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INTRODUCTION 
 

Glioma is the most common primary intracranial 

tumor, with an annual incidence of 6.6 per 100,000 

individuals in the USA [1–3]. Adult gliomas can be 

subdivided into grades II–IV according to the WHO 

(World Health Organization) grading system based on 

their degree of malignancy [1–3]. Glioblastoma 

(GBM) is a malignant brain tumor and is the most 

frequent and aggressive form of glioma [1]. The 

treatment options for GBM (glioblastoma) patients 

include surgical resection, radiotherapy and chemo-

therapy [2, 4, 5]. Unfortunately, population-based 

studies have shown that the median patients survival 

times for these patients is only approximately 15 

months [1, 4], and the five-year survival rates for 
glioblastoma is 6.8% [1, 6]. 

 

Aging is characterized by progressive and irreversible 

reduction in body functional integrity and homeostasis 
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ABSTRACT 
 

Aging has a significant role in the proliferation and development of cancers. This study explored the expression 
profiles, prognostic value, and potential roles of aging-related genes in gliomas. We designed risk score and 
cluster models based on aging-related genes and glioma cases using LASSO Cox regression analysis, consensus 
clustering analysis and univariate cox regression analyses. High risk score was related to malignant clinical 
features and poor prognosis based on 10 datasets, 2953 cases altogether. Genetic alterations analysis revealed 
that high risk scores were associated with genomic aberrations of aging-related oncogenes. GSVA analysis 
exhibited the potential function of the aging-related genes. More immune cell infiltration was found in high-risk 
group cases, and glioma patients in high-risk group may be more responsive to immunotherapy. Knock-down of 
CTSC, an aging-related gene, can inhibit cell cycle progression, colony formation, cell proliferation and increase 
cell senescence in glioma cell lines in vitro. Indeed, high expression of CTSC was associated with poor prognosis 
in glioma cases. In conclusion, this study revealed that aging-related genes have prognostic potential for glioma 
patients and further identified potential mechanisms for aging-related genes in tumorigenesis and progression 
in gliomas. 
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and is associated with increased vulnerability to death 

[7, 8]. Aging is associated with increased risk for 

several diseases such as cancer (Figure 1), 

neurodegenerative disease, and stroke [9, 10]. Cancer 

and aging share some hallmarks such as epigenetic 

alteration, reprogrammed metabolism, immune and 

inflammation injury and aberrant telomeres [10–13]. 

Furthermore, there are signaling pathways that are 

common between aging and cancer, such as the Arf/p53 

pathway, AIM2-like receptors, and toll-like receptors 

[10, 14, 15]. Aging can also increase the risk for cancer 

through factors associated with immunity and 

inflammation [16, 17]. A lot of aging-related genes (eg: 

ERBB2, PTEN and P53) play important roles in cancer 

[18–20]. Cell senescence is closely associated with 

aging, with the accumulation of senescent cells in 

tissues triggering the aging process which affects the 

regenerative potential of stem cells. However, the 

senescence response is widely recognized as a potent 

barrier to the initiation of tumorigenesis and 

development of cancer [21–23]. 

 

The relationship among aging, senescence and cancer 

is not well known and there is need for further research 

to determine the association among the three factors 

[24, 25]. Aging-related genes such as CTSC and 

ARNTL are associated with several cancers. Previous 

studies have reported the role of CTSC in some 

 

 
 

Figure 1. Aging process leads to inflammation and immune injury, increases genomic instability, epigenetic alteration, 
aberrant telomeres and affects immune cells infiltration, and reprogram metabolism, which might then promote the 
occurrence and development of cancer. 
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cancers, but its relationship with aging and gliomas is 

not clear [26–28]. 

 

It is unclear if aging-related genes have a significant 

effect on gliomas and the mechanism underlying this 

effect. In this study, using data obtained from the 

CGGA (the Chinese Glioma Genome Atlas) and TCGA 

(the Cancer Genome Atlas), we determined if aging-

related genes have any relationship with the molecular 

features, clinical features and prognosis of glioma 

patients. Results from this study may provide insight 

into potential therapeutic and diagnostic targets for 

gliomas. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The clinical information (age, gender, mutational status, 

isocitrate dehydrogenase (IDH), 1p/19q codelet, giloma 

grade, type and survival information) and mRNA 

expression profiles derived from TCGA (The Cancer 

Genome Atlas) (http://cancergenome.nih.gov) and the 

CGGA (Chinese Glioma Genome Atlas) (http://www. 

cgga.org.cn). The data obtained from TCGA was used 

as the training set, while the data obtained from CGGA 

was used as the validation set. Other glioma datasets 

were got from GEO (https://www.ncbi.nlm.nih.gov/ 

geo/). Cases from IMvigor datasets were used to 

analysed the response to immunotherapy of cases with 

different risk score. The differential expression of 

aging-related genes was displayed using heat maps. 

 

Select aging-related genes and univariate cox 

regression analyses 

 

We selected 321 aging-related genes by compiling 7 gene 

sets associated with aging from GSEA (https://www.gsea-

msigdb.org). Of the 321 genes, we found 312 genes in the 

TCGA dataset. We then performed univariate cox 

regression analyses and identified 249 potential genes 

with close association with aging. 

