, (D) latency in test phase, (E) number of plate crossings, and 
(F) time in the target quadrant for the WT and model group mice. Note: *p<0.05, **p<0.01, ***p<0.001 compared with the WT group  
mice; by. All values are represented as means ± SEM (n=15); Data was analyzed by one-way ANOVA followed by Dunnett's post hoc 
test. 

 

 
 

Figure 2. Prolonged administration of D-galactose induces gut microbial dysbiosis in mice. (A) The relative abundance of the top 

10 gut microbial phyla in the WT and Mod group mice. (B) The relative abundance of the gut microbial genera based on the linear 
discriminant analysis (LDA) scores in the WT and Mod group mice. (C) LEfSe cladogram shows the most enriched gut bacterial genera in the 
WT and Mod group mice. Only taxons with LDA scores >4 and p-value <0.05 are represented in (B, C). Note: All data are represented as 
means ± SEM (n=15). The differences between groups were analyzed by unpaired Student's t-tests. 
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CDPS treatment restores homeostasis of the gut 

microbiota composition in the D-galactose-aging 

model mice 

 

Monosaccharides and polysaccharides are the essential 

nutrients required for the growth of bacteria [18–21]. It 

is also reported that CDPS regulates the composition of 

gut microbiota [22]. Therefore, we analyzed if CDPS 

treatments alleviated the gut microbial dysbiosis in the 

model group mice by evaluating16S rRNA sequencing 

data of feces samples from the WT, model, and CDPS 

groups of mice. 

 

First, we calculated alpha diversity indices to evaluate 

the overall fecal microbiota richness and structural 

difference among these groups. We analyzed alpha 

diversity (α-diversity) indexes such as observed species, 

Shannon, Chao 1, ACE, and Simpson index values to 

determine changes in the composition of various 

bacterial species in the feces samples of different 

murine groups. The α-diversity (observed species, 

Shannon, Chao 1, ACE and Simpson indexes) indexes 

were higher in the WT and CDPS groups of mice 

compared to the model group, but statistical 

significance was only observed for the Chao 1 index 

values between the CM group and Mod group. It 

indicated that administration with CDPS increases the 

microbiome richness (Figure 4A–4E). Next, we 

analyzed β-diversity indexes to identify differences in 

the gut microbial species between the WT, model, and 

CDPS groups of mice using Non-metric Multi-

dimensional Scaling (NMDS), Principal Coordinates 

Analysis (PCoA), and Principal Component Analysis 

(PCA). PCA showed variations in the gut microbial 

composition of the model group mice during the aging 

process, including dimension reduction and 

maintenance of patterns and trends (Figure 4F). The 

differences in the fecal microbiota between the WT, 

model, and CDPS groups were identified based on 

PCoA of the unweighted UniFrac distances for the 16S 

rRNA genes (Figure 4G). Clustering analysis showed 

significant differences in NMDS between the model 

group and the WT and CDPS groups (Figure 4H). 

 

We evaluated the top 10 phyla of the gut microbiota and 

found that the abundance of the Bacteroides phyla was 

significantly higher in the CH, CM and CL group 

compared to the model group (Figure 4I). This 

suggested that CDPS restored the homeostasis of the gut 

microbiota in D-gal-treated mice. The cladograms 

showed differential enrichment of various genera and 

species belonging to Bacteriodes and Firmicutes phyla 

in the WT, model, and the CDPS groups (Figure 4J). As 

shown in the heatmaps, CDPS treatments reduced the 

relative abundances of Thermoplasmata, Bacilli, 
unidentified Actinobacteria, Fusobacteriia and 

unidentified Elusimicrobia and increased the relative 

abundances of Methanobacteria, Spirochaetia, 
Deltaproteobacteria, unidentified_Deferribacteres, 

Mollicutes, Nitrososphaeria, Anaerolineae, 
Erysipelotrichia and unidentified_Cyanobacteria 

compared to the model group (Figure 4K). These results 

 

 
 

Figure 3. CDPS treatment improves learning and memory in the D-gal aging model mice. (A) The body weights of WT, Mod, and 
CDPS group mice during administration. (B, C) Novel object recognition test results show the preferential index in WT, Mod, and CDPS group 
mice after (B) 24 h training and (C) 1 h testing phase. Morris water maze test results show (D, E) escape latency, (F) number of plate crossings, 
and (G) time in the target quadrant for the WT, Mod, and CDPS group mice. Note: *p<0.05, **p<0.01, and ***p<0.001 compared to the WT 
group mice; #p<0.05, ##p<0.01, and ###p<0.001 compared to the Mod group mice. Differences between groups were analyzed by one-way 
ANOVA followed by the Dunnett's post hoc test. All values are shown as means ± SEM (n=15). 
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demonstrated that CDPS treatment significantly 

restored homeostasis of the gut microbiota in the D-gal-

induced aging model mice. 

