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INTRODUCTION 
 

Aging is an inevitable physiological process that is 

accompanied by a broad range of functional 

impairments and metabolic disorders [1]. Several 

reports have provided evidence that many factors could 

be drivers of aging and age-related disorders in various 

species, including Drosophila melanogaster, Mus 

musculus, and humans [2–6]. Despite considerable 

efforts and the development of rich aging theories, the 

underlying mechanism of aging is still largely unknown, 

in part because of the complexity of the aging process 

with remarkable variation and changes in systemic 

metabolism. 

 

Untargeted metabolomics technology was used to 

characterize a large panel of small molecules in the 

biological system involved in the aging process. This 

could reflect the by-products of metabolism or other 
damage forms that accumulate in old organisms and 

provide clues to reveal the development of the aging 

process. Thereby, aiding to identify reliable bio-
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ABSTRACT 
 

The process of aging and metabolism is intimately intertwined; thus, developing biomarkers related to 
metabolism is critical for delaying aging. However, few studies have identified reliable markers that reflect aging 
trajectories based on machine learning. We generated metabolomic profiles from rat urine using ultra-
performance liquid chromatography/mass spectrometry. This was dynamically collected at four stages of the 
rat’s age (20, 50, 75, and 100 weeks) for both the training and test groups. Partial least squares-discriminant 
analysis score plots revealed a perfect separation trajectory in one direction with increasing age in the training 
and test groups. We further screened 25 aging-related biomarkers through the combination of four algorithms 
(VIP, time-series, LASSO, and SVM-RFE) in the training group. They were validated in the test group with an area 
under the curve of 1. Finally, six metabolites, known or novel aging-related markers, were identified, including 
epinephrine, glutarylcarnitine, L-kynurenine, taurine, 3-hydroxydodecanedioic acid, and N-acetylcitrulline. We 
also found that, except for N-acetylcitrulline (p < 0.05), the identified aging-related metabolites did not differ 
between tumor-free and tumor-bearing rats at 100 weeks (p > 0.05). Our findings reveal the metabolic 
trajectories of aging and provide novel biomarkers as potential therapeutic antiaging targets. 
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markers for predicting biological age [7–9]. Analysis 

of metabolic profiles in young and old mice revealed 

aging-associated changes, including nutrient sensing 

and lipid and amino acid metabolism [10, 11]. In 

addition, metabolomics-based and lipidomics-based 

investigations of centenarians revealed phospho-

/sphingolipids as putative longevity markers [12]. 

Another analytical study of the plasma metabolome of 

2,327 aging individuals using liquid chromatography/ 

mass spectrometry (LC/MS) identified a different set 

of metabolites related to longevity, including 

isocitrate, bile acid, and taurocholate [5]. Although 

much work has been done to identify the aging 

biomarkers in a broader range of species, only a few 

studies have been conducted in clinical practice. The 

reason may be that most biomarkers fail to 

dynamically reflect the effectiveness at different life 

stages. Furthermore, there are inaccuracies in 

screening robust aging markers for both sensitivity and 

specificity, especially for observations that mostly 

focus on cross-sectional and short-term associations of 

metabolites with age. Therefore, additional 

longitudinal studies using metabolomics technology 

are needed to dynamically identify and screen aging-

related markers based on cutting-edge statistical 

methods, such as machine learning. 
 

In this study, we dynamically performed a high-

throughput metabolomics-based investigation in two rat 

cohorts, starting from the early adult phase to the old 

age. We sought to identify circulating urine metabolites 

associated with aging in combination with four 

algorithms: VIP, time-series, LASSO, and SVM-RFE. 

We discovered unique metabolic compounds related to 

aging, including glutarylcarnitine and 3-hydro-

xydodecanedioic acid, which may be good predictors of 

aging when considering both sensitivity and specificity. 

Furthermore, we found that, except for N-

acetylcitrulline, none of the identified aging-related 

metabolites were related to tumor occurrence in rats at 

100 weeks. 
 

RESULTS 
 

Food intake, body weight, and urine metabolic 

profiles with aging 
 

In this study, the training group included 60 male 

Wistar rats, and the test group consisted of 30 male 

Wistar rats. They were fed pelleted chow starting from 

8 weeks. The food intake and body weight trajectory of 

rats with aging in the training and test groups are shown 

in Figure 1A and 1B. Food intake in both the training 

and test groups fluctuated with increasing age (Figure 

1A). The body weight in the training group increased in 

the first 58 weeks with the increase in age. Then slowly 

stabilized, and started dropping from 93 weeks (Figure 

1B). The downward trend continued with the increase in 

age (data are not shown), suggesting that the rats 

entered the fragile state. Similar results were observed 

for the test group (Figure 1B). Moreover, at 100 weeks, 

a total of 43 rats died naturally (data not shown), further 

indicating that the rats entered the aging stage at 100 

weeks. Compared with the test group, the food intake, 

on average, in the training group was lower (p < 0.05), 

but body weights displayed no statistical difference (p > 

0.05) (Figure 1A and 1B). 