 

Least absolute shrinkage and selection operator cox 

regression 

 

Survival risk assessment model was construct using 

aging-related genes, by Least absolute shrinkage and 

selection operator (LASSO) Cox regression (lambda 

1se) analysis. In light of the highest lambda value [29], 

the LASSO coefficients were calculated, using 

prognostic aging-related genes. Then the risk score 

model was constructed on the basis of LASSO 

coefficients. Relationship among clinical features, risk 

score and aging-related genes was displayed using box 

plots and heat maps. 

Consensus clustering analysis 

 

Using consensus clustering analysis, the glioma cases in 

TCGA and CGGA were grouped into several subgroups 

according the mRNA expression levels of aging-related 

genes. 

 

Gene set variation analysis (GSVA) 

 

Using “GSVA package”, functional enrichment 

analysis was performed as previously described [30] 

to reveal the mechanisms of action of the aging-

related genes in the initiation and progression of 

gliomas. 

 

Analysis of genetic alterations 

 

Analysis of somatic copy number alternations 

(SCNAs) and somatic mutations were conducted to 

investigate genetic alterations in gliomas based on 

TCGA database. These samples were divided into low 

and high-risk score groups based on the values of the 

risk scores. The 20 genes with the most mutations in 

the two groups were screened and displayed. 

Additionally, GISTIC 2.0 was used to compare 

SCNAs between the two groups, and gene copy 

number variation data downloaded from TCGA [31]. 

We also obtained the threshold copy number using 

GISTIC analysis. 

 

Survival analysis 

 

Using Kaplan-Meier method and log-rank test, Survival 

curves were generated and compared. The OS (Overall 

Survival), PFI (Progression Free Survival), and DSS 

(Disease Free Survival) rates of cases in the high and 

low-risk groups were compared. We also conducted 

and compared survival analyses between the two 

clusters. 

 

Receiver operating characteristic (ROC) 

 

The prediction value of clusters, risk score, grade and 

age was compared using ROC in some respects, 

including 5-year OS, 5-year PFI, 5-year DSS, IDH 

status, MGMT status, 1p19q codel status, subtypes. 

 

Cell culture and treatment 

 

U251 cells and SHG-44 cells were cultured in DMEM 

medium (Sigma, USA, #D5796) supplemented with 

10% Gibico FBS and 1% double antibody (Gibco, USA, 

#10099141). The media was changed every 2 - 3 days. 
When the cell confluence reached about 80%, trypsin 

(Beyotime Biotechnology, Shanghai, China, #C0201) 

was used to digest the cells and divide them into two 

http://cancergenome.nih.gov/
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
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groups for cell passage. The two types of logarithmic 

growth cells were grouped as follows: Control group: 

U251 cells and SHG-44 cells were not treated, siRNA-

NC group: U251 cells and SHG-44 cells were 

transfected with siRNA-NC, siRNA-837 group: U251 

cells and SHG-44 cells transfected siRNA-837 (Honor 

Gene, Changsha, China), siRNA-963 group: U251 cells 

and SHG-44 cells transfected siRNA-963 (Honor Gene, 

Changsha, China). 

 

Serum-free DMEM (95 µL) was added into 8 sterile 

centrifuge tubes. Thereafter, 5 µL siRNa-NC and 5 µL 

Lip2000 were added into each centrifuge tube followed 

by the addition of siRNA-623, siRNA-837, and siRNA-

963 into the corresponding centrifuge tube. The mixture 

was gently mixed and kept at room temperature for 5 

min. Afterwards, the solutions in two tubes of same 

group were mixed and kept at room temperature for 20 

min. Finally, the mixture was slowly added to the 

transfection hole and mixed. The cells were then 

incubated at 37° C, and the culture medium was 

changed after 6 h. Samples were collected for sub-

sequent experiments after 48 h. 

 

Quantitative real time PCR 

 

The mRNA was extracted using the RNeasy kit 

(Thermo, USA, #15596026) according to the 

manufacturer’s instruction. This was followed by the 

reverse-transcription of mRNA to cDNA using the 

mRNA reverse transcription kit (cwbio, Beijing, China, 

#CW2569). The primers sequences were generated 

using NCBI (table). The primers for H-actin were (5’-

ACCCTGAAGTACCCCATCGAG-3’ (Forward), 5’-

AGCACAGCCTGGATAGCAAC-3’ (Reverse)), While 

the primers for H-CTSC were (5’-GCTACTGACTTTC 

TTGCCTAAACCA-3’ (Forward), 5’-CAACAGAGCA 

GGAAACAAGACC-3’ (Reverse)). The thermocycler 

was set at 95° C for 10 min, followed by 40 cycles of 

95° C for 15 s, and 60° C for 30 s. qRT-PCR was 

conducted using a Fluorescence quantitative RCP 

instrument (Thermo, USA, #PIKOREAL96). Data were 

analyzed with 2-ΔΔCt value calculation. 

 

Cell counting kit-8 (CCK-8) assay 

 

U251 cells and SHG-44 cells were seeded in  

96-well plates and cultured in RPMI-1640. Cell 

proliferation index was measured at 0, 12, 24, 48 and 

72 h using Cell Counting Kit-8 (Dojindo, Japan, 

#CK04-500). 

