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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the most common 

pathological subtype of liver cancer; it is the sixth 

most common type of cancer and the fourth leading 

cause of cancer-related death in the world [1–3]. 
Although the main treatment of early HCC is surgery, 

50% of the patients are at an advanced stage at the 

time of diagnosis [4]. The 5-year overall survival (OS) 

rate for HCC is about 12.5% [3, 5]. Targeted therapy 

has improved the OS in HCC; however, the overall 

efficacy is unsatisfactory. The emergence of immuno-

therapy has identified new therapeutic prospects for 

HCC [6], especially immune checkpoint inhibitors 

(ICIs), such as programmed death 1 (PD-1)/ 

programmed death ligand-1 (PD-L1) and cytotoxic T-

lymphocyte associated antigen-4 (CTLA-4) [7, 8]. In 

recent clinical studies, both nivolumab and 
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ABSTRACT 
 

In order to explore the prognosis of tumor mutation burden (TMB) and the relationship with tumor infiltrating 
immune cells in hepatocellular carcinoma (HCC), we downloaded somatic mutation data and transcriptome 
profiles of 376 HCC patients from The Cancer Genome Atlas (TCGA) cohort. We divided the samples into high-
TMB and low-TMB groups. A higher TMB level indicated improved overall survival (OS) and was associated with 
early pathological stages. One hundred and nine differentially expressed genes (DEGs) were identified in HCC. 
Moreover, based on four hub TMB-related signatures, we constructed a TMB Prognostic model (TMBPM) that 
possessed good predictive value with area under curve (AUC) of 0.701. HCC patients with higher TMBPM scores 
showed worse OS outcomes (p < 0.0001). Moreover, DCs subsets not only revealed higher infiltrating 
abundance in the high-TMB group, but also correlated with worse OS and hazard risk for high-TMB patients in 
HCC. Meanwhile, CD8+ T cells and B cells were associated with improved survival outcomes. In sum, high TMB 
indicates good prognosis for HCC and promotes HCC immune infiltration. Hence, DCs and the four hub TMB-
related signatures can be used for predicting the prognosis in HCC as supplements to TMB. 
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pembrolizumab have exhibited better prognosis as 

second-line therapy in advanced HCC after sorafenib 

treatment [9, 10]. 

 

Although ICIs therapy has been shown to be effective in 

several types of malignancies [11–15], it has shown 

varying effects in various types of cancer, even in the 

same cancer patients [15]. Hence, the identification of 

accurate biomarkers is an urgent need for screening 

patients who can benefit from immunotherapy and to 

monitor the prognosis of immunotherapy. Recently, an 

increasing number of biomarkers have been identified for 

predicting the efficacy of immunotherapy, including 

DNA damage repair (DDR) [16], microsatellite 

instability (MSI) [17, 18], neoantigens [19], and HLA 

presentation of neoantigens against tumor [20–22]. TMB 

is a novel biomarker that is calculated as genetic 

variations per million bases of the encoded genome [23, 

24]. Patients with a high TMB have a superior objective 

response rate (ORR) and prolonged OS [19, 25, 26] than 

those with a low TMB. ORR differences can be 

explained by TMB in about 55% types of tumor [20]; 

however, TMB is not a single biomarker for predicting 

the efficacy of immunotherapy that may be inconsistent 

with specific genetic mutations in high-TMB patients. 

For example, patients with EGFR mutations and ALK 

rearrangements (EGFR+/LK+), JAK1 mutations, or 

JAK2 mutations are associated with low response to 

immunotherapy [27–30]. Meanwhile patients with KRAS 

mutations (KRAS+) had a better ICIs response rate [27], 

and STK11 mutation was found to be the main factor for 

PD-1 inhibitor resistance in lung adenocarcinoma with 

KRAS+ [31]. Moreover, tumor microenvironment 

(TME) has been well identified as a molecular 

determinant in many cancers. TUMEH [32] found that T 

cell infiltration in TME is closely related to the efficacy 

of immunotherapy. Moreover, higher infiltrating 

abundance of CD8+ T cell and memory activated CD4+ 

T cell subsets revealed prolonged OS in the high-TMB 

group [33]. Therefore, combined information from TMB 

levels, gene mutations, and immune infiltration density 

can be used as a novel biomarker for predicting the 

efficacy of immunotherapy in HCC. 

 

The prognostic role of TMB and the relationship 

between TMB and immune infiltration varied for 

different types of cancers [33, 34], and limited studies 

have focused on TMB with immune infiltration in HCC. 

Thus, we investigated the prognostic role of TMB and 

the potential association between immune infiltration 

and hub TMB-related signature in HCC, using TCGA 

HCC cohort and Gene Expression Omnibus (GEO) 

datasets. We found that high TMB was a good 
prognostic predictor for HCC, and that DCs and the four 

hub TMB-related signatures could also be used for 

predicting the prognosis in HCC. 

RESULTS 
 

Genome-wide mutation profiling in HCC 

 

The somatic mutation data of 376 HCC patients were 

processed from the TCGA (https://tcga-data.nci.nih. 

gov/tcga/) database and their clinical information has 

been presented in Table 1. The mean age was 61 years; 

122 (32.4%) women and 254 (59.5%) men were 

included. Utilizing maftools software, we classified 

these mutations into various groups and exhibited 

mutation groups in box plots using various colors in box 

plots (Figure 1). The most common type was missense 

mutation (Figure 1A); single nucleotide polymorphism 

occurred more frequently than deletion (DEL) or 

insertion (INS) (Figure 1B), and C>T transition was the 

most common form of single nucleotide variants (SNV) 

in HCC (Figure 1C). The mutation categories are shown 

in box plots (Figure 1E). The top 10 mutated genes 

were TP53 (28%), TTN (25%), CTNNB1 (24%), 

MUC16 (16%), ABL (11%), PCLO (11%), MUC4 

(10%), RYR2 (10%), ABCA13 (9%), and APOB (9%) 

(Figure 1F, 1G). 

 

TMB was related to overall survival and clinical 

stage 

 

We calculated the number of TMB per million bases for 

363 samples and classified them into high-TMB and 

low-TMB groups using the median value as the 

threshold (Supplementary Table 1). Kaplan–Meier 

survival indicated that higher TMB was associated with 

better OS (p = 0.0004) (Figure 2A). However, high 

TMB was not in accordance with better disease-free 

interval (DFI) in this research (Figure 2B). Moreover, 

we found that higher TMB was also associated with 

tumor stage (p = 0.035; Figure 2C), pathologic stage (p 

= 0.020; Figure 2D), and T stage (p = 0.027; Figure 2E). 