 

During the study period, the urine of rats in the training 

group was dynamically collected for metabolomic 

analysis, and detected by ultra-high-performance liquid 

chromatography-tandem quadrupole time-of-flight mass 

spectrometry (UPLC-Q-TOF-MS). Principal component 

analysis, including a quality control (QC) sample and an 

experimental sample of time data of the training group 

in the positive or negative modes, was performed. The 

QC results were tightly clustered (Supplementary 

Figure 1A, 1B), suggesting the stability of the system 

and the reliability of the data. Representative 

chromatograms of the base peak intensity at four time 

points are displayed in Figure 1C–1F. Using the “80% 

rule” filter criteria of primary data in the training group, 

we derived a list of 10,729 metabolites in the negative 

mode and a list of 27,962 metabolites in the positive 

mode for subsequent multivariate statistical analysis. 

The partial least squares-discriminant analysis (PLS-

DA) score plots from both electrospray ionization 

(ESI)+ and ESI− based on all raw metabolites revealed 

a perfect separation trajectory in one direction, at 

different time points, and with increasing age (Figure 

1G and 1H). In total, the results suggest that metabolic 

remodeling occurs during aging, leading to alterations 

in urinary metabolites. 

 

Metabolite aging trajectories based on a time-series 

analysis 

 

To dynamically identify age-related metabolic 

trajectories, we performed a time-series analysis and 

predefined nine clusters based on metabolite aging 

trajectories in the negative and positive modes (Figure 

2A and Supplementary Figure 2A). Considering as 

many age-related metabolites as possible, we selected 

clusters 1, 3, 5, 7, 8, and 9 containing 60.8% of the 

metabolites in the negative mode and clusters 3, 4, 7, 

and 8 contained 71% of the metabolites in the positive 

mode, as these clusters tended to display an age-related 

increase or decline in metabolites, which are likely to be 

sensitive to aging. Notably, metabolites in the ESI− 

mode in clusters 8 and 9 exhibited a gradual increasing 

or decreasing trend with increasing age (Figure 2A), 
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and the same was true for clusters 3 and 4 in the ESI+ 

mode (Supplementary Figure 2A). 

 

To further narrow down the age-related metabolites, the 

PLS-DA score between two points in time (25 and 100 

weeks) was plotted for both the ESI− and ESI+ modes. 

This revealed a clear separation between the two points 

in time (Figure 2B), which was validated by the 

permutation test, as reflected by that all R2X and Q2 

values on the left were lower than the original points on 

 

 
 

Figure 1. Food intake, body weight, base peak intensity chromatograms and urine metabolic profiles with aging. (A) Food 

intake in both the training and test group. (Initial sample size: n = 60 in the training group; n = 30 in the test group). (B) Body weight in both 
the training and test group. (Initial sample size: n = 60 in the training group; n=30 in the test group). (C–F) Representative negative base peak 
intensity (BPI) chromatograms at the age of (C) 25 weeks, (D) 50 weeks, (E) 75 weeks and (F) 100 weeks of rats using UPLC-Q-TOF-MS in 
electrospray ionization negative (ESI−) ion mode in the training group. (G–H) PLS-DA scores plots of urine obtained from the UPLC-Q-TOF-MS 
with age in (G) left: the negative mode, and (H) right: the positive mode in the training group. (n = 24 each time point). 
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the left (Figure 2C); the same was true for the positive 

mode (Supplementary Figure 2B, 2C). In total, 1,251 

metabolites in ESI− mode and 2,907 metabolites in 

ESI+ mode were selected by VIP (VIP > 1.0) based on 

PLS-DA score, of which 1,091 in ESI− mode and 1,559 

in ESI+ mode overlapped with the time-series data 

(Figure 2D and Supplementary Figure 2D). 

We next attempted to determine if there were conserved 

changes in urinary metabolite profiling and conducted a 

parallel analysis in the test group. Using the “80% rule” 

filter criteria of primary data in the test group, we 

derived a list of 9,008 metabolites in the negative mode 

and 24,951 metabolites in the positive mode for 

subsequent multivariate statistical analysis. Similar 

 

 
 

Figure 2. Screening metabolites in combination with time-series analysis and variable importance in the project (VIP) value 
in the negative mode in the training group. (A) Metabolic aging trajectories. Fuzzy c-mean clustering of all 10729 metabolite 

abundances. Average trend of clusters is shown as a black line. (B) PLS-DA scores plots of rat urine at 25 weeks and 100 weeks. (ESI−, R2Y= 
0.881, Q2 = 0.80). (n = 24 each time point). (C) Permutation test with 2 components of PLS-DA score plot. (D) Venn diagrams demonstrated 
the overlap of metabolites in combination with two algorithms. 
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results were obtained for classification trends by the 

PLS-DA trajectory analysis and PLS-DA score plot of 

the two time points (Supplementary Figure 3A–3F), 

suggesting the repeatability of our data. 