 

CDPS treatment alleviates neurodegeneration in the 

D-gal-induced aging model mice by reducing 

oxidative stress 

 

We next analyzed the effects of CDPS on inflammation 

by analyzing the serum levels of pro-inflammatory 

cytokines (IL-2 and TNF-α), and anti-inflammatory 

cytokines (IL-4 and IL-10) in different groups of mice. 

The serum levels of IL-2 and TNF-α were significantly 

lower and the serum levels of IL-4 and IL-10 were 

significantly higher in the CH, CM and CL group 

compared to the model group. It shown that CDPS has 

anti-inflammatory effects (Figure 5A–5D). 

 

Oxidative stress is caused by increased production of 

reactive oxygen species (ROS) and is one of the main 

factors that promotes aging [23]. Therefore, we 

analyzed the effects of CDPS on oxidative stress in the 

D-gal-induced aging mouse model by evaluating serum 

levels of the antioxidant enzyme, SOD, and the lipid 

peroxidation product, malondialdehyde (MDA). The 

serum levels of MDA were significantly higher and the 

serum levels of SOD were significantly reduced in the 

Mod group compared to the WT group, but, CDPS 

treatment reversed these effects (Figure 5E, 5F). These 

results demonstrated that oxidative stress was elevated 

in the D-gal-induced aging model mice, but was 

reduced by CDPS treatment. 

 

Furthermore, we assessed the oxidative stress levels in 

the brain tissues by analyzing the levels of advanced 

oxidized protein product (AOPP), direct lipid 

peroxidation (LPO), and MDA as well as activities of 

antioxidant enzymes such as glutathione peroxidase 

(GSH-Px) and superoxide dismutase (SOD) in the brain 

tissue homogenates. The brains of Mod group mice 

showed significantly reduced activities of SOD and 

GSH-PX and significantly increased levels of AOPP, 

 

 
 

Figure 4. CDPS treatment restores gut microbial composition in the D-galactose-induced aging model mice. (A–E) The α 

diversity indexes of the gut flora in the feces of WT, Mod, and CDPS (CH, CM, and CL) group mice. (F–H) The β diversity indexes show 
differences in the gut microbial species between WT, Mod, CH, CM, and CL groups of mice. (I) The relative abundance of top10 gut bacterial 
phyla in the WT, Mod, CH, CM, and CL groups of mice. (J) The top 100 gut microbial genus in the WT, Mod, CH, CM, and CL groups of mice. (K) 
The heatmap shows differentially enriched gut microbiota in the WT, Mod, CH, CM, and CL groups of mice. Note: *p<0.05, **p<0.01, and 
***p<0.001 compared to the WT group mice; #p<0.05, ##p<0.01, and ###p<0.001 compared to the Mod group mice; Data were analyzed by 
unpaired Student's t-tests. All values are shown as means ± SD (n=15). 
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LPO and MDA compared to the WT group, but these 

effects were reversed in the CH, CM and CL group 

(Figure 6A–6E). 

 

Furthermore, we performed histological staining of 

brain section with H&E and Nissl stains to assess the 

protective effects of CDPS on the brains of D-gal-

induced aging model mice. The Mod group mice 

showed significant reduction in the neuronal numbers 

and volume, increased gap between neurons, irregular 

arrangement of neurons, and nuclear pyknosis in the 

hippocampus CA1 region compared to the WT group, 

but these pathological changes were significantly 

reduced by CDPS treatments (Figure 6F). These results 

demonstrated that CDPS treatments significantly 

reduced oxidative stress and brain pathology in the D-

gal-induced aging model mice. 