The TMB levels tended to decrease with tumor 

progression (Figure 2C–2E), and clinical research with 

a larger sample size is required to verify this result. 

 

Analysis of differentially expressed genes between 

the 2 TMB groups 

 

The heatmap and volcano plot visualized that 109 

differentially expressed genes (DEGs) were identified 

with limma software with |logFC|> 1.5 and false 

discovery (FDR) < 0.05 (Figure 3A, 3B and 

Supplementary Table 2). The Gene Ontology (GO) 

enrichment analysis demonstrated that in molecular 

function group, these DEGs were mainly involved in 

extracellular matrix structural constituent, glyco-

saminoglycan binding, and extracellular matrix 

structural constituent conferring tensile strength. In the 

biological process group, extracellular structure 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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Table 1. Clinical data of 376 patients with 
hepatocellular carcinoma (HCC) from the cancer 
genome atlas (TCGA) cohort in this research. 

Level Overall 

N 376 

Age (median [IQR]) 61.00 [51.00, 69.00] 

Gender (%)  

   female 122 (32.4) 

   male 254 (67.6) 

Status (%)  

   Alive 243 (64.6) 

   Dead 132 (35.1) 

   Not Reported 1 (0.3) 

pathologic_T (%)  

   T1 185 (49.5) 

   T2 94 (25.1) 

   T3 81 (21.7) 

   T4 13 (3.5) 

   TX 1 (0.3) 

pathologic_N (%)  

   N0 257 (68.5) 

   N1 4 (1.1) 

   NX 114 (30.4) 

pathologic_M (%)  

   M0 272 (72.3) 

   M1 4 (1.1) 

   MX 100 (26.6) 

pathologic_stage (%)  

   Stage I 175 (49.7) 

   Stage II 86 (24.4) 

   Stage III 86 (24.4) 

   Stage IV 5 (1.4) 

tumor_stage (%)  

   stage i 175 (46.5) 

   stage ii 86 (22.9) 

   stage iii 86 (22.9) 

   stage iv 5 (1.3) 

   Unknown 24 (6.4) 

 

organization, extracellular matrix organization, and cell-

substrate adhesion were enriched. In addition, in the 

cellular component, TMB-related DEGs were mainly 

involved in collagen-containing extracellular matrix, 

extracellular matrix, and extracellular matrix component 

(Figure 4A–4C and Supplementary Table 3). Thereafter, 

we conducted Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis and found that 

TMB-related signatures were involved in several 

pathways, including fat digestion and absorption, 

cholesterol metabolism, and peroxisome proliferators-

activated receptor (PPAR) signaling pathway (Figure 

3C and Table 2). We then selected the top gene set 

enrichment analysis (GSEA) results of TMB-related 

items, wherein dilated cardiomyopathy, ECM-receptor 

interaction, focal adhesion, oocyte meiosis and small 

cell lung cancer were associated with TMB levels 

(Figure 3D). Moreover, we obtained protein–protein 
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interaction (PPI) networks with the STRING tool, and 

36 proteins were related (Figure 4D). 

 

Constructing a risk scoring model with differentially 

expressed genes 

 

Further, we identified 30 prognostic signatures 

associated with TMB using univariate Cox regression 

model from the above 109 DEGs (Supplementary Table 

4). In addition, we used multivariate Cox analysis to 

select four independent risk signatures with p < 0.05 

and acquired the coefficients (ßi) of the respective 

signature (Figure 5A and Table 3). The selection 

process was visualized on a Venn plot (Figure 5A). 

Among these four TMB-related genes, we found that 

the lectin galactoside-binding soluble 3 (LGALS3) 

 

 
 

Figure 1. Statistics of mutation information in the HCC samples. (A–C, H) Statistical results of the different mutations, in which 
missense mutation occupied the most mutation classifications, SNP accounted for the main mutation type, and C>T was the main SNV Class. 
(D, E) Statistics of tumor mutations in each sample and different colors represent the different mutation types as shown in Figure 1A. (F) 
Statistics of different mutations in the top 10 hyper abrupt genes and different colors represent different mutation types. (G) The mutation 
status of the top 10 hyper abrupt genes: the X-axis is the sample, the Y-axis is the hyper abrupt gene, and different colors represent different 
mutation types. HCC, hepatocellular carcinoma; SNP, single nucleotide polymorphism; SNV, single nucleotide variants. 
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Figure 2. Prognosis analysis of tumor mutation burden (TMB) and correlation analysis with clinical risk features. (A) Patients 
with higher TMB had better overall survival (OS, P = 0.0014). (B) There was no association of TMB with disease-free survival (DFS, P = 0.51). 
(C, D) High TMB level was negatively correlated with tumor stage and pathological stage, with P = 0.035 and 0.02, respectively. Vertical and 
horizontal axes represent TMB value and different stages, respectively. (E–G) Significant difference was observed in the AJCC-T stages (P = 
0.027), while no significant differences were observed in the AJCC-N and AJCC-M stages (P > 0.05). TMB, tumor mutation burden. Vertical and 
horizontal axes represent TMB value and different stages, respectively. TMB, tumor mutation burden; OS, overall survival; DFI, disease-free 
interval. 
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expression was upregulated in high-TMB groups than in 

low-TMB groups, and the expression of Nuclear Pore 

Complex Interacting Protein Family Member B15 

(NPIPB15), Formimidoyltransferase Cyclodeaminase 

(FTCD), and Decorin (DCN) was negatively correlated 

with the TMB level (Figure 5B–5F). The hazard ratio 

(HR) with 95% confidence interval was shown in the 

forest plot (Figure 5G). Using the multivariate Cox 

regression model, TMBPM was constructed with the 

following formula: TMBPM = 0.179 x LGALS3 − 

0.096 x NPIPB15 − 0.145 x FTCD − 0.126 x DCN. The 

multivariate model indicated that a high risk score was 

associated with poor survival (P < 0.001) (Figure 6A, 

6B, 6D). Moreover, we classified the HCC patients into 

high-risk (n = 175) and low-risk (n = 175) groups using 

the median value as the cutoff value (Figure 6C, 6D). 