 

Screening of aging-related metabolites based on 

machine learning 

 

Considering the data characterized by small sample 

sizes with high dimensionality, we next combined two 

different machining learning algorithms to select the 

aging-related metabolites for classifying 25 and 100 

weeks based on 1,091 metabolites in ESI− mode or 

1,559 metabolites in ESI+ mode. First, we used the 

LASSO algorithm to narrow down the range of aging-

related metabolites in the training cohort (Figure 3A and 

Supplementary Figure 4A). For the LASSO penalized 

regression model, the variables were determined by 

finding the lambda (λ) with the smallest classification 

error. As a result, a total of 14 metabolites in ESI− 

mode and 16 metabolites in ESI+ mode were screened. 

We also applied the SVM-RFE algorithm to select 

aging-related metabolites (Figure 3B and 

Supplementary Figure 4B). The SVM-RFE algorithm 

selects a feature by eliminating variables one by one 

based on the feature value ranks computed by the SVM 

classifier. To obtain more data generated by the 

intersection of the two methods, we selected the top 300 

metabolites based on feature value ranks in the ESI− or 

ESI+ mode. In combination with the LASSO and SVM-

RFE algorithms, 300 metabolites in ESI− mode and 305 

metabolites in ESI+ mode related to aging were 

identified by the union, 14 of which in ESI− mode and 

11 in ESI+ mode as candidate metabolites were selected 

simultaneously by two algorithms (Figure 3C and 

Supplementary Figure 4C). In addition, we applied 

these candidate metabolites to predict the aging status in 

the test cohort using receiver operating characteristic 

analysis. We found that these metabolites perfectly 

separated the young and old status in the test cohort, 

and the area under the curve was 1 in either the ESI− or 

ES1+ mode (Figure 3D and Supplementary Figure 4D), 

suggesting that the 25 candidate metabolites could be 

good aging predictors. The 25 candidate metabolites are 

shown in the heat map (Figure 3E), reflecting the 

dramatic metabolic changes at the old stage. 

 

Identification of aging-associated biomarkers 

 

In this study, 25 candidate metabolites related to aging 

biomarkers were confirmed by comparing their retention 

times, exact mass, and tandem mass spectrometry 

fragmentation patterns with those of the standards using 
MassFragment software. As a result, a total of six 

metabolites were identified (Table 1). The abundance of 

these metabolites in both the positive and negative modes 

is shown in Figure 4A–4L. Epinephrine and 

glutarylcarnitine levels in rats aged 25 weeks were 

remarkably higher than those in rats aged 100 weeks, 

whereas L-kynurenine, N-acetylcitrulline, taurine, and 3-

hydroxydodecanedioic acid in rats aged 25 weeks were 

robustly lower than those in rats aged 100 weeks, in both 

the training and test cohorts (Figure 4A–4L). Of 

particular interest, we found that these identified 

metabolites were in cluster 8 or 9 in the negative mode 

and in cluster 3 or 4 in the positive mode (Table 1), 

indicating that these identified metabolites can be reliable 

aging biomarkers reflecting the aging trajectories. 

 

Aging-associated biomarkers and tumor occurrence 

in rats 

 

Given that we observed that many rats carried 

spontaneous tumors during the long-term feeding period 

(Table 2), it is interesting to determine whether there are 

mechanistic links between aging and tumors. Although 

no tumors were found in 25-week-old rats, some 

developed tumors after 25 weeks. Therefore, we first 

selected rats aged 25 weeks to explore the relationship 

between the identified aging-related metabolites and the 

occurrence of tumors in the future (predicting tumor). 

Epinephrine, glutarylcarnitine, L-kynurenine, taurine, 

and N-acetylcitrulline did not differ between tumor-free 

rats and tumor-bearing rats, whereas the 3-

hydroxydodecanedioic acid level was higher in the 

tumor-bearing rats than in the tumor-free rats (Figure 

5A–5F). To further investigate the potential 

contribution of aging-related metabolites to tumors, the 

rats aged 100 weeks were analyzed. We found that, 

compared to that in tumor-free rats, epinephrine, 

glutarylcarnitine, L-kynurenine, taurine, and 3-

hydroxydodecanedioic acid levels were not different, 

but N-acetylcitrulline in the tumor-bearing rats was 

obviously increased (Figure 5G–5L). 

 

DISCUSSION 
 

Multiple studies have sought to identify genetic and 

metabolite factors that affect lifespan [2–4, 6, 13–15]. 