 

CDPS treatment reduces peripheral inflammation 

and oxidative stress by maintaining gut microbial 

homeostasis in D-gal-induced model mice 

 

Next, we analyzed if the changes in the composition of 

the gut microbiota were associated with increased 

peripheral inflammation and oxidative stress during 

aging. Towards this, we used a triple-antibiotic cocktail 

(ABX group) or cyclophosphamide (Cy group; also see 

Materials and methods) to ablate the gut microbiota or 

induce immunosuppression in the CDPS-treated aging 

model mice. The antibiotic treatment abrogated the 

beneficial effects of CDPS treatment in the aging model 

mice. We observed impaired learning and memory 

(Figure 7A), and alterations in the composition of gut 

microbiota (Figure 7B, 7C) in the ABX group mice 

compared to the CDPS-treated group. The above results 

indicate that even the administration of CDPS cannot 

increase the learning and memory ability of mice after 

changing the intestinal flora. Moreover, we observed 

increased levels of pro-inflammatory cytokines in the 

brain and the serum of ABX group mice compared to 

the CDPS group (Figure 7D–7N). The results of ABX 

group and CY group showed that after the intestinal 

flora and immune function were destroyed, even 

administration of CDPS could not improve the learning 

and memory ability of mice. These results suggested 

that CDPS treatment decreased peripheral inflam-

mation, oxidative stress and cognitive decline in the D-

gal-induced aging model mice by preventing gut 

dysbiosis. 

 

We then used the immunosuppressive drug, 

cyclophosphamide [24] to determine the role of 

inflammation in the beneficial effects of CDPS. 

Cyclophosphamide-treated CDPS mice (Cy group) 

showed impaired learning and memory ability, 

alterations in the gut microbiota composition, and 

aberrant levels of pro- and anti-inflammatory cytokines 

in the brain and serum compared to the wild-type and 

 

 
 

Figure 5. CDPS treatment modulates circulating levels of pro- and anti-inflammatory cytokines and oxidative stress-related 
factors in the D-galactose-induced aging model mice. ELISA assay results show serum levels of (A) TNF-α, (B) IL-2, (C) IL-4, (D) IL-10, (E) 
SOD and (F) MDA in the WT, Mod, and CDPS (CH, CM, and CL) group mice. Note: *p<0.05, **p<0.01, and ***p<0.001 compared to the WT 
group mice; #p<0.05, ##p<0.01, and ###p<0.001 compared to the Mod group mice. The data were analyzed by one-way ANOVA followed by 
Dunnett's post hoc test. All values are shown as means ± SEM (n=15). 
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CDPS group mice. However, there is no significance 

comparing with model and ABX group. (Figure 7A–

7N). These data demonstrate that alterations in the 

composition of the gut microbiota increase peripheral 

inflammation in the D-gal-induced aging model mice. 

 

CDPS prevents D-gal-induced aging by regulating 

amino acid metabolism 

 

The immune system of the host is influenced by 

metabolites generated by the gut microbiota [25]. The 

fecal metabolites represent a functional readout of gut 

microbial metabolism and gut microbial composition 

[26]. Moreover, metabolites of the gut microbiota enter 

into blood circulation and impact host metabolism and 

health [26, 27]. A total of 1058 metabolites were 

identified in serum sample from fWT, Mod and CDPS 

mice. Then, we analyzed these metabolites using 

BioCyc, Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Human Metabolome Database (HMDB) 

and found that 65 metabolites were differentially 

expressed in the Mod group compared to the WT group. 

Furthermore, we found that the levels of 8 metabolites 

(creatinine, valine, L-(-)-Methionine, o-Toluidine, N-

Ethylaniline, uric acid, proline and phenylalanine) 

significantly differed among the WT, Mod and CDPS 

groups. Pathway enrichment analysis of these 8 

metabolites using MetaboAnalyst [28, 29] showed that 

these metabolites were related to arginine, histidine, 

arginine, proline, and purine metabolism (Figure 8A, 

8B). 7 different metabolites of MOD group and CDPS 

group in WT group. 