The receiver operating characteristic (ROC) curve for 5-

year OS prediction suggested that the model possessed 

predictive accuracy with AUC = 0.701 (Figure 6C), and 

Kaplan–Meier plot showed that patients with high 

TMBPM revealed worse OS than those with low 

TMBPM (Figure 6D). Furthermore, HCC prognosis 

model nomograms were constructed based on different 

clinical characteristics (Figure 6E). We calibrated the 1-

year, 3-year, and 5-year OS predictions for HCC 

patients, and all the calibrated curves were well-fitted 

 

 
 

Figure 3. Comparisons of gene expression profiles in low-TMB and high-TMB groups and enrichment pathway analysis. (A) 

Top 109 DEGs are shown in the heatmap plot. Vertical and horizontal axes represent genes and HCC samples respectively, as ranked by TMB 
value. Genes with higher and lower levels are shown in red and blue, respectively. Color bars at the top of the heat map represent sample 
types, with pink and blue indicating low- and high-TMB samples, respectively. (B) Volcano plot of all DEGs were drawn with |log(FC) > 1| and 
FDR < 0.05. Each symbol represents a gene, and red, blue and black colors indicate upregulated, downregulated and normal genes, 
respectively. (C) KEGG pathway analysis revealed that these genes were involved in immune-related pathways, such as cholesterol 
metabolism; (D) Moreover, GSEA analysis shown that the top TMB-related crosstalk, including dilated cardiomyopathy, ECM-receptor 
interaction, focal adhesion, oocyte meiosis, and small cell lung cancer with FDR < 0.3. The vertical axis represents enrichment score. The 
enrichment score increased with the number of enriched genes and vice versa. DEGs, differentially expressed genes; TMB, tumor mutation 
burden; KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracellular matrix; HCC, hepatocellular carcinoma; GSEA, gene set 
enrichment analysis. 



 

www.aging-us.com 11263 AGING 

(Figure 6F–6H). Although TMBPM can accurately 

predict the 3-year and 5-year survival rate in HCC 

patients, whether the TMBPM maintained the 

independent predictive value needs to be investigated 

and validates on larger samples. 

 

Comparison of immune cell abundance between 

high-TMB and low-TMB groups 

 

Based on the newly developed CIBERSORT software 

[35], we intended to compare the differential profiles of 

immune fractions between the high-TMB and low-TMB 

groups. After filtering out patients with P > 0.05 with 

the “CIBERSORT” package, we obtained fractions of 

22 immune cells in 56 HCC patients, and the results 

were displayed in the box (Figure 7A), where different 

colors represented various cell subsets. 

 

Meanwhile, we revealed the differential abundance of 

immune cells between low-TMB and high-TMB groups 

with heatmap plot (Figure 7B), wherein we could 

intuitively find that CD8+ T cell, M0 macrophage, and 

M2 macrophage formed the majority of the 

components. Moreover, the Wilcoxon rank-sum test 

indicated that the infiltration levels of dendritic cells 

resting (P = 0.001), eosinophils (p < 0.001), and T cells 

regulatory (Tregs) (p = 0.02) were higher in the high-

TMB group than in the low-TMB group (Figure 7C). In 

addition, the density of neutrophils (p = 0.006) showed 

a lower infiltrating level in the high-TMB group. In 

accordance with previous mutation analysis and 

Kaplan-Meier analysis, lower TMB commonly 

inhibited the immune infiltration levels in HCC 

patients, contrary to clear cell renal cell carcinoma 

(ccRCC) [36]. Macrophages were identified using 

CIBERSORT in HCC. Macrophages were significantly 

enriched in tumors and displayed similar proportions in 

the immune fractions of high- and low-TMB groups. 

Although M2 was a dominant Macophages, there were 

not clearly distinguished in M0, M1 and M2 

macrophages, consistent with other previous reports 

[37, 38]. 

 

 
 

Figure 4. GO analysis and protein–protein interaction (PPI) analysis. (A–C) GO enriched results revealed that these DEGs were 

involved in the biological process, molecular function, and cellular component and other functional pathways. Metascape bar graph to view 
the top twenty non-redundant enrichment clusters. The enriched biological processes were ranked by p value. A deeper color indicates a 
smaller p-value. Vertical axes represent different pathway. (D) Thirty-six proteins were related in the protein–protein interaction. GO, Gene 
Ontology; PPI, protein–protein interaction; DEGs, differentially expressed genes. 
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Table 2. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis for the differential genes. 

Description Generatio Pvalue p.adjust qvalue geneID 

Fat digestion and 

absorption 
6/57 4.80E-07 8.45E-05 7.84E-05 ABCG5/DGAT2/MOGAT3/APOA1/FABP1/ABCG8 

Cholesterol metabolism 5/57 2.48E-05 0.002180513 0.002021408 APOA2/ABCG5/LPA/APOA1/ABCG8 

PPAR signaling pathway 5/57 0.000199794 0.011721233 0.010865975 APOA2/SCD5/ACSL6/APOA1/FABP1 

Protein digestion and 

absorption 
5/57 0.000531847 0.023401248 0.02169374 COL12A1/COL3A1/SLC7A9/COL1A2/COL1A1 

AGE-RAGE signaling 

pathway in diabetic 

complications 

5/57 0.000672758 0.023681078 0.021953152 NOX4/AKT3/COL3A1/COL1A2/COL1A1 

Central carbon metabolism 

in cancer 
4/57 0.001465681 0.042993318 0.039856246 AKT3/KIT/PFKP/SLC2A2 

Platelet activation 5/57 0.001768727 0.044470846 0.041225963 AKT3/PRKG1/COL3A1/COL1A2/COL1A1 

ECM-receptor interaction 4/57 0.003392436 0.074633591 0.069187838 TNC/COL1A2/COL1A1/THBS2 

*KEGG, Kyoto Encyclopedia of Genes and Genomes; PPAR, peroxisome proliferators-activated receptor; ECM, extracellular 
matrix. GeneRatio: Annotation of genes in this pathway, annotation of genes in all KEGG pathways, and the ratio of the two; 
BgRatio: All genes annotated to pathway, all genes annotated to KEGG pathways, and the ratio of the two. Pvalue: P value of 
hypergeometric test; P.adjust: The P value corrected by multiple hypothesis testing; Qvalue: Q value; GeneID: geneID 
annotated to the pathway; Count: The number of genes annotated to the pathway. 