 

SA-β-galactosidase (β-gal) staining 

 

β-gal staining was performed using the β-Galactosidase 

Staining Kit (Beyotime Biotechnology, Shanghai, 

China, #C0602) according to the manufacturer’s 

instructions. Briefly, the cell culture medium was 

removed, and the 12-well plates were washed once with 

PBS, before the addition of 1 ml -galactoside staining 

fixative. The cells were fixed at room temperature for 

15 minutes followed by the removal of the cell fixation 

solution, and washing with PBS or HBSS 3 times for 3 

minutes each. PBS was then removed and 1 ml of 

working staining solution added to each well. The 12-

well plates were sealed with plastic wrap to prevent 

evaporation and incubated at 37° C overnight. The 

number of positive SA-β-gal cells was determined and 

photographed using a light microscope (Olympus, 

Japan, #CX41-72C02). 

 

Plate colony formation assay 

 

SHG-44 cells and U251 cells were seeded in 6-well 

plates at a density of 200 cells/well and incubated at  

37° C and 5%CO2 for 2 weeks. Incubation of the cells 

was stopped when the cell colonies were visible to the 

naked eye. The cells were stained with Giemsa 

(Solarbio, Beijing, China) and the number of colonies 

was computed. The results were representative of 3 

independent experiments. 

 

Cell cycle analysis 

 

After transfection, the cells were washed with PBS,  

and fixed with ethanol at 4° C overnight. Thereafter, 

150 µL PI solution (Sigma, USA, #25535-16-4) was 

added at 4° C for 30 min in the dark. The distribution of 

the cells in the different cell cycle phases was analyzed 

using a flow cytometer (Beckman, USA, #A00-1-1102). 

PI was activated using 488 nm argon lasers and 

received using a 630 nm filter. 

 

Statistical analysis 

 

R software (version 3·5·3) was used to conduct 

statistical analysis. 

 

The two-tailed Students’ t-test was used to identify the 

differences between groups, and multiple groups were 

compared using one-way ANOVA test. Besides, to 

assess the PH assumption, the Schoenfeld residual plots 

was performed. In the consensus clustering analysis,  

we used the partition around medoids algorithm. 

Furthermore, the chi squared test was conducted to 

analyze clinical differences between the two clusters. 

To compare the OS, DSS and PFI of glioma cases (high 

and low-risk score, cluster 1/2), the Kaplan-Meier 

survival analyses with log-rank test was performed. To 
analyze the association between two variables, we used 

Spearman rank and considered P < 0.05 as statistically 

significant. 
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RESULTS 
 

The expression profiles of aging-related genes in 

glioma patients and LASSO cox regression analysis 

 

We retrieved 321 aging-related genes from an aging-

related gene dataset from GSEA, out of which, 312 

genes were found in TCGA. We then performed 

univariate cox regression analyses and identified 249 

genes that are closely associated with aging (p < 0.05). 

We retrieved the gene expression profiles of the 249 

genes for normal and glioma samples from the TCGA 

datasets. As shown in Figure 2A, there are distinct 

differences between the normal samples and glioma 

samples with different grades. The higher the tumor 

grade of the samples, the higher the expression of the 

aging-related genes. After introducing aging-related 

genes into LASSO Cox regression model, we identified 

ten most significant aging-related genes and their 

coefficients including EEF2, ARNTL, FBXO4, 

CHEK1, CHEK2, CTSC, MBD2, HMGA2, IGFBP2 

and TIMP1. The risk score was calculated based on 

these genes expression condition (Figure 2B, 2C). Out 

of the 19 genes, CTSC, IGFBP2 and ARNTL had the 

highest coefficient. 

 

We then retrieved the expression profiles of the 10 

genes from glioma samples of different clinical features 

from the TCGA dataset. The expression levels of 

ARNTL, FBXO4, CHEK1, CHEK2, CTSC, MBD2, 

HMGA2, IGFBP2, TIMP1 were higher, while EEF2 

expression was lower in GBM tissues compared to LGG 

(Low-grade gliomas) tissues (Figure 2D). Similar 

differences were identified between wildtype IDH 

group and mutant IDH group of the TCGA LGG GBM 

(the LGG and GBM cases form TCGA) cohort and 

TCGA LGG cohort. Furthermore, these differences in 

expression profiles were also observed between groups 

of different WHO grades except for the EEF2 gene 

(Figure 2F). There were no obvious differences in 

expression levels of these genes between mutant IDH 

group and wildtype IDH group in the GBM cohort 

(Figure 2D–2I). Moreover CHEK2, CTSC, MBD2 were 

down-regulated in LGG with 1p19q non-codeletion and 

mutant IDH (Figure 2G). 

 

Construction, characteristics and functions of risk 

score model 

 

A risk score model was constructed on basis of 

LASSO Cox regression analysis. The expression 

profiles of aging-related genes were displayed using 

heat maps for both the TCGA and CGGA datasets. A 

Volcano Plot of the two groups (high and low-risk) 

was generated (Supplementary Figure 1F). The 

samples were divided into two groups according to the 

median risk score to further investigate the prognosis 

(Figure 3A, 3B). 