 

 
 

Figure 6. CDPS treatment reduces oxidative stress in the brains of D-galactose-induced aging model mice. (A–E) Colorimetric 
assay results show (A) AOPP, (C) LOP, and (E) MDA levels as well as (B) GSH-Px and (D) SOD enzyme activities in the brain homogenates of 
WT, Mod, and CDPS (CH, CM, and CL) group of mice. (F) Representative images (top to bottom: 40×, 100×, 400×; scale bar=100μm) show H&E 
and Nissl stained brain sections of WT, Mod, and CDPS (CH, CM, and CL) group mice. Note: *p<0.05, **p<0.01, and ***p<0.001 compared to 
the WT group mice; #p<0.05, ##p<0.01, and ###p<0.001 compared to the Mod group mice. The data were analyzed by one-way ANOVA 
followed by Dunnett's post hoc test. All values are shown as means ± SEM (n=15). 
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We then analyzed if changes in amino acid metabolism 

were related to alterations in the composition of the gut 

microbiota. We observed that 7 different metabolites of 

WT, Mod and CDPS groups (creatinine, valine, L-(-)-

Methionine, o-Toluidine, N-Ethylaniline, uric acid, and 

proline) were significantly decreased in the ABX, Cy, 

and Mod groups compared to the WT and CDPS groups. 

Moreover, there is no significance between ABX and 

Cy group (Figure 8C). Finally, in order to explore there 

is a correlation between differential metabolism and 

other aging-related diseases. We analyzed the 

correlation between these seven differentially expressed 

metabolites and human diseases using the 

MetaboAnalyst database and found that these 

metabolites were associated with Alzheimer’s disease 

(p=0.00173; Figure 8D, 8E). Overall, these data 

suggested that CDPS protects against D-gal-induced 

aging by regulating amino acid metabolism. 

 

DISCUSSION 
 

Progressive decline in cognitive function is a 

characteristic feature of aging. Previous studies showed 

that CDPS treatment significantly improved learning 

and memory in the aging model mice [30–33]. In this 

study, we demonstrated that CDPS treatment improved 

cognitive function by inhibiting peripheral 

inflammation and oxidative stress through restoration of 

gut microbial homeostasis in the D-gal-induced aging 

model mice (Figure 9). Sprague-Dawley rats fed with 

Cistanche polysaccharides showed increased growth of 

beneficial gut bacteria and enhanced gut microbial 

diversity [34]. CDA-0.05, a Cistanche neutral 

polysaccharide, improved the growth of probiotic 

Lactobacilli [22]. These data suggested that Cistanche 
polysaccharides improved homeostasis of gut bacteria. 

 

In this study, we demonstrated that CDPS has anti-

inflammatory effects and improves cognitive ability of 

the aging model mice by modulating the abundance of 

gut bacterial genera such as Bacteroidetes, Firmicutes, 

and Proteobacteria. Hence, CDPS may be 

therapeutically beneficial for aging-related diseases by 

reshaping the composition of the gut microbiota [35, 

36]. Moreover, previous studies have shown that the 

levels of inflammatory cytokines in the serum and colon 

are associated with the relative abundance of bacterial 

genera such as Bacteroidetes, Firmicutes, and 

 

 
 

Figure 7. CDPS alleviates learning and memory by restoring homeostasis of the gut microbiota. (A) Heat maps show long-term 

memory (preferential index*) and short-term memory (preferential index) in the WT, Mod, CM, ABX, and Cy groups of mice. (B) The relative 
abundance of top 10 gut microbial phyla in the WT, Mod, CDPS, ABX, and Cy groups of mice.(C) Venn diagram shows the number of bacterial 
operational taxonomic units (OTUs) in the WT, Mod, CDPS, ABX, and Cy groups of mice. (D–I) ELISA assays show levels of TNF-α, IL-2, IL-4, IL-
10, SOD, and MDA in the serum of WT, Mod, CDPS, ABX, and Cy groups of mice. (J–N) Colorimetric assay results show the levels of AOPP, 
MDA, and LPO as well as activities of GSH-PX and SOD enzymes in the brains of WT, Mod, CDPS, ABX, and Cy groups of mice. Note: *p<0.05, 
**p<0.01, and ***p<0.001 compared to the WT group mice; #p<0.05, ##p<0.01, and ###p<0.001 compared to the Mod group mice. The data 
were analyzed by one-way ANOVA followed by the Dunnett's post hoc test. All values are represented as means ± SEM (n=15). 
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Figure 8. CDPS inhibits peripheral inflammation and improves immune function by regulating amino acid and purine 
metabolism. (A) Pathway enrichment analyses list of serum metabolites in the WT, Mod and CDPS group of mice. (B) Bubble chart of 
pathway enrichment analyses of serum metabolites in the WT, Mod and CDPS group of mice. (C) The serum concentration of various amino 
acids (creatinine, valine, L-(-)-Methionine, o-Toluidine, N-Ethylaniline, uric acid, and proline) in the ABX and Cy versus WT group of mice. (D, 
E) MetaboAnalyst results show the correlation between the differentially expressed metabolites and human diseases. 