Extending this prior work, in this study, we used high-

performance LC/MS to dynamically detect urine 

metabolites with increasing age in the training cohort 

and selected 25 candidate metabolites related to aging 

by combining four algorithms, including VIP, time-

series, LASSO, and SVM-RFE. We further validated 

the candidate metabolites using the test cohort, in which 

these metabolites could stratify the test data into two 

distinct subgroups with young or old age. Finally, we 

identified six metabolites from 25 candidates, some of 

which were not previously associated with aging, which 

offers a novel view of the potential pathways that 

counteract aging. In addition, we assessed the 
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associations between the identified aging-related 

metabolites and tumor occurrence. 

To gain insight into the mechanism underlying 

metabolism and aging and to identify targets for 

 

 
 

Figure 3. Two algorithms based on machine learning were used for feature selection in the negative mode. (A) Least Absolute 
Shrinkage and Selector Operation (LASSO) algorithm in the training group. (B) Support Vector Machine-Recursive Feature Elimination (SVM-
RFE) algorithm in the training group. (C) Venn diagrams demonstrated the overlap of metabolites in combination with two algorithms. (D) 14 
candidate metabolites detected in the training group were validated in the test group using receiver operator characteristic (ROC) curve 
analysis. (E) Cluster analysis of 25 metabolites in both the negative and positive mode simultaneously selected from the LASSO and SVM-RFE 
algorithms in the training group. 
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Table 1. Urinary biomarkers identified in the negative and positive modes. 

Mode Ion Compound ID Formula Identified metabolites VIP Cluster 

− [M-H]− 0.54_464.9674n Unknown Unknown 1.422 9 

− [M-H]− 0.54_634.9804m/z Unknown Unknown 1.210 9 

− [M-H]− 0.82_124.0064m/z C2H7NO3S Taurine 15.06 9 

− [M-H]− 0.82_696.0670m/z Unknown Unknown 1.111 9 

− [M-H]− 0.87_145.0132m/z C5H6O5 Unknown 1.945 8 

− [M-H]− 1.35_284.0821m/z Unknown Unknown 1.105 9 

− [M-H]− 4.43_375.0497m/z Unknown Unknown 2.097 9 

− [M-H]− 5.89_536.1462m/z Unknown Unknown 1.919 7 

− [M-H]− 6.42_182.0807m/z C9H13NO3 Epinephrine 1.647 8 

− [M-H]− 7.13_391.1292m/z C22H20N2O5 C22H20N2O5 1.376 8 

− [M-H]− 7.46_332.9504n Unknown Unknown 1.508 9 

− [M-H]− 8.18_303.0531m/z C14H10O5 C14H10O5 1.610 8 

− [M-H]− 8.44_301.1997m/z C16H30O5 C16H30O5 1.467 8 

− [M-H]− 9.13_305.1583m/z Unknown Unknown 4.026 8 

+ [M+H]+ 0.62_445.1765n Unknown Unknown 1.350 4 

+ [M+H]+ 1.32_217.1055n C8H15N3O4 N-acetylcitrulline 3.116 3 

+ [M+H]+ 5.88_538.1597m/z Unknown Unknown 2.164 3 

+ [M+H]+ 1.51_343.1606m/z Unknown Unknown 1.523 3 

+ [M+H]+ 1.73_292.1783n C12H22O5 3-Hydroxydodecanedioic acid 2.380 3 

+ [M+H]+ 2.09_276.1436m/z C12H21NO6 Glutarylcarnitine 10.86 4 

+ [M+H]+ 6.17_209.0915m/z C10H12N2O3 L-Kynurenine 1.147 3 

+ [M+H]+ 7.30_384.2007m/z Unknown Unknown 1.155 3 

+ [M+H]+ 8.21_274.1978m/z Unknown Unknown 1.139 4 

+ [M+H]+ 4.89_187.0983m/z Unknown Unknown 1.444 4 

+ [M+H]+ 9.18_331.2262m/z C21H30O3 Unknown 5.441 4 

 

delaying aging, identifying reliable biomarkers related 

to aging may be an effective strategy. The emerging 

algorithms are likely to contribute to biomarker 

discovery, especially machine learning, including 

LASSO and SVM. Indeed, many studies have applied 

machine learning models to disease diagnosis and 

prognosis, as well as marker identification. Jiliang 

et al., found that MSEH, a three-CpG-based signature, 

favors recurrence prediction in patients with early 

stage hepatocellular carcinoma based on the LASSO-

logistic regression and SVM-RFE algorithms [16]. 

Liang et al., (2016) used machine learning to identify 

15 metabolites in urine metabolomics as 

hepatocarcinoma markers [17]. Furthermore, previous 

studies have applied machine learning to reveal 

metabolites associated with age in a healthy adult 

population using cross-sectional data [18, 19]. 