 

To explore the prognostic differences between the two 

groups, we compared the OS, PFI, and DSS between 

these groups. Low-risk score cases had obviously longer 

OS, DSS, and PFI than cases with high risk score in the 

TCGA LGGGBM, GBM, LGG cohorts (Figure 3C–3I 

and Supplementary Figure 3C–3F). The high risk score 

was also associated with shorter OS in the CGGA 

datasets (Figure 3J and Supplementary Figure 3G–3H). 

In conclusion, cases with high risk score have worse 

prognosis. 

 

To further ensure the predictive effect of the risk score 

model, the OS of the low-risk and the high-risk groups 

were also compared by TCGA GBM chip. In addition, 

survival analysis was also performed in several glioma 

data sets, including GSE4271, GSE4412, GSE13041, 

GSE16011, GSE43289, GSE43378, GSE61335, 

GSE68838, GSE74187, GSE83300, GSE108474 

(Supplementary Figure 3I–3Q). The results of these 

analysis showed that the survival of cases with low risk-

score are better than the survival of high risk-score 

cases. ROC analysis was used to compare the roles of 

cluster, risk scores, grades, and age in predicting 

clinical features and prognosis on basis of CGGA and 

TCGA datasets. We found that risk score was the best 

factor in predicting 5-year OS, 5-year PFI, 5-year DSS 

and the clinicopathological features of the gliomas 

(Figure 4A–4F). These findings indicated that the model 

was a good predictor of the prognosis of glioma 

patients. 

 

In TCGA LGGGBM datasets, we found that a high 

risk score was associated with IDH wildtype, 1p19q 

noncodel, unmethylated MGMT promoter, subtype, 

progressive disease, GBM groups, higher grades, 

age≥45, and cluster1. However, there was no obvious 

differences between mesenchymal and classical 

subgroups and between groups separated by gender 

(Figure 4G, 4H). Moreover, we also observed these 

significant differences except for the MGMT promoter 

status between the mesenchymal and classical 

subtypes in the TCGA LGG (LGG cases from TCGA) 

cohort, but not in the TCGA GBM (GBM cases from 

TCGA) (Supplementary Figure 3A, 3B). In general, 

risk score was closely related to clinical features of the 

tumors. 

 

The potential functions of the aging-related genes in 

gliomas were determined using GSVA analysis on basis 

of TCGA and CGGA datasets (Figure 4I, 4J). Gene set 
enrichment scores of the pathways were positively 

correlated with the risk scores, and 10 signaling 

pathways having high correlation coefficient and 
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Figure 2. (A) The association between the expression level of aging-related genes and grade of tumor based on the TCGA dataset was 
showed by heat map. (B, C) LASSO coefficients of the aging-related genes for OS were calculated. The genes with the 10 highest scores are 
shown. (D–I) The heat maps, based on the TCGA database, showed downregulated mRNA (blue) or upregulated mRNA (red) of the ten aging-
related genes in the subgroups.* p < 0.05, *** p < 0.001. 
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statistical significance were selected respectively in GO 

and KEGG pathways, such as T cell apoptotic, protein 

oxidation, susceptibility to natural killer cell mediated 

cytotoxicity, tumor necrosis factor mediated signaling 

pathway, DNA damage response signal transduction by 

p53 class mediator, B cell mediated immunity, integrin 

mediated signaling pathway, response to interleukin 7, 

reactive oxygen species metabolic process, integrin 

mediated signaling pathway, response to interleukin 7, 

NIK/NF kappab signaling, reactive oxygen species 

metabolic process, p53 signaling pathway, mismatch 

repair, nicotinate and nicotinamide metabolism, DNA 

replication, T cell receptor signaling pathway, cell 

cycle, JAK/STAT signaling pathway and Toll like 

receptor signaling pathway. 

 

Genetic mutation and risk score 

 

To further investigate the effect of aging-related genes 

on gliomas, we analyzed the genetic mutations of these 

 

 
 

Figure 3. (A, B) The risk score model was established on basis of aging-related genes. (C–E) Prognosis (OS, PFI and DSS) of high and low risk 
score patients (LGG and GBM together) based on TCGA. (F–J) The OS of GBM and LGG glioma cases from TCGA dataset and LGG GBM glioma 
cases from CGGA dataset. 
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Figure 4. (A–F) ROC curves exhibited the predictive effect of the four indicators on the clinical characteristics including 5-year OS, IDH status, 
MGMT status, 1p19q codel status and subtype of glioma cases. (G, H) The differences in risk scores between subgroups classified by IDH 
wildtype, 1p19q noncodel, MGMT promoter unmethylated, subtype, GBM groups, higher grades, age, and cluster of LGG and GBM patients 
based on the TCGA dataset. (I, J) GO and KEGG analyses for the risk scores using GSVA. The gene set enrichment of several pathways (lower 
two panels), and distribution of clinical features, clusters, and risk scores (upper panel) were exhibited by the heat map based on TCGA and 
CGGA. NS. p > 0.05, *** p < 0.001. 
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cases. We observed somatic mutations in 136 (89.5%) 

and 150 (98.7%) of the top 20% high risk score cases 

(152 cases) and top 25% low risk score cases (152 

cases), respectively. Some genes showed mutations in 

both groups (high and low-risk score): TTN, ATRX, 

TP53, MUC16, and PIK3CA. The frequency of 

mutations for PIK3CA, MUC16 and TTN was 

significantly higher in high risk glioma cases (TTN, 

26% vs. 7%; MUC16, 16% vs. 8%; PIK3CA, 10% vs. 