 

We intended to compare the differential profiles of 

immune fractions between the high TMB and low TMB 

groups; therefore, we further intended to investigate the 

potential prognosis of immune cells based on the Tumor 

Immune Estimation Resource (TIMER) database. 

Multivariate Cox analysis showed that higher 

macrophage (HR = 29.333, P = 0.023), dendritic cells 

(HR = 21.823, P = 0.013) infiltrates comprised hazard 

factors with poor OS rates (Table 4 and Figure 8B, 8C), 

while the density of B cells (HR = 0.005, P = 0.040) or 

CD8+ T cell (HR = 0.021, P = 0.006) were marginally 

protective infiltrating cells (Table 4). Furthermore, the 

Kaplan–Meier analysis explained that higher infiltration 

levels of CD8+ T cells and B cells were associated with 

improved survival outcomes in HCC (Figure 8C). 

 

Furthermore we investigate 28 subpopulations of 

immune cells based on the GSEA database 

(https://tcia.at/home) (Figure 9A and Table 5). The 

identified immune cells included T cells (activated T 

cells, central memory (Tcm), effector memory (Tem) 

CD4+ and CD8+ T cells, gamma delta T cells (Tγδ), 

regulatory T cells (Treg), follicular helper T cells (Tfh), 

T helper 1 (Th1), Th2, Th17), B cells (activated, 

immature, and memory B cells), myeloid-derived cells 

(macrophages, activated, plasmocytoid and immature 

dendritic cells (DCs), monocytes, mast cells, 

eosinophils, neutrophils,), NK, natural killer T cells 

(NKT), and MDSCs. All these cell subtypes were 

shared between the two-groups, albeit at different 

proportions (Figures 7C, 9A). The infiltration levels of 

B cells, tregs were relatively low in all patients, 

meanwhile the infiltration levels of DCs and the other T 

cells were higher in all patients (Figures 7C, 9A) 

consistent with a previous report [37]. Other immune 

cell types varied between high TMB and low TMB 

patients, revealing substantial heterogeneity of immune 

cell compositions among HCC tumors (Figures 7C, 9A). 

 

DCs infiltrates in HCC indicated survival outcomes 

 

The results of the cellular characterization of the 

immune infiltrates using GSEA showed that the 

infiltration of Tem CD8+ cells (HR = 0.754, p = 0.013), 

Tcm CD4+ cells (HR = 0.342, p = 0.011), Activated B 

cell (HR =0.821, p = 0.027), Memory B cell (HR 

=0.814, p = 0.044), Natural killer (NK) cell (HR = 

0.732, p = 0.008) and Mast cell (HR = 0.612, p = 0.032) 

were associated with good prognosis, whereas activated 

CD8+ cells (HR = 2.415, p = 0.002), activated CD4+ 

cells (HR = 1.120, p = 0.008) and Tem CD4+ cells (HR 

= 2.612, p = 0.004) were associated with bad prognosis 

(Table 5). Although higher myeloid-derived suppressor 

cells (MDSCs) infiltration and lower Tregs infiltration 

associated with improved OS (Figure 8G, 8H), MDSCs 

(HR = 0.730, p = 0.307) and Tregs (HR = 0.966, p = 

0.647) (Table 5) which are significantly associated with 

bad prognosis in other cancer [39] were not hazard risk 

(Table 5) for HCC in our study, and we also don’t 

observed separation of the MDSCs and Tregs 

subpopulations related to immune suppression from the 

subpopulations related to the effector function 

(activated T cells, Tcm, Tem CD4+ and CD8+ cells) 

(Figure 9B, 9C). The separation was found in other 

cancers including lung squamous cell carcinoma, 

ovarian cancer, pancreatic cancer, and melanoma [39]. 

https://tcia.at/home
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Figure 5. TMB-related hub-genes analysis. (A) Four TMB-related hub-genes were obtained with stepwise regression screening. (B) The 

four TMB-related hub-genes were shown in the heatmap plot. Vertical and horizontal axes represent TMB-related hub-genes and HCC 
samples respectively, as ranked by TMB value. Genes with higher and lower levels are shown in red and blue, respectively. Color bars at the 
top of the heat map represent sample types, with red and blue indicating high- and low-TMB samples, respectively. (C–F) LGALS3 (E) had 
higher expression in high-TMB group (P < 0.01), while DCN (C), FTCD (D), and NPIPB15 (F) were negatively correlated with high-TMB (P < 
0.01). (G) Calculated by Cox multivariate model, hazard ratio with 95% confidence interval (95% CI) for each independent TMB‐related 
signature are shown in forest plot. TMB, tumor mutation burden; HCC, hepatocellular carcinoma. 
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Table 3. Multivariate Cox analysis of TMB-related signature for HCC patients. 

Var Coef HR CI95.low CI95.high Zscore P_value 

NPIPB15 −0.096 0.908 0.847 0.974 −2.709 0.00675 

FTCD −0.145 0.865 0.811 0.923 −4.366 1.30E-05 

LGALS3 0.179 1.196 1.071 1.335 3.18 0.001473 

DCN −0.126 0.882 0.824 0.943 −3.651 0.000261 

*Var: Cox univariate analysis TMB-related genes; Coef: Risk coefficient; HR: relative risk value; 
Ci95.low, CI95.high: range of 95% confidence interval of relative risk value HR; Zscore: Z value of 
statistical test; P_value: the P value tested by Cox test with multi-factor; HCC: hepatocellular 
carcinoma; TMB: tumor mutation burden. 

 

The progression was also characterized by distinct 

immune cell patterns between high-and low-TMB group 

based on GSEA database. Within each TMB group, the 

composition of the immune cells was divergent in HCC. 

For example, activated DCs, EOS and Neu were 

enriched in stage I and stage II tumors and only 

depleted in stage III in high-TMB patients (Figure 9D), 

and that activated CD4 and Mem_B were only depleted 

in late stage tumors and enriched in early stage tumors 

(Figure 9D) in low-TMB samples. There were not any 

pots in stage IV for high-TMB, because there were not 

enough samples for analysis (Figure 9D). Meanwhile, 

Univariate Cox analysis showed that higher levels of 

mDCs (HR = 21.823, P = 0.013) and Imm_DC (HR = 

10.151, p = 0.022) with poor OS rates (Tables 4, 5 and 

Figure 8C, 8I) were hazard factors in High TMB group, 

while higher density of pDCs (HR = 0.302, p = 0.021) 

with improved OS rates (Figure 8J, P < 0.01) was 

marginally protective infiltrating cells in low-TMB 

groups. These results might explain why some patients 

with high TMB are not responsive to therapy with 

checkpoint blockers and also why some patients with 

low TMB are responders. 