However, the application of machine learning to 

dynamically screen urine metabolites related to aging 

in a cohort is still lacking. In this study, we established 

two cohorts of rats, starting from early adulthood to 

old age. We selected and identified six candidate 

metabolites in combination with multiple algorithms, 

including VIP, time-series analysis based on soft 

cluster, LASSO, and SVM-RFE. It is interesting to 

note that although we set loose restrictions in the time-

series analysis, the six identified aging-related 

metabolites were found in clusters 8 and 9 in the ESI− 

mode or in clusters 3 and 4 in the ESI+ mode, which 

displayed semi-U-shaped or semi-parabolic-shaped 

aging trajectories characterized by a gradual increasing 

or decreasing trend with increasing age. We further 

found that the abundance of the six metabolites was 

remarkably higher or lower at the age of 100 weeks 

than at 25 weeks, although we did not set a p-value 

limit in our screening process, suggesting that machine 

learning may be an alternative statistical tool to the 

traditional p algorithm. 
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Consistent with prior reports relating to taurine levels 

declining with age in the cornea [20], we also found a 

decrease with age in urine. Taurine, a ubiquitous sulfur-

containing amino acid, regulates mitochondrial 

function, inhibits mitochondrial ROS production, and 

suppresses inflammation [21–24], indicating its 

potential antiaging function. Accordingly, taurine 

transporter knockout mice display abnormal skeletal 

muscle and accelerated skeletal muscle aging [25]. In 

addition, taurine supplementation has been reported to 

delay aging-associated diseases, including chronic heart 

failure [26], diabetes [27], and endothelial dysfunction 

[28]. 

 

Additional metabolites related to aging included L-

kynurenine, which is a major degradation metabolite of 

tryptophan. Inhibition of tryptophan conversion to l-

kynurenine is sufficient to prolong lifespan [29, 30]. A 

previous study showed that the plasma tryptophan/L-

kynurenine ratio increased with age. In contrast, we 

found that L-kynurenine abundance decreased with age 

in urine. We speculate that the decrease in L-kynurenine 

 

 
 

Figure 4. Violin plots for the six potential biomarkers abundance with aging. 1, 2, 3, and 4 in the X axis are represented as 20, 25, 

50, 75, and 100 weeks, respectively. (A–F) Normalized abundance of metabolites in both the negative and positive modes in the test group, 
including (A) epinephrine, (B) glutarylcarnitine, (C) L-kynurenine, (D) N-acetylcitrulline, (E) taurine, and (F) 3-hydroxydodecanedioic acid 
(3OHDC12). (G–L) Normalized abundance of metabolites in the negative and positive modes in the training group, including (G) epinephrine 
(H) glutarylcarnitine, (I) L-kynurenine, (J) N-acetylcitrulline, (K) taurine, and (L) 3-hydroxydodecanedioic acid (3OHDC12). (P < 0.0001 for the 
comparisons between 25 and 100 weeks for the six candidate metabolites in both the test and training groups; one-way ANOVA). 
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Table 2. Pathological tumor classification determined by a veterinary pathologist in rats. 

Location Tumor 
25 weeks (n = 36) 100 weeks (n = 36) 

Predicting tumor (n = 16) Tumor (n = 14) 

Head 

Hepatocellular carcinoma 1 0 

Pituitary adenoma 2 3 

Unspecified tumor 1 2 

Thoracic cavities 

Lymphoma 2 0 

Squamous cell carcinoma 0 1 

Myxoma (unspecified tumor) 1 0 

Abdominal cavities 

Hepatocellular carcinoma 1 2 

Adenocarcinoma 1 1 

Lymphoma 1 0 

Mucoid carcinoma 0 1 

Epitheliogenic tumor (unspecified tumor) 0 1 

Subcutaneous 

Squamous cell carcinoma 1 2 

Subcutaneous fibrosarcoma 1 0 

Fibroma 1 0 

Myxoma (unspecified tumor) 3 2 

 Total numbers of tumors 16 14 

 

may be due to the decline of tryptophan with age, 

suggesting that the ratio of tryptophan/L-kynurenine 

may be more effective as an aging-related marker than 

L-kynurenine alone. 

 

N-acetylcitrulline is a citrulline metabolite involved in 

the arginine synthesis pathway [31]. Although a causal 

link between lifespan and acetylcitrulline has not been 

established, the arginine synthesis pathway involved is 

shown to be implicated in longevity. Arginine 

supplementation increased the lifespan of C. elegans by 

activating the DAF-16/FOXO or SKN-1/Nrf2 stress 

response pathways [32]. Moreover, intracellular L-

arginine supplementation enhances the survival of T 

cells and favors antitumor responses [33]. 