 

 
 

Figure 9. CDPS alleviates cognitive decline by restoring homeostasis of the gut microbiota- brain axis in the D-gal induced 
aging model mice. 
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Proteobacteria [37, 38]. Furthermore, gut microbial 

composition regulates brain function by modulating 

circulating levels of several cytokines [39–43]. Our 

results showed that CDPS treatment decreased the 

relative abundance of Thermoplasmata, Bacilli, 

unidentified Actinobacteria, Fusobacteriia, and 

unidentified Elusimicrobia, and increased the relative 

abundance of Methanobacteria, Spirochaetia, 

Deltaproteobacteria, unidentified_Deferribacteres, 
Mollicutes, Nitrososphaeria, Anaerolineae, 

Erysipelotrichia, and unidentified_Cyanobacteria. 
 

Gut microbial metabolites are released into the blood 

stream and regulate the health and metabolism of the 

host [26, 27]. The gut microbial metabolites can be 

estimated by evaluating fecal metabolite composition, 

which changes with alterations in the composition of the 

gut microbes [44]. Recent studies have shown that 

plasma levels of citrulline, proline, arginine, asparagine, 

phenylalanine and threonine are associated with 

neurodegenerative disorders including Alzheimer’s 

disease [45, 46]. Our study showed that serum levels of 

creatinine, valine, L-methionine, o-Toluidine, N-

ethylaniline, uric acid and proline were associated with 

D-gal-induced aging in mice. 

 

The innate and adaptive arms of the immune system 

play a significant role in maintaining host-microbial 

homeostasis in the intestinal luminal surface [47]. The 

intestinal microbiota also play a significant role in 

regulating the central nervous system (CNS) and 

immunity by releasing cytokines and metabolites into 

the blood stream [48, 49]. The pro-inflammatory 

cytokines play a key role in several neurodegenerative 

diseases [50–52]. For example, age-related macular 

degeneration (AMD) and glaucoma is associated with 

extracellular accumulation of amyloid β (Aβ) and 

intracellular deposition of hyper-phosphorylated tau (p-

tau) and iron in the retinal ganglion cells (RGC) [44]. 

Moreover, inflammation plays a significant role in 

pathogenesis associated with glaucoma [53]. Visual 

impairment is an early symptom of Alzheimer’s disease 

(AD) and is manifested before the onset of cognitive 

decline [54]. Our study demonstrated that CDPS 

protects against cognitive decline and peripheral 

inflammation by maintaining the homeostasis of the gut 

microbiota. 

 

There are several limitations in this study. Firstly, the 

relationship between amino acid metabolism and 

composition of the gut microbiota is not well known. 

Secondly, the composition and molecular structure of 

CDPS is not known. Therefore, future studies are 

required to further explore the regulatory role of CDPS 

in alleviating AD through the gut microbiota-brain 

signaling axis. 

In conclusion, our study demonstrated that CDPS 

improved cognitive ability in D-gal-induced aging 

model mice by restoring the homeostasis of gut 

microbiota, thereby restoring amino acid imbalance, 

peripheral inflammation, and oxidative stress. These 

findings suggest that CDPS is a potential therapeutic for 

patients with learning and memory disorders, especially 

those associated with gut dysbiosis. 

 

MATERIALS AND METHODS 
 

Preparation of CDPS 

 

About 1.0 Kg of cleaned Cistanche deserticola was 

air-dried in the oven at 40° C and pulverized into 

crude powder. The powder was extracted in hot 

ethanol for 3 h. The residue was filtered through gauze 

to remove the filtrate and then diluted with water (8X) 

and refluxed sequentially for 2 h, 1.5 h, and 1 h at  

90° C. At each time point, the solution was centrifuged 

to separate out the supernatant and combined with the 

brown-red filtrate. Then, the filtrate was concentrated 

under reduced pressure, cooled to room temperature, 

added slowly to 95% ethanol (3X), and allowed to 

stand at 4° C for 24 h. Then, the solution was 

centrifuged at 6000 r/min for 20 min at 4° C. The 

precipitate was collected after repeating water 

extraction and alcohol precipitation thrice. The 

precipitate was reconstituted in water, de-proteinized, 

dialyzed, and freeze-dried to get crude Cistanche 

deserticola polysaccharide (CDPS). The 

polysaccharide content was more than 90% as 

evaluated by ultraviolet spectrophotometry. 