 

In summary, these analyses showed that both the 

genomic profiles and the specific tissue context 

contribute to the cellular composition of the immune 

infiltrates. Furthermore, whether using CIBERSORT, 

TIMER database or GSEA database, it is noteworthy 

that inflated levels of DCs and prognosis of DCs were 

different between high-TMB and low-TMB groups. 

mDCs and immature DCs subsets showing higher 

infiltrating abundance in the high TMB group was 

associated with lowered OS and higher risk factor, 

indicating that these high TMB HCC patients with 

higher infiltrates of mDCs and immature DCs had poor 

survival outcomes, meanwhile the higher fraction of 

pDCs was lower risk factor and was associated with 

better OS in low TMB samples. Accordingly, Kaplan–

Meier analysis and Wilcoxon rank-sum test showed that 

dendritic cells can also be used as secondary prognosis 

indicators for immunotherapy in HCC. 

DISCUSSION 
 

Liver cancer (LC) remains the most common cause of 

cancer-related death and the second major cause of 

cancer-related death worldwide, despite considerable 

improvements in its treatment [2]. Since 2017, immune 

checkpoint inhibitors (ICIs) have showed promising 

results in the immunotherapy for advanced HCC [9]. 

However, few HCC patients are able to obtain benefits 

from this treatment. Thus, many researches have 

focused on the identification of predictive biomarkers 

for immunotherapy. 

 

In the current research, we found that mutations in TP53 

(28%), CTNNB1 (24%), and TTN (25%) are frequently 

found in HCC (Figure 1). Wang found that HCC 

patients with TP53 mutation were significantly 

correlated with high TMB (P = 0.0005) and exhibited 

poor prognosis (OS: HR = 1.58, P = 0.0109) [40], 

indicating that HCC patients with TP53 mutation were 

more likely to benefit from immune treatment. 

Furthermore, CTNNB1 mutation was positively 

correlated with TMB-H and TP53 in HCC [41]. A meta-

analysis found that NSCLC patients with EGFR 

mutation could not benefit from immunotherapy, and 

EGFR-positive patients had low TMB [42, 43]. 

 

TMB is a novel prognosis biomarker for ICIs therapy in 

breast cancer [44] and other tumors [45, 46]. Robert 

found that high somatic TMB patients treated with ICIs 

exhibited better OS [45]. Hellmann demonstrated that 

small-cell lung cancer patients with high TMB treated 

with either nivolumab plus ipilimumab or nivolumab 

monotherapy had better prognosis, irrespective of the 

level of PD-L1 expression [25]. In this study (Figure 2), 

HCC patients with high TMB had significantly better 

OS (p = 0.0014) than those with other malignancies 

[33]; moreover, higher TMB may induce immune 

recognition and prognosis improvement. Further, TMB 
was negatively correlated with the tumor stages (P = 

0.035) and AJCC-T stages (P = 0.027) (Figure 2E). 

These results suggest that the TMB level declined with 
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tumor invasion and progression; this prompted us to 

investigate the potential relationship among TMB, 

DEGs, and immune infiltrates for identifying more 

prognostic biomarkers for HCC. 

 

Subsequently, four hub TMB-related signatures were 

identified (Figure 5 and Table 3) on univariate and 

multivariate Cox analysis (positive correlation: 

LGALS3, negative correlation: NPIPB15, FTCD and 

DCN). Furthermore, a prognostic model (TMBPM) was 

developed using four hub TMB-related signatures that 

can be very useful for survival prediction (Figure 6 and 

Table 3). To our knowledge, this is the first TMB 

prognostic model to predict survival outcomes in HCC. 

 

 
 

Figure 6. Construction and assessment of TMBPM for HCC. (A, B) Distribution of the risk score for each HCC patient as per the TMBPM 

levels. Vertical and horizontal axes respectively represent risk score and OS patients, as ranked by increasing risk score. Red and blue colors 
respectively represent high and low risk cases. (B) Dot plot of Survival time for each HCC patient as per the TMBPM levels. Vertical and 
horizontal axes respectively represent survival times and OS patients, as ranked by increasing risk score. Read and blue colors represent dead 
and living OS cases, respectively. (C) Horizontal and vertical axes are false positive rates and true positive rates, respectively. The AUC value of 
the ROC plot was 0.701 that showed superior predictive accuracy of TMBPM. (D) Kaplan-Meier analysis demonstrated that higher TMBPMs 
showed worse OS with P < 0.0001. (E) Nomogram of the prognosis model of HCC. (F–H) All the calibration curves of 1-year (F), 3-year (G), and 
5-year (H) prognosis model fitted well. HCC, hepatocellular carcinoma; TMBPM, tumor mutation burden prognostic model; OS, overall 
survival; ROC, receiver operating characteristic; AUC, area under the curve; TPR, true positive rates; FPR, false positive rates. 
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Patients with a high TMBPM score had worse survival 

outcomes. Moreover, the AUC of the ROC curve was 

0.701, indicating the prediction accuracy of the 

TMBPM. Although we calibrated the curves of 1-year, 

3-year, and 5-year prognosis prediction models, further 

research on larger samples is needed before clinical 

application. In bladder cancer (BLCA) [33], tumor 

mutation burden related signature (TMBRS) mode were 

constructed by eight hub TMB-related signatures for 

prognosis prediction. Although this method can 

 

 
 

Figure 7. Comparison of 22 important tumor-infiltrating immune Cells (TIICs) between the low-TMB and high-TMB groups. 
(A) Barplot exhibited the proportion of 22 kinds of TIICs in HCC tumor samples, and the different colors represent the 22 TIICs. Vertical and 
horizontal axes represent relative percentage and patients, respectively. (B) Differential abundances of TIICs in the two groups are shown in 
the heatmap plot. Vertical and horizontal axes represent TIICs and patients, respectively. TIICs with higher and lower correlation levels are 
shown in red and blue, respectively. Color bars at the top of the heat map represent sample types, with pink and blue indicating low- and 
high-TMB samples, respectively. (C) The violin plot compared the proportions of 22 TIICS between low-TMB and high-TMB groups. Blue and 
red colors represent low- and high-TMB patients, respectively. Vertical and horizontal axes respectively represent TIICs fraction and TIICs, 
respectively. The Wilcoxon rank-sum test revealed that the infiltration levels of T cells regulatory (Tregs), dendritic cells resting and 
eosinophils were higher in the high-TMB group. TMB, tumor mutation burden; TIICs, tumor-infiltrating immune Cells; Tregs, T cells 
regulatory. 
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Table 4. Multivariate Cox regression analysis of the immune infiltration cells based on TIMER database in HCC. 