3%). The mutation frequency of ATRX and TP53 was 

lower in high risk glioma cases (TP53, 26% vs 46%; 

ATRX, 7% vs 33%). We also identified mutations in 

EGFR (30%), PTEN (26%) and NF1 (15%) in high risk 

group, and IDH1 (93%), CIC (30%) and FUBP1 (12%) 

in low risk group (Figure 5A, 5B). 

 

SCNAs were compared between the low and high-risk 

samples to investigate the role of genetic alterations in 

oncogenesis. As the risk scores increased, the 

incidence of Chr 7 amplification and Chr 10 deletion 

increased, while incidence of 1p/19q codeletion 

reduced (Figure 5C). GISTIC 2.0 analysis also 

showed that many regions harboring multiple 

oncogenes such as 12q14.1(CDK4), 7p11.2(EGFR), 

4q12 (PDGFRA), and 1q23.1 (PIK3C2B) were 

amplified in the high risk group. Focal deletion peaks 

including 1p36.23 (TNFRSF9, ERRFI1), 1p32.3 

(CDKN2C), 10q23.31 (PTEN, KLLN), and 9p21.3 

(CDKN2A) were also discovered in high-risk group. 

The genes found in the regions with focal deletions 

can inhibit the occurrence and development of cancer. 

On the contrary, there were no significant focal 

deletion and amplification peaks in the low risk 

group, and the G values of them were dramatically 

lower in these cases (Figure 5D, 5E). Besides, there 

were significant regions of deletion (1p36.23, 2q37.1, 

4q34.3, 6q26, 10q23.31, 13q14.3) and amplification 

(1q32.1, 3q26.33, 7p11.2, 12q15) detected only in the 

high-risk subgroup (Figure 5D, 5E). 

 

Construction of cluster model using consensus 

cluster analysis 

 

To explore the prognostic value of the aging-related 

genes, we used consensus clustering analysis to divide 

the tumor samples from the two datasets into two 

groups (Cluster1 and Cluster2) (Supplementary Figure 

4E–4L). Cluster 1 was associated with 1p19q 

noncodel, unmethylated MGMT promoter, higher 

grade, IDH wildtype, and GBM and higher risk score 

(Supplementary Figure 1A, 1B). Principal component 

analysis (PCA) showed the differences in expression 

of aging-related genes between cluster 1 and  
cluster 2 and the results were displayed using a 

Volcano Plot (Supplementary Figure 1E). There were 

several genes such as IGFBP2 that showed 

statistically significant differences in expression 

between clusters. 

 

There were significant differences in prognosis between 

2 clusters in addition to the differences in clinical 

features and genes expression. Cluster 2 was obviously 

associated with longer OS, DSS and PFI compared to 

cluster 1 for LGG and LGM of the TCGA and CGGA 

(Supplementary Figure 2A–2L). 

 

Sankey diagrams showed that high risk score glioma 

patients mainly enriched in the wildtype IDH group 

and cluster 1 and had higher tumor grade, while the 

low-risk score was correlated with mutant IDH group, 

cluster2 and lower tumor grade (Supplementary 

Figure 4A, 4B). 

 

Immune cells infiltration and risk score 

 

We used heat maps to show the number of immune 

cells in samples from TCGA and CGGA datasets. We 

found that the number of a variety of immune cells 

was associated with risk score (Figure 6A, 6B). We 

then investigated the difference between low and high 

risk group by single sample gene set enrichment 

analysis (ssGSEA) based on TCGA and CGGA. And 

there was a significant difference in the number of 

immune cells between the two groups (Figure 6C, 6D 

and Supplementary Figure 5A, 5B), including aDC, B 

cells, Th1 cells, DC, cytotoxic cells, mast cells, NK 

CD56+ cells, T help cells, Tgd, Th17 cells, Th2 cells 

pDC, NK cells, and macrophages. Among these 

immune cells, macrophages had the biggest 

association with risk score (correlation = 0.73) in 

TCGA and CGGA. In addition, there was also an 

obvious difference in number of immune cells 

between 2 clusters in the two datasets (Supplementary 

Figures 3A, 3B, 5C, 5D). 

 

Glioma patients in the high-risk group may be more 

responsive to immunotherapy 

 

We compared expression levels of immune 

checkpoints between high and low risk groups  

by heat maps (Figure 7A–7F). Although VTCN1 had 

lower expression levels in the high risk group 

(P<0.001), We identified several immune checkpoints 

including PDCD1LG2, CD274, LGA3, CTLA4 that 

had higher expression levels in the high risk group 

(P<0.001). 

 

We explored the effect of the differences in expression 

of ICBs on the response to immunotherapy between the 
low and high risk groups by Submap analysis based on 

TCGA. We found that the cases in the high-risk group 

had potential to be more responsive to anti-CTLA-4 
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(Bonferroni corrected P = 0.02) and anti-PD-1 therapy 

(Bonferroni corrected P = 0.01) compared to low-risk 

score patients (Figure 7K). 