 

Animal grouping and treatments 

 

Eight-week old male Kunming mice (SCXK License 

No.2019-0010) were purchased from SPF 

Biotechnology Co. Ltd (Beijing, China), housed in a 

light and temperature-controlled room, and fed with 

food and water. All animal experiments were 

conducted according to protocols approved by the 

Institutional Animal Care and Use Committee of Inner 

Mongolia Medical University. The experiments were 

carried out according to the National Institutes of 

Health (NIH) Guide for the Care and Use of Laboratory 

Animals. 
 

After 1 week adaptation to the new surroundings, 120 

mice were divided into the following 7 groups: (1) wild-

type control (WT); model group (150 mg/Kg/day D-gal; 

Mod); (3) CH: D-gal plus 100 mg/kg CDPS; (4) CM: 

D-gal plus 50 mg/kg CDPS; (5) CL: D-gal plus 25 

mg/kg CDPS; (6) ABX group: antibiotics plus D-gal 

plus 50 mg/Kg CDPS; (7) Cy group: cyclophosphamide 

plus D-gal plus 50mg/kg CDPS. 
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The mice from the model, ABX, Cy, and CDPS groups 

received subcutaneous injections of saline-dissolved 

150 mg/kg D-gal every day for 2 months. The WT 

group was subcutaneously injected with equal volume 

of saline for 2 months. The CDPS group mice were  

also administered daily with intragastric injections 

containing 100 mg/kg, 50 mg/Kg or 25 mg/Kg  

CDPS for 2 months. The ABX group mice received 

drinking water with 0.1 mg/mL ampicillin and 0.5 

mg/mL streptomycin for 2 months in addition to D-gal 

and CDPS injections. Before administering D-gal, the 

mice received injections containing 0.1 mg/mL 

ampicillin, 0.5 mg/mL streptomycin, and 0.1 mg/mL 

colistin for 7 days in the ABX group. The Cy group 

mice received intraperitoneal injections of 20 mg/Kg 

cyclophosphamide every other day (q.o.d) for 2 months 

in addition to daily injections of D-gal and CDPS. 

 

Novel object recognition test 

 

Conduct behavioral experiments after the last dose. The 

object recognition test involved familiarization, 

training, and testing stages. During familiarization 

stage, mice were habituated in an empty testing 

chamber for 10 minutes for two days. Then, on the 

third day (training day), two objects of the same size, 

shape, and color (A1 and A2) were placed on opposite 

ends of the chamber. Every mouse was then given 10 

minutes to explore the two similar objects. After 1-hour 

(on the third day) and 24-hour (on the fourth day) 

training-to-testing intervals, one of the similar objects 

(A1 or A2) was replaced with a B or C object that is 

different in size, color and shape on the testing day. 

During testing stage, each mouse were tested for 5 

minutes and the preferential index was calculated to 

determine the memory of novel object (B or C) 

recognition using the following formula: Preferential 

index=Time on object B or C/(Time on object B or 

C+Time on object A)×100%. 

 

Morris water maze test 

 

Morris water maze test was performed in a round pool 

that was 45 cm in depth and 90 cm in diameter. The 

protocol described by Ruediger S, et al. (2011) [55] and 

Wood RA, et al. (2018) [56] was employed here. The 

water depth in the pool was 30 cm, and the temperature 

of water was 20±1° C. The platform was 6 cm in 

diameter and 1cm underwater. The time for training and 

testing was 60 s each. For training, we conducted four 

trials of 60 s each with a hidden platform every day for 

five continuous days. If the platform was not discovered 

by the mice in 60 s, they were guided to the platform, 
and placed on the platform for 5 s. During testing 

stage, the latency to reach the hidden platform in 

training and probe trial sessions, the number of 

crossing over the removed platform location, and the 

time spent in the target (platform) quadrant were 

recorded and analyzed. 

 

ELISA assays 

 

The serum levels of pro-inflammatory cytokines such as 

IL-2(), IL-4, IL-10, and TNF-α were analyzed for each 

group of mice using ELISA kits purchased from 

Shanghai Yi Li Biological Technology Co., Ltd. 