Tumor-infiltrating immune cell Coef HR CI95.low CI95.high Zscore P_value 

B_cell –5.334 0.005 0.000 0.787 –2.052 0.040 

T_cell_CD4_plus –3.77 0.023 0.000 2.740 –1.547 0.122 

T_cell_CD8_plus –3.879 0.021 0.001 0.343 –2.705 0.007 

Neutrophil 3.561 35.203 0.078 15938.055 1.141 0.254 

Macrophage 3.379 29.333 1.567 549.224 2.260 0.024 

Dendritic_cell 3.083 21.823 1.927 247.152 2.490 0.013 

*Var: Cox univariate analysis immune cells; Coef: Risk coefficient; HR: relative risk value; Ci95.low, CI95.high: range of 95% 
confidence interval of relative risk value HR; Zscore: Z value of statistical test; P_value: the P value tested by Cox test with one 
factor. HCC: hepatocellular carcinoma. 

 

accurately predict the 3-year and 5-year survival rate in 

HCC and BLCA, whether the method maintained the 

independent predictive value needs to be investigated 

and validates on larger samples in different cancers. 

 

LGALS3 (Galectin-3) is mainly involved in cell 

growth, cell adhesion, cell differentiation, and tumor 

progression and metastasis owing to its action of 

binding to glycoproteins. Kada found that decreased 

expression of Galectin-3 in gastric cancer indicated 

poor prognosis [47]. The core proteoglycan (DCN), a 

main component of ECM, negatively regulates Tregs 

[48–52]. DCN can indirectly inhibit the formation of 

foxp3+ Tregs via the inhibition of the TGF-β 

signaling pathway [53, 54]. Many studies have 

demonstrated that DCN overexpression inhibits the 

progress of various tumors, such as breast cancer and 

colon cancer [35, 55, 56]. 

 

Low expression of FTCD is correlated with poor 

prognosis (P < 0.001) in HCC as per the TCGA data 

[57]; meanwhile, FTCD overexpression suppressed the 

proliferation of BEL-7402 and SNU499 cells, resulting 

in increased PTEN protein and decreased PI3K, total 

Akt, and phosphorylated Akt protein in BEL-7402 and 

SNU499 cells. As per a recent study, the PTEN-

PI3K/AKT signal transduction pathway was involved in 

tumor immune escape via the regulation of PD-L1 

expression [58]. PD-L1 played an important role in 

inducing specific T cell apoptosis and tumor immune 

escape. Thus, FTCD overexpression inhibits tumor 

progression and tumor immune escape in HCC via the 

suppression of PI3K/AKT pathway activation. 

Therefore, FTCD could also be a promising biomarker 

and a potential target for HCC treatment. 

 

TIMER is the first method for performing integrative 

analysis of tumor immune cell, clinical, and genomics 

data [59]. TIMER database was used for assessing the 

relationships of 9 TMB-related signature with immune 

infiltration levels in clear cell renal cell carcinoma 

(ccRCC) [36], the 9 signatures were associated with 

lower immune infiltrates. After constructing the TMB 

prognostic model, we also compared the abundance of 

immune cells utilizing TIMER database, CIBERSORT 

software, and GSEA database, and found that the 

prognosis of DCs infiltration was different between 

high- and low-TMB group. At present, DCs are 

considered as prognostic indicators in cancers, because 

the higher infiltrated DCs are associated with better 

prognosis [60, 61]. Cai et al. found that high infiltration 

of DC in hepatoma indicates a higher disease-free 

survival time [60]. Single-cell sequencing of 16,498 

HCC cells found that, compared with primary 

hepatocellular carcinoma, more DCs and CD8+ T cells 

were infiltrated in early recurrent tumors, while fewer 

regulatory T cells played an immunosuppressive role 

[37] in early recurrent tumors. Due to the high affinity 

of PD-L1 binding to CD80 on the DC surface, CD80 

was preferentially bound to PD-L1. Thereby the 

competitive inhibition that CD80-CD28 mediated CO-

stimulation of DC on CD8+ T cells blocked antigen 

presentation and inhibited the activation of CD8+ T 

cells. This suggests that the mechanism of immune 

escape in early recurrent tumors is different from that in 

primary hepatocellular carcinoma. This will contribute 

to the development of more effective therapeutic targets 

and biomarkers for immunotherapy in HCC patients 

[37]. According to the origin, DCs are divided into DCs 

derived from myeloid DC (mDC) and lymphatic 

dendritic cells (LDC) or plasmacytoid dendritic cells 

(pDC) [62]. In this study, the prognosis of different DC 

subgroups was different between high-TMB and low-

TMB groups. For example, higher fraction of pDCs 

associated with improved OS rates (Table 5 and Figure 

8J) was marginally protective infiltrating cells and 

immune response in low-TMB group, while higher 

fraction of pDCs was a hazard risk for high-TMB 

patients (Table 5). Previous research results shown  

that Mature pDCs inhibited the tumor, while 
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Figure 8. Survival analysis of immune cells based on the TIMER database. Horizontal and vertical axes represent survival times and 

survival rates, respectively. Yellow and blue curves are samples with higher and lower immune cell fractions, respectively. (A–L) Lower 
infiltration levels of macrophages (B), dendritic cells (C), and neutrophil (D), CD4+ T cells (E), Tregs (H), Immature DC (I), Activated DC (K) and 
Activated CD4 (L) with improved survival outcomes, and higher infiltration levels of B cells (A), CD8+ T cells (F), MDSC (G) and Plasmocytoid 
DC (J) were associated with poor survival outcomes in HCC. HCC, hepatocellular carcinoma; TIMER, Tumor Immune Estimation Resource; 
Tregs, T cells regulatory; MDSC, myeloid-derived suppressor cells. 
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immature pDCs in the tumor microenvironment 

promoted the tumor [63, 64]. These previous research 

results might explain that higher infiltration of mature 

pDCs was favorable factor while immature pDCs was 

risk factor in HCC. On the other hand, although the 

fraction of pDCs was not different between the two 

TMB groups (Figure 9A), pDCs is might mainly mature 

pDCS in low TMB while immature pDCS in high TMB 

in HCC. However, this hypothesis needs to be verified 

by flow cytometry, and/or immunohistochemistry. 