 

However, based on IMvigor datasets, Progressive 

disease (PD) portion was larger in high-risk group, 

while the partial response (PR) patients were more in 

the low-risk group. However, there is no important 

difference in stable disease (SD) and complete response 

(CR) parts between the two groups (Figure 7G, 7H). For 

patients with different prognosis, the high-risk score 

part is bigger in PD group than PR group (P<0.05) 

(Figure 7I, 7J). A comparison of the prognosis of the 

two groups after treatment with immune checkpoint 

inhibitors, showed that OS of low-risk score group was 

higher than high-risk score (Figure 7L) (P = 0.022). 

 

CTSC inhibition aggravates cell senescence 

 

According to LASSO Cox regression model, CTSC is 

one of the most meaningful aging-related genes with 

highest coefficients. Although previous studies 

indicated that CTSC expression is up-regulated in 

several tumor cells, such as pancreatic cancer, 

hepatocellular carcinoma and breast cancer, its 

relationship between aging and gliomas is unclear. To 

study the effect of the CTSC gene on cell senescence in 

glioma cells, we knocked-down the CTSC gene in 

 

 
 

Figure 5. (A, B) Genes with the highest mutation frequency in high and low risk groups. The overall CNAs profiles (C) were shown according 
to risk score. (D, E) Chromosomal regions that were significantly amplified (red) and deleted (blue) were identified using GISTIC 2.0 analysis. 
The threshold for significance was represented by the green line (q value=0.25). 
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Figure 6. (A, B) Heat maps show the amount of immune cells and clinical features by ssGSEA based on data in TCGA and CGGA. (C, D) There 

was an obvious difference in immune cells number between low and high risk groups in TCGA and CGGA. NS. p > 0.05, ** p < 0.01, ***  
p < 0.001. 
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SHG-44 cells and U251 cells using siRNA-623, siRNA-

837 and siRNA-963. RT-qPCR was used to test the 

expression levels of CTSC mRNA (Figure 8A) after 

transfection with the siRNAs. All the transfected cells 

showed a decrease in CTSC expression (P<0.001), with 

the cells transfected with siRNA-623 and siRNA-963 

showing more significant decrease in expression than 

those transfected with siRNA-837. We then conducted 

CCK-8 (Figure 8B) and β-galactosidase staining (Figure 

8C) experiments. Inhibition of CTSC for 12h, 24h, 48h 

and 72h significantly decreased the proliferation of both 

cells compared to the control group. In addition, CTSC 

inhibition increased β-gal staining but decreased colony 

formation in both U251 and SHG-44 cells (Figure 8D). 

We used flow cytometry to determine the effect of 

CTSC inhibition on cell cycle progression. We found 

 

 
 

Figure 7. The heat maps (A–F) showed the different expression conditions of immune checkpoints in low and high-risk groups. (G, H) The bar 
charts showed the distribution of the prognosis of cases in high and low-risk score group based on IMvigor datasets. (I, J) These pictures 
showed the risk score distribution of cases with different prognosis in IMvigor datasets, (L) The OS of cases in high and low risk score groups 
from IMvigor dataset. (K) Submap analysis indicated that patients with high risk score could be more responsive to anti-CTLA-4 (Bonferroni 
corrected P = 0.02) and anti-PD-1 therapy (Bonferroni corrected P = 0.01) based on TCGA datasets. NS. p > 0.05, * p < 0.05, *** p < 0.001. 
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Figure 8. (A) The expression levels of CTSC mRNA decreased after siRNA transfection in SHG-44 and U251 cells. (B) CCK-8 assays showed that 
inhibition of CTSC suppressed proliferation of SHG-44 and U251 cells. (C) Numbers and images of positive SA-b-gal staining cells in control, 
siRNA-NC, CTSC-inhibition cells are shown. (D) Images and histograms showing colony formation and numbers in the SHG-44 and U251 cells. 
(E) Diagrams showing the percentage distribution of SHG-44 and U251 cells stained with PI in the different phases of the cell cycle. (siRNA-
NC, siRNA negative control, NS, p>0.05, * p < 0.05, **p<0.01, ***p<0.001, ****p<0.0001). 
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that the inhibition of CTSC affected the percentage of 

cells in the G1, G2 and S phases (Figure 8E), which 

may further influence the progression of cells into 

senescence. Taken together, these results indicate that 

CTSC inhibition may lead to cell senescence. 

 

To explore the effect of CTSC expression on the 

survival of glioma patients, we compared the OS, PFI, 

and DSS of cases from TCGA and CGGA datasets 

based on the expression of CTSC. We discovered that 

the cases with low CTSC expression had obviously 

longer OS, DSS, and PFI than cases with high CTSC 

expression in the TCGA LGGGBM, LGG, GBM 

cohorts except the OS of GBM cases in TCGA 

(Supplementary Figure 6A–6I). Similarly, high CTSC 

expression was also associated with shorter OS in the 

CGGA datasets (Supplementary Figure 6J–6L). These 

findings indicated that high expression of CTSC might 

affect prognosis of glioma patients. 

 

DISCUSSION 
 

Incidence of CNS (central nervous system) tumors has 

been increasing at a rate of about 1%-2% every year 

during the last 30 years, especially among the elderly 

population [1, 32]. The mean overall survival (OS) of 

GBM patients is approximated to be only 15 months [1, 

4], and their five-year survival rate is only 6.8% [1, 6]. 