 

Epinephrine is the main hormone in the adrenal medulla 

[34]. Although data relating epinephrine to longevity 

are scant, a substantial body of research has implicated 

epinephrine function in increasing memory [35–37], 

regulating blood pressure [38, 39], and lowering blood 

sugar [40]. The link between other metabolites, 

including glutarylcarnitine and 3-hydroxydodecanedioic 

acid, and aging has not been established previously. 

Glutarylcarnitine is formed through the combination of 

glutaryl-CoA and carnitine and participates in protein 

biosynthesis [41]. 3-Hydroxydodecanedioic acid is an 

organic compound known as a medium-chain fatty acid. 

Current research on glutarylcarnitine and 3-hydro-

xydodecanedioic acid has focused on its relationship 

with glutaric aciduria type I and the disorder in fatty 

acid oxidation, respectively [42–47]. Further research is 

needed to investigate the relationship between 

glutarylcarnitine and 3-hydroxydodecanedioic acid 

metabolism and lifespan. 

 

Because tumors are closely related to aging, delaying 

tumor occurrence over the life course would appear to 

strongly favor longevity [48–51]. Therefore, we also 

assessed the association between the identified aging-

related metabolites and tumor occurrence. Among the 

six candidate metabolites, compared with tumor-free 

rats, we found that 3-hydroxydodecanedioic acid and N-

acetylcitrulline levels were increased in predicting 

tumor-bearing rats at 25 weeks and in tumor-bearing 

rats at 100 weeks, respectively. Consistent with our 

findings, N-acetylcitrulline has been shown to be 

associated with the incidence of mammary cancers [52] 

and prostate cancer [53, 54]. Notably, we observed that 

3-hydroxydodecanedioic acid was related to predicting 

tumor occurrence at 25 weeks, but not tumor occurrence 

at 100 weeks, implying that 3-hydroxydodecanedioic 

acid may not fit well in tumor diagnosis. In addition, it 

is interesting to note that in contrast to an increase in 

tumor rats, 3-hydroxydodecanedioic acid and N-

acetylcitrulline decreased with increasing age, 

indicating a complexity related to the aging of the 

tumor. Because of the different and specific metabolic 
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microenvironment and biological metabolic processes, 

it is reasonable to speculate that most aging-related 

markers are independent of spontaneous tumors, 

although some aging-related markers can be influenced 

by tumors in this study. 

 

Our study had several limitations. Only male sex was 

investigated in this experiment, although sex is known 

to be involved in different responses to aging and 

metabolic homeostasis [55]. In addition, we identified 

six aging-related metabolites that have not yet been 

validated in human samples; thus, our observations 

should be considered as hypothesis-generating that only 

provides a potential application of these biomarkers in 

humans. Further investigations of these candidate 

metabolites in human cohorts of different ages and 

sexes are warranted. 

 

In summary, we screened six metabolites as known or 

novel aging-related markers in two long-term rat 

 

 
 

Figure 5. Violin plots for the six potential biomarkers abundance between tumor-free rats and predicting tumor-bearing rats 
or tumor-bearing rats. At 25 weeks, 0 and 1 in the X-axis are represented as tumor-free rats and tumor-bearing rats, respectively. At 100 
weeks, 0 and 1 in the X-axis are represented as tumor-free rats and tumor-bearing rats, respectively. (A–F) Normalized abundance of 
metabolites in both the negative and positive modes at 25 weeks, including (A) epinephrine, (B) glutarylcarnitine, (C) L-kynurenine, (D) N-
acetylcitrulline, (E) taurine, and (F) 3-hydroxydodecanedioic acid (3OHDC12). (G–L) Normalized abundance of metabolites in both the 
negative and positive modes at 100 weeks, including (G) epinephrine (H) glutarylcarnitine, (I) L-kynurenine, (J) N-acetylcitrulline, (K) taurine, 
and (L) 3-hydroxydodecanedioic acid (3OHDC12). (p < 0.05 was considered statistically significant; t-test). 
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experiments in combination with different algorithms 

and applied machine learning. These findings may pave 

the way for the prediction of aging and targeting of anti-

aging agents. Further research is needed to confirm the 

mechanism underlying the identified metabolites and 

aging, as well as its investigation in the human 

population. 