 

 
 

Figure 9. Cellular characterization of immune infiltrates based on GSEA database. (A) Correspondence analysis of immune 
subpopulations in HCC. Horizontal and vertical axes represent enrich percent and immune subpopulations, respectively. Yellow and blue bar 
are samples with higher and lower immune cell fractions, respectively. (B) t-SNE showing individual patients and selected cell types based on 
two dimensional coordinates. Different colors are different immune subpopulations respectively. (C) Visualization of the immune infiltrates 
for all patients using two dimensional coordinates from multidimensional scaling (MDS). (D) Volcano plots for the enrichment (blue) and 
depletion (yellow) of immune cell types across cancers for tumor stage I to IV calculated based on the NES score in high-TMB (up panel) and 
low-TMB (down panel) from the GSEA. Horizontal and vertical axes represent Immune cell types enrichment (NES) and −log10(q−value), 
respectively. There were not any pots in stage IV for high-TMB, because there were not enough samples for analysis. 
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Table 5. Univariate regression analyses of immune infiltration cells based on GSEA database in HCC. 

Tumor-infiltrating 

immune cell 

All samples  High-TMB  low-TMB 

HR P.value  HR P.value  HR P.value 

Act_CD8 2.415 0.002  0.559 0.160  0.621 0.129 

Tcm_CD8 0.881 0.085  11.825 0.045  1.138 0.897 

Tem_CD8 0.754 0.013  1.465 0.646  0.605 0.478 

Act_CD4 1.120 0.008  3.003 0.359  0.864 0.844 

Tcm_CD4 0.342 0.011  1.097 0.859  0.774 0.508 

Tem_CD4 2.612 0.004  NA NA  NA NA 

Tfh 0.982 0.842  0.137 0.542  16.591 0.153 

Tgd 0.849 0.059  5.022 0.132  1.194 0.818 

Th1 0.868 0.073  0.433 0.280  0.623 0.377 

Th17 1.015 0.943  NA NA  NA NA 

Th2 0.911 0.473  0.921 0.984  3.191 0.427 

Treg 0.966 0.647  NA NA  2.241 0.557 

Act_B 0.821 0.027  NA NA  NA NA 

Imm_B 0.903 0.215  NA NA  NA NA 

Mem_B 0.814 0.044  NA NA  NA NA 

NK 0.732 0.008  0.527 0.503  0.837 0.784 

CD56bright 0.621 0.242  1.012 0.992  1.198 0.839 

CD56dim 0.742 0.582  7353.518 0.060  0.471 0.739 

MDSC 0.730 0.307  0.942 0.893  1.176 0.668 

NKT 0.883 0.720  NA NA  NA NA 

Act_DC 0.982 0.780  1.291 0.779  2.251 0.210 

Pdc 0.576 0.250  1.606 0.428  0.302 0.021 

Imm_DC 1.241 0.417  10.151 0.022  2.937 0.151 

Mac 1.040 0.778  NA NA  NA NA 

Eos 0.937 0.597  NA NA  NA NA 

Mast 0.612 0.032  NA NA  NA NA 

Mon 1.169 0.635  0.556 0.454  0.836 0.763 

Neu 1.029 0.814  NA NA  NA NA 

HR: relative risk value; P_value: the P value tested by Cox test with multi-factor; NA: The sample size is too small 
for Cox analysis; HCC: hepatocellular carcinoma, TMB, tumor mutation burden. 

In this study, we found that high-TMB patients had 

higher infiltration levels of resting dendritic cells (DCs) 

(Figure 7), poor OS (Figure 8), and that higher infiltration 

levels of mDCs (Table 4), especially the immature DCs 

(Table 5) was a hazard factor in HCC based on TIMER 

database and GSEA database. Myeloid-DCs (mDCs) can 

induce both primary immunosuppression and tumori-

genesis [65]. mDCs are considered to be a negative factor 

in anti-tumor immunity due to their decreased expression 

and function [66]. Further, in the present study, the 

infiltration level density of T cells regulatory (Tregs) was 

higher in the high-TMB group. Previous studies have 
shown that Tregs could inhibit the proliferation of CD4+ 

T cells and the secretion of IL-2 [67, 68]. SATO found 

that the improvement in tumor-specific CD8+ T cells and 

reduction in Tregs cells can effectively improve the 

prognosis in cancer patients [69]. Empirical researches 

have shown that mDCs are related to the selection of 

thymic Tregs, differentiation, proliferation, and 

functional regulation of peripheral lymphoid tissues [70, 

71]. 

 

Although higher macrophage level was a hazard risk 

factor associated with poor survival outcomes, which is 

in agreement with that of breast cancer [72], no 

significantly different macrophage levels were observed 

in the two TMB groups. Higher MDSCs infiltrations 
was associated with improved OS, but we couldn’t 

cleanly distinguish the difference of MDSCs 

infiltrations levels and risk factor of MDSCs between 
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high-and low -TMB groups in HCC. Therefore, we 

could not easily determine the potential relationship 

between TMB, infiltration of macrophage and MDSCs. 

 

In our study, infiltrating levels of DCs, TMB, and 

TMB-related hub signatures can be used as prognostic 

indicator in HCC. However, TMB should be analyzed 

together with DCs infiltrating levels, especially in stage 

III and stage IV patients, wherein TMB is generally 

lower. Moreover, the four TMB-related signatures can 

also be prognosis index in HCC. While there are some 

limitations should be taken into consideration: (1) 

although the role of TMB in the prognosis of HCC and 

its potential relationship with immune cell infiltration 

had been identified by CIBERSORT software, TIMER 

database and ssGSEA, different analysis methods also 

have conflicting conclusions, which need to be verified 

through a large number of clinical data or clinical trials 

in the future; (2) The four TMB-related genes and 

immune cell infiltrates are also needed to be validated 

based on basic experiment in the future. 