Age is one of the most significant predictive factors of 

glioma occurrence and prognosis for all types and 

grades of gliomas [24, 25]. Therefore, there is need for 

further research into this disease. Many aging-related 

genes are associated with tumors. A study by Dunlap et 

al. implicated IGFBP2 in the progression of glioma  

by activating PI3K/Akt pathway [33]. In addition, 

CHEK2*1100delC heterozygosity is related to 

increased risk for several neoplasms such as breast 

cancer [33]. However, there have been no studies that 

have explored the effects of the aging-related genes on 

the clinical outcome and progression of gliomas. 
 

In our present study, we constructed aging risk score 

and cluster models of glioma based on aging-related 

genes using bioinformatics analysis, LASSO Cox 

regression analysis and consensus clustering analysis. 

The efficacy of cluster and risk score in predicting the 

clinical features and prognosis was investigated and 

compared. The predictions of prognosis of the two 

models were consistent with the facts. Furthermore, we 

discovered obvious differences in expression of several 

genes between two groups, which is consistent with 

previous reports [34]. 
 

Somatic alterations analysis showed that high risk score 

was associated with mutations of oncogenes (PIK3CA, 

MUC16, TTN), but had less mutations of ATRX and 

TP53. Furthermore, amplification peaks of oncogenes 

(PIK3C2B, PDGFRA, EGFR, CDK4), and deletion 

peaks of tumor suppressor genes (TUSC1, CDKN2A, 

CDKN2B, PTEN, FAS, BNIP3) were detected in the 

gliomas with a high risk score. These findings revealed 

that the PDI family are involved in the malignant 

biological process in gliomas. GISTIC 2.0 analysis 

revealed that many regions harboring oncogenes were 

amplified in the high risk group. The genes found in the 

regions with focal deletions can inhibit the occurrence 

and development of cancer in high-risk group. However, 

there was no significant focal deletion and amplification 

peaks in the low-risk group, and the G values of them 

were dramatically lower. These indicated that 

expression of aging-related genes might lead to the 

mutations of a lot of genes related to malignant 

biological process. 

 

To investigate the mechanism of action of aging-related 

genes in gliomas, we conducted GSVA analysis, and 

identified common biological functions of aging-related 

genes in development and tumorigenesis of gliomas, 

including P53 signaling pathway, DNA damage 

response, natural killer cell mediated cytotoxicity, 

tumor necrosis factor (TNF)-mediated signaling 

pathway, which are consist with previous studies [35, 

36]. The enrichment of the Arf/p53 pathways 

potentially had a significant influence not only on the 

accumulation of cellular damage and aging, but also on 

the surveillance and suppression of tumors [15]. Hui-

Ling Ou et al. reported that DNA damage not only 

drives the aging process but also causes cancer 

development [37]. 

 

We also discovered several signaling pathways 

associated with the aging-related genes in gliomas that 

had not been previously reported. These pathways 

included NF-κB signaling, Cell cycle, Apoptosis, toll-

like receptor signaling pathway, and JAK-STAT 

pathway. Previous studies had identified chronic 

increase in inflammatory signals as a hallmark of aging 

and as a significant activator of NF-κB target genes 

[38]. NF-κB mediated inflammation had been studied 

and regarded as a biomarker of aging [38, 39]. Carmela 

Rita Balistreri reported the functional importance of 

toll-like receptor4 signaling pathway in evoking aorta 

aging and disease [40]. Furthermore, previous studies 

showed that cell cycle is involved in brain aging 

process [41]. 

 

Another significant finding was that aging was related 

to immune regulation in gliomas, including regulation 

of T cell apoptotic process, T cell receptor signaling 
pathway, natural killer cell mediated cytotoxicity, and B 

cell mediated immunity. Previous studies have shown 

that immune injury is a common hall-mark of cancer 
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and aging [13]. Immunosenescence is known as changes 

in adaptive and innate immune systems during aging 

[42]. Many cells (such as Th1 responses, CD8 cytotoxic 

T cells, B cells, NK cells, and macrophages) are 

involved in Cancer immunosurveillance which is the 

ability of immune system to identify and kill new 

malignant cells [43, 44]. However, malignant cells may 

gradually gain the ability to evade the immune system 

with the aging progress, which may lead to tumor 

progression [42]. 

 

In this study, we found that the degree of aging was 

related to the infiltration of various immune cells such 

as Th cell, Tcm cell, DC, CD8+ T cell, which indicates 

the promising role of these genes in immunotherapy. 

These findings showed that the immune response and 

the immune system could be studied more to understand 

the function of aging in gliomas, and the application of 

aging-related genes in cancer therapy. 

 

The relationship between immune cells and risk score 

was also investigated. Several immune cells such as 

macrophages, dendritic cells, and T cells were closely 

associated with the risk score. Both macrophages and 

dendritic cells play important roles in the tumor 

microenvironment [45], while the T cells play an 

important role in immunotherapy [46]. The results from 

this study indicated that aging-related genes may affect 

the tumor microenvironment by regulating immune 

cells and stromal cells, thus contributing to the 

development of tumors. 