 

MATERIALS AND METHODS 
 

Animals and diets 

 

A total of 90 male Wistar rats aged 8 weeks were 

supplied by the Vital River Laboratory Animal 

Technology Company LTD (Beijing, China). After 

three days of adaptation, all rats were randomly 

assigned to three groups with different purified diets 

based on the standard purified rodent diet (AIN-93G) 

paradigm: regular control diet (AIN-93G diet), high-

protein diet, and high-fat diet. A high-protein feed 

was developed by adjusting the content of casein, 

corn starch, and sucrose according to AIN-93G. The 

high-fat feed was developed by adjusting lard, corn 

starch, sucrose content, and micronutrient content 

according to AIN-93G. In this study, we combined 

the first two diet groups as the training group and the 

other diet group as the test group. We aimed to 

investigate aging trajectories and aging-related 

metabolites, regardless of diet influence. All animals 

were housed in a single stainless-steel cage. The rats 

were fed daily, and food intake was recorded once 

every one–two days. To ensure palatability, pellet 

chow was produced every 3 months and stored at -

20°C. Body weight was monitored weekly in the 

morning. Rats were maintained in a light/dark cycle 

for 12/12 h at a temperature of 21 ± 2°C and 

humidity of 50%–60% under pathogen-free 

conditions. In this long-term experiment, rats were 

euthanized when they were considered inharmonious 

with continued survival based on the euthanasia 

criteria from the AAALAC guidelines (data not 

shown). All protocols were approved by the Medical 

Ethics Committee of Harbin Medical University 

(Harbin, China) and were performed in accordance 

with the Guide for Care and Use of Laboratory 

Animals (ethics number: 2015138). 

 

Collection of urine 

 

Animal urine was dynamically collected at four time 

points using metabolic cages (training group: n = 24 

each time, test group: n = 12 each time; age = 25, 50, 

75, and 100 weeks). A 24-h urine was collected and 

then divided into several tubes and stored at −80°C for 

further measurement after being centrifuged at 3000 

rpm for 15 min at 4°C. 

Metabolomics analysis of rat urine by UPLC/Q-TOF 

MS 

 

Urinary untargeted metabolomics analysis was performed 

using ultra-performance liquid chromatography and 

quadrupole time-of-flight tandem mass spectrometry 

(UPLC-Q-TOF-MS) is described as follows: 

 

Chemicals and reagents 

 

The following reagents used are high-performance liquid 

chromatography (HPLC) grade: acetonitrile (Fisher 

Scientific Los Angeles, CA, USA), methanol (Fisher 

Scientific Los Angeles, CA, USA), formic acid (Sigma-

Aldrich, St Louis, MO, USA) and leucine-enkephalin 

(Sigma-Aldrich, St Louis, MO, USA). Ultrapure water 

was prepared using an Ultra Clear System (Siemens 

Water Technologies, Nuremberg, Germany). 

 

Sample preparation 

 

Urine samples were thawed at 4°C, vortex-mixed for 1 

min, diluted 1:11 (v/v) with water, mixed by vortexing 

for 1 min, and centrifuged at 12 000 × g for 10 min at 

4°C. The supernatant was transferred to an autosampler 

vial. All samples were taken equally and mixed well to 

prepare quality control (QC) samples. 

 

Chromatography 

 

Chromatographic separation was carried out using a 

Waters ACQUITY UPLC System (Waters, Milford, 

MA) with an HSS T3 column (100 × 2.1 mm; id. 1.7 

um; Waters). A 2 µL urine sample was injected into the 

column maintained at 35°C at a flow rate of 0.45 

mL/min through a 4°C autosampler. The mobile phase 

included solutions A (0.1% formic acid in water) and 

solution B (pure acetonitrile). The elution gradients 

were as follows: 2% B for 0–0.5 min, 2%–20% B for 

0.5–7 min, 20%–35 % B for 7–8 min, 35%–70% B for 

8–9.5 min, 70%–98% B for 9.5–11 min, 98% B for 11–

13 min, 2% B for 13–14 min, 2% B for 14–16 min in 

the positive and negative ion modes. Acetonitrile as a 

blank and QC were injected every 15 samples, 

respectively, and urine samples at different time points 

were run alternately to eliminate the bath effect. 

 

Mass spectrometry 

 

Mass spectrometry was performed using a Waters 

Micromass Q-TOF (Waters, Manchester, UK) equipped 

with electrospray ionization (ESI) in the positive and 

negative modes. The parameters were set as follows: 
capillary voltage, 0.5 kV; sample cone voltage, 60 V; 

collision energy, 6 eV; source temperature, 110°C; 

desolvation gas (nitrogen) flow, 900 L/h; desolvation 
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temperature, 450°C; cone gas (nitrogen) flow, 50 L/h; 

collision gas, argon; and MCP detector voltage, 2550 V. 

The scan mass range was 50–1200 m/z for 0–16 min. A 

concentration of 200 pg/µL leucine-enkephalin was 

used as the mass spectrum correction ion lock mass 

([M+H] = 556.277 1, [M–H] = 554.261 5). Scan 

frequency was set at 0.2 s every 15 s scans for 

correction. The MS/MS spectra of the potential 

biomarkers were obtained by UPLC-QTOF-MS/MS. 