(Shanghai, China) according to the manufacturer’ 

instructions. The activity of antioxidant enzyme, 

superoxide dismutase (SOD), and levels of lipid 

peroxidation product, malondialdehyde (MDA), in the 

serum of each group of mice was analyzed by assay kits 

purchased from the Nanjing Jiancheng Bioengineering 

Institute (Nanjing, China). The levels of advanced 

oxidation protein products (AOPP) in the murine 

hippocampus samples were estimated using ELISA kit 

from Shanghai Yi Li Biological Technology Co. Ltd. 

(Shanghai, China) according to the manufacturer’s 

instructions. 

 

Estimation of oxidative stress in murine brains 

 

We homogenized 100 mg hippocampus tissue with 0.9 

ml ice-chilled saline and the homogenate was 

centrifuged at 12000 rpm for 30 min at 4° C. The 

protein content in the supernatant was analyzed using 

the BCA Protein Assay Kit (Beyotime Biotechnology, 

Shanghai, China). The levels of lipid peroxidation 

(LPO) and malondialdehyde (MDA), and the activities 

of GSH-Px and SOD in the hippocampus samples were 

analyzed by colorimetry using kits from the Nanjing 

Jiancheng Bioengineering Institute (Nanjing, China) 

according to the manufacturer’s instructions. 

 

Gut microbiota composition 

 

Fecal samples were collected from all mice and 

immediately stored at -80° C. The V3+V4 region of the 

16S rRNA gene was sequenced using Illumina MiSeq 

(Beijing Novogene Co. Ltd., Beijing, China) and 

analyzed using the QIIME open platform to determine 

the gut microbiota profiles. 

 

LC/MS analysis of serum metabolites 

 

Serum samples were incubated for 10 minutes with pre-

chilled methanol in a ratio of 1: 3 to precipitate the 

proteins. The samples were centrifuged at 12000r/min 

for 15 minutes at 4° C. The supernatants were analyzed 

by Thermo Scientific Dionex UltiMate3000 Rapid 
Resolution Liquid Chromatography and QExactive 

mass spectrum. The chromatographic conditions are 

shown in Table 1. The analytes were separated in a 
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Table 1. Mobile phase elution gradient. 

Time (min) Flow rate (mL/min) A (%) B (%) 

0 0.4 10 90 

10 0.4 50 50 

10.1 0.4 10 90 

 

Table 2 Mass spectrometry source gas parameters and 
collision energy. 

M/Z 50-750 

IonSpray Voltage Floating (ESI+) (V) 4000 

IonSpray Voltage Floating (ESI-) (V) 2200 

Capillary Temperature (° C) 350 

Sheath Gas (+) (arb) 40 

Sheath Gas (-) (arb) 20 

Max Spray Temperature (° C) 100 

Probe Heater Temperature (+) (° C) 100 

Probe Heater Temperature (-) (° C) 150 

 

XBridge BEH Amide chromatographic column 

(2.1×100 mm; Waters Co., Milford, MA, USA) using 

0.1% formic acid and acetonitrile as mobile phases A 

and B, respectively. The flow rate was set at 0.4 ml/min, 

injection volume was 5 µl, and column temperature was 

set at 25° C (Table 1). The mass spectrum signals were 

obtained using the positive and negative ion scanning 

mode. The ion spray voltage and other specific MS 

parameters are shown in Table 2. 

 

Statistical analysis 

 

Statistical analysis was performed using the SPSS 13.0 

software (SPSS Inc., Chicago, Illinois, USA). The data 

plots were generated using GraphPad Prism 8.0.1 

(GraphPad Software, La Jolla, California, USA). Partial 

least squares discriminant analysis (OPLS-DA) of 

SIMCA-P+13.0 (Umetrics, AB, Umeå, Sweden) and 

Principal Components Analysis (PCA) were used to 

assess normalized GC-MS spectral data. Variable 

Influence on Projection (VIP) values were used to 

identify significant variables with VIP values >1.0 and 

p< 0.05. These significant variables were used to 

identify the spectral peaks. Student's t-test was used to 

analyze differences between two groups of data. The 

taxonomic rank differential between groups was 

determined using Student’s test (v3.1.2; R programming 

language). The correlation between genera abundance 

and mouse behavior was calculated using Spearman 

correlation coefficients (R language). P < 0.05 was 

considered statistically significant. The data are 

presented as means±SEM. 
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