 

We further explored the prognostic effect of risk score 

model for glioma patients treated with immunotherapy. 

We found that patients in high-risk group had higher 

expression of immune checkpoints and were more 

responsive to anti-PD-1 and anti-CTLA-4 therapies 

than the patients in low-risk group. However, our 

another analysis indicated that patients with bladder 

urothelial carcinoma having low risk score had longer 

OS and better prognosis than patients in high risk group 

based on IMvigor dataset. These indicate that the 

glioma patients in high-risk group might respond better 

to immunotherapy, but it need to be further 

investigated. 

 

Cathepsin C (CTSC) is a lysosomal cysteine protease 

[47] and a member of aging-related genes. CTSC 

expression is up-regulated in a variety of tumor cells, 

such as 0. Several studies have shown that the down 

regulation of CTSC can inhibit the development of 

tumors [27, 48–50]. This study found that the inhibition 

of CTSC increases cell senescence and the expression 
of CTSC is associated with poor prognosis of glioma 

patients. We therefore postulated that CTSC promotes 

tumorigenesis and progression of tumors by reducing 

cell senescence. However, the relationship among 

CTSC, gliomas and aging is not clear. We found that 

inhibition of CTSC increases cell senescence, and 

previous studies have reported that high state of 

senescence inhibits the development of cancer. 

Therefore, CTSC might promote tumor development by 

inhibiting cell senescence. Previous studies have shown 

that CTSC plays an important role in the regulation of 

autophagy, which may also be the mechanism of 

promoting tumor death [27]. However further studies 

are required to determine the relationship between 

CTSC and autophagy. 
 

There have been reports on the inhibitors of aging by 

some studies. Herein, we briefly review some of these 

inhibitors. Wu et al. found that metformin may fight 

cancer and aging by restricting transit of RagC 

GTPase through the nuclear pore complex [51, 52]. 

Rapamycin is able to inhibit aging by inhibiting 

mTOR but has some negative side effects [53, 54]. 

Julie Chao et al. revealed that kallistatin regulates 

aging and cancer by affecting the expression levels of 

miR-34a and miR-21 [55]. 
 

In summary, this study constructed clinical models 

concerning aging-related genes in clinicopathological 

characteristics and predicting prognosis of glioma 

patients and discovered potential signaling pathways. 

In the current study, we analyzed the expression 

profiles, prognostic value, and potential mechanisms of 

action of aging-related genes in gliomas. However, 

further research should be conducted on the 

relationship between aging and cancer, and on the 

validation of biological function of aging-related genes 

in gliomas. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A, B) The expression levels of aging-related genes and clinical features between cluster 1 and cluster 2 were 

displayed by heatmaps. Principal component analysis (PCA) revealed the difference of aging-related genes mRNA expression between two 
clusters in TCGA (C) and CGGA (D). (E, F) The Volcano Plot of the two clusters and risk-high and low groups exhibited the different genes 
expression between them. 
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Supplementary Figure 2. The prognostic value of aging-related genes in gliomas patients. The survival curves were displayed 

based on clusters for the OS, PFI and DSS in LGGGBM (A–C), LGG (D–F), and GBM (G–I) patients from TCGA. (J–L) Kaplan-Meier survival curves 
of OS were constructed based on the CCGA datasets. 
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Supplementary Figure 3. (A, B) The risk scores differences between subgroups classified by IDH wildtype, 1p19q noncodel, MGMT 
promoter unmethylated, subtype, GBM groups, higher grades, age, and cluster of LGG and GBM patients according to the information from 
TCGA. The prognostic value of risk scores in gliomas patients. Kaplan-Meier survival curves for the PFI and DSS in GBM (C, D) and LGG (E, F) 
samples. (G–Q) The survival curves of OS were constructed based on the CCGA datasets and nine datasets from GEO. NS. p > 0.05, ***  
p < 0.001. 
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Supplementary Figure 4. (A, B) The relationship among the five indicators, cluster, cancer type, grade, risk score, and age, using TCGA and 

CGGA. The predictive role of risk score, cluster, grade and age was compared in the PF, DSS, subtype, MGMT promoter status, IDH status, and 
1p19q codel status of glioma patients based on TCGA and OS based on CGGA as the validation set. (C, D) ROC curves showed the predictive 
effect of the four indicators on the clinical characteristics including 5-year PFS and DSS of gliomas cases. (E–L) Gliomas cases from TCGA and 
CGGA were clustered by the consensus clustering algorithm. The cumulative distribution function (CDF) plot of the aging-related genes mRNA 
expression in gliomas from TCGA and CGGA were showed. k=2 was defined as the optimal number. 
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Supplementary Figure 5. (A, B) The correlation between immune cells and risk score. (C, D) There were also differences in the number of 

immune cells between cluster1 and cluster2 both in TCGA and CGGA. NS. p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Supplementary Figure 6. The differences of prognosis between CTSC high expression and CTSC low expression cases. Kaplan-
Meier survival curves of high and low CTSC expression cases were displayed for the OS, PFI and DSS in LGGGBM (A–C), LGG (D–F), and GBM 
(G–I) patients from TCGA. (J–L) The survival curves of OS were also constructed based on the CCGA datasets. 