 

Data processing 

 

Raw data were uploaded to the QI (version 2.1; Waters 

Corporation, Milford, MA, USA) for peak detection and 

alignment, and were further analyzed using EZ info 

software (version 2.0; Umetrics AB, Umea, Sweden) 

and SIMCA-P (version 12.0; Umetrics AB, Umea, 

Sweden). To eliminate the variations in urine 

concentrations of different rats, normalization of each 

ion intensity to the total ion intensity for each 

chromatogram was performed. Prior to multivariate 

statistical analysis, the “80% rule” filter criteria as a 

common method were used to filter missing values that 

arise from technology or sample and impact the 

statistical analysis in metabonomics research [56]. 

Multivariate statistical analysis was performed based on 

the Pareto-scaled or UV-scaled data. Principal 

component analysis (PCA) was conducted by combining 

QC samples and all experimental samples to evaluate the 

reproducibility and quality of the data. Partial least 

squares-discriminant analysis (PLS-DA) was applied to 

visualize the maximal separation at different time points. 

200 Random permutation testing was carried out to 

avoid over-fitting of PLS-DA models using SIMCA-P 

software (version 12.0; Umetrics AB, Umea, Sweden). 

Metabolites with variable importance in the project 

(VIP) value above 1.0, were selected for analysis. 

 

The metabolites were first identified using Progenesis 

QI software linked to online databases, such as 

ChemSpider (http://www.chemspider.com), the Human 

Metabolome Database (HMDB) (http://www.hmdb.ca), 

METLIN (http://metlin.scripps.edu/) and Pubchem 

(http://pubchem.ncbi.nlm.nih.gov/) (the tolerance mass 

was set at 10 ppm). The MassFragment™ application 

manager (MassLynx v4.1, Waters Corp., USA) was 

used to facilitate the MS/MS fragment ion analysis 

process based on chemically intelligent peak-matching 

algorithms. Finally, the biomarkers were further 

confirmed by standard substances based on both 

retention times and MS/MS spectra. 

 

Pathology examinations 

 

Tumors were fixed in 4% paraformaldehyde and 

embedded in paraffin. Paraffin sections (6 µm thick) 

were stained with hematoxylin and eosin (H&E). 

Histological examinations were performed by 

pathologists who were blinded to the study groups.  

 

Statistical analysis 

 

Unless otherwise stated, data are presented as the mean 

± SD. Food intake and body weight trajectories were 

plotted using generalized additive models to fit a 

smooth curve, using R version 3.6.2. The packages of 

Mfuzz, glmnet, and e1071 were loaded to calculate 

time-series, LASSO, and SVM-RFE, respectively, using 

R software. Receiver operator characteristic (ROC) 

curve analysis was performed by R. Differences were 

analyzed by one-way ANOVA test or nonparametric 

Kruskal–Wallis test and p value < 0.05, which was 

considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. PCA scores plots of urine obtained from the UPLC-Q-TOF-MS. PCA score plots including quality control 
(QC) samples and experimental samples of time data in (A) the positive mode and (B) the negative mode. 

 



 

www.aging-us.com 14339 AGING 

 

 

Supplementary Figure 2. Screening metabolites in combination with time-series analysis and variable importance in the 
project (VIP) value in the positive mode in the training group. (A) Metabolic aging trajectories. Fuzzy c-mean clustering of all 27962 

metabolite abundances. Average trend of clusters is shown as a black line. (B) PLS-DA scores plots of rat urine at 25 weeks and 100 weeks. 
(ESI+, R2Y= 0.784, Q2 = 0.727). (n = 24 each time point). (C) Permutation test with 2 components of PLS-DA score plot. (D) Venn diagrams 
demonstrated the overlap of metabolites in combination with two algorithms. 
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Supplementary Figure 3. Aging trajectories in the negative and positive modes in the test group. (A–B) PLS-DA scores plots of 

urine obtained from the UPLC-Q-TOF-MS with aging in (A) left: the negative mode, and (B) right: the positive mode in the test group. (n = 12 
each time point) (C–D) PLS-DA scores plots at 25 weeks and 100 weeks in (C) left: the negative mode, and (D) right: the positive mode in test 
group. (ESI−, R2Y= 0.95, Q2 = 0.832; ESI+, R2Y= 0.946, Q2 = 0.895). (n = 24 each time point). (E–F) Permutation test with 2 components of PLS-
DA scores plots related to Figure C and D in (E) left: the negative mode, and (F) right: the positive mode in the test group. 
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Supplementary Figure 4. Two algorithms based on machine learning were used for feature selection in the positive mode. 
(A) Least Absolute Shrinkage and Selector Operation (LASSO) algorithm in the training group. (B) Support Vector Machine-Recursive Feature 
Elimination (SVM-RFE) algorithm in the training group. (C) Venn diagrams demonstrated the overlap of metabolites in combination with two 
algorithms. (D) 11 candidate metabolites detected in the training group were validated in the test group using receiver operator 
characteristic (ROC) curve analysis. 

 