 

CONCLUSIONS 
 

In conclusion, higher TMB correlated with improved 

survival outcomes and might induce local immune 

recognition in HCC. Patients were divided in two risk 

groups using TMBPM based on 4 hub TMB-related 

signature, and TMBPM index may serve as a promising 

prognostic biomarker for HCC in the future. Different 

DC subgroups (mDCS, pDCs and immDCs) and the 

infiltrating levels of these DC subgroups were different 

risk factors and also were associated with different 

survival outcomes between high- and low-TMB 

samples, while may play an important role in metastasis, 

suppression and progress of HCC. 

 

MATERIALS AND METHODS 
 

Acquisition of multi-omics data resource 
 

All the data used in this article were obtained  

from the TCGA database on the GDC website 

(https://portal.gdc.cancer.gov/), including HCC mutation 

data; transcriptome profiles; and clinical information, such 

as age, sex, AJCC-TNM stages, pathological stages, 

tumor stages, and survival outcomes. The statistical 

results of somatic mutation were visualized with the 

maftools software. The transcriptome profiles with 

HTSeq-FPKM Format of 371 patients were also 

downloaded from the TCGA database with the GDC tool. 
 

Correlation analysis between TMB and prognosis 
 

First, we filtered out the germline mutations annotated 

in the dbsnp and ExAC databases. Then, we defined and 

calculated the TMB of each sample as the total amount of 

coding variants/the length of exons (38 million), where 

the detected variants were considered as frameshift 

deletion mutation, in-frame deletion, frameshift insertion 

mutation, in-frame insertion, missense mutation, 

nonsense mutation, nonstop mutation and silent. As per 

the median TMB value, the patients were divided into the 

high-TMB and low-TMB groups. Kaplan–Meier survival 

analysis with log-rank test was performed to assess the 

differential survival rate between the high-TMB and 

low-TMB groups. In order to improve the accuracy of 

Kaplan–Meier survival analysis, we excluded these 

samples with survival duration of <10 d. Moreover, the 

association of TMB distribution with several clinical 

variables (AJCC-TNM stage, tumor stage, and case 

stage) was evaluated using Kruskal–Wallis test. 

 

Differential expressed genes and functional analysis 

in the 2 TMB groups 

 

For the high-TMB and low-TMB groups, we used the 

limma software to identify DEGs in the two groups with 

|logFC| > 1.5 and FDR < 0.05. The heatmap was 

displayed with the "heatmap" package to visualize the 

differences. ClusterProfiler package was implemented 

for GO and KEGG analysis with q value < 0.05. 

Furthermore, GSEA analysis was performed with FDR 

< 0.3 based on JAVA8 platform using the TMB level as 

the phenotype. Moreover, STRINGdb software was 

used for protein–protein interaction analysis. 

 

Identification of prognostic genes 

 

Thirty TMB-related genes were obtained from 109 

DEGs using univariate Cox survival analysis with P < 

0.05. Subsequently, four hub TMB-related signatures 

were identified using the stepwise regression screening 

method; the process has been shown in the form of a 

Venn diagram. TMBPM was used to calculate TMBPM 

= Ʃ (βi × EXPi) based on multivariate Cox analysis. 

ROC curve was utilized to assess the predictive score of 

four TMB-related signatures in HCC. 

 

The nomogram of the HCC prognosis model was 

established via univariate and multivariate analyses, 

combined with clinical characteristics. Then, calibration 

curves were constructed for the prediction of 1-year, 3-

year, and 5-year survival in HCC. 

 

Assessment of immune-infiltrating cells and 

prognostic analysis 

 

CIBERSORT software (https://cibersort.stanford.edu) 
was used to evaluate the compositions of the immune 

cells in HCC samples, with P > 0.05 to improve 

accuracy of the estimated results, Heatmap has been 

https://portal.gdc.cancer.gov/
https://cibersort.stanford.edu/
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used to show the distribution of immune cell fractions, 

and violin plot visualizes the differential distributions of 

cells with two TMB levels. 

 

Based on the TIMER database, multivariate Cox analysis 

that was fitted by function coxph (βi) from R package 

“survival” was used to identify the immune infiltration 

cells. Subsequently, we calculated the HR with 95% 

confidence interval (95%CI). Further, Kaplan–Meier 

survival analysis was performed with a P value < 0.05 of 

log-rank test to show the differential survival outcomes 

between different levels of immune infiltrates in HCC. 

 

Subsequently, we identified 28 kinds of immune cells 

that are over-represented in the tumor microenvironment 

using single sample gene set enrichment analysis 

(ssGSEA) [39]. All immune cell types were considered 

enriched in a patient or group of patients when FDR (q-

value) ≤ 0.1 and normalized enrichment score (NES) >0. 

The similarity of the enrichment of immune infiltrates 

(averaged NES) were calculated using multidimensional 

scaling (MDS). The distribution of selected cell types for 

individual patients were analyzed with t-distributed 

stochastic neighbor embedding (t-SNE) using the Matlab 

toolbox t-SNE. 

 

Statistical analyses 

 

All the statistical analyses were conducted using R 

software (Version 3.5.2). The p-values were adjusted 

for multiple testing based on FDR according to the 

Benjamini-Hochberg approach, P value < 0.05 was 

regarded statistically significant. Differential analysis 

and normalization were mainly conducted by “limma” 

package of the R software (version 3.5.2). The Kaplan–

Meier analysis with log-rank test or Cox regression 

model was performed by “survival” package. Student’s 

t test was used for continuous variables, while 

categorical variables were compared by χ2 test. The 

non-parametric two-sided Wilcoxon-rank sum test was 

utilized for comparing two groups and the Kruskal–

Wallis test was suitable when it comes to two or more 

groups. Differences and correlations among immune 

cells were analyzed with the vioplot (https://cran.r-

project.org/web/packages/vioplot/index.html). 
 

Editorial note 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–4. 

 

Supplementary Table 1. Calculation of tumor mutation burden (TMB) for 363 HCC patients. 
 

Supplementary Table 2. Analysis of differentially expressed genes between the two tumor mutation burden 
(TMB) groups. 
 

Supplementary Table 3. Top gene ontology (GO) items for differentially expressed genes. 
 

Supplementary Table 4. Univariate cox survival analysis of the differentially expressed genes. 


