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INTRODUCTION 
 

Esophageal carcinoma (EC), which is one of the most 

aggressive types of cancers, has now become the sixth 

leading cause of cancer-related death all over the world 

[1]. The vast majority of EC take place at the upper and 

middle esophagus and are histologically classified as 

esophageal squamous cell carcinoma (ESCC), while 

those cases occurring at the lower esophagus near the 

stomach junction are classified as esophageal 
adenocarcinoma (EAC) [2, 3]. China accounts for 70% 

of all EC cases, which are predominantly composed of 

ESCC subtypes [2, 4, 5]. More than half of EC patients 

have already with distant metastases at diagnosis and 

tend to develop a 5-year survival of between 10% and 

20% [1]. Therefore, it is urgent to determine effective 

prognostic biomarkers from multiple perspectives to 

facilitate a more accurate prediction of clinical outcome 

and provide references for targeted drug development 

against EC. 

 

With the advent of new biochemical technologies 

(especially next-generation sequencing), cancer 

genomic characteristics could be systematically 

analyzed. Recently, the dysregulation in cancers has 

been widely investigated at genomic levels by 

performing large-scale multi-omics analysis [6]. 

Genomic variation as a result of DNA copy number 
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ABSTRACT 
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with different molecular traits, prognostic characteristics and tumor immune microenvironment features. We 
also identified 4 prognostic genes (CLDN3, FAM221A, GDF15 and YBX2) differentially expressed in the three 
subtypes, and could therefore be used as representative biomarkers for the three subtypes of EC. In conclusion, 
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precision medication for EC patients. 
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variation (CNV) and single nucleotide mutations 

(SNPs) could easily lead to tumor development [7, 8]. 

DNA copy number variation played a key regulatory 

role in the progression of ESCC [9, 10], and 

transcriptional disorders caused by copy number 

changes were potential driving events in EC progression 

[11]. On the other hand, analysis of DNA methylation 

profiles has demonstrated the vast heterogeneity of 

epigenome disorders in EC and other cancer types [12–

14], and further studies also proved that DNA 

methylation contributes to heterogeneous biological 

behaviors and is actively involved in the progression of 

ESCC [15–17]. These open, large-scale, multi-omics 

data sets make it possible for conducting a 

comprehensive multi-omics analysis based on 

genomics, epigenomics and transcriptomics to improve 

the prognostic prediction of EC. 

 

There may be co-regulations between DNA copy 

number and DNA methylation abnormalities, as both 

the two have been found to exert important effects on 

EC development [18, 19]. However, their potential 

relationship in EC development has not been well 

studied. In this study, by performing multi-omics 

integration, we analyzed gene expressions dysregulated 

by genomic or epigenetic modes, and identified 

different molecular subtypes significantly associated 

with EC prognosis, the work flow chart is shown in 

Figure 1. This study identified novel subtypes and 

biomarkers for precision medicine and provided a basis 

for better understanding of the molecular mechanisms 

of EC development and progression. 

 

RESULTS 
 

DNA copy number abnormalities were highly 

consistent with methylation abnormalities 

 

DNA copy number and DNA methylation abnormalities 

have an important impact on the progression of EC. To 

 

 
 

Figure 1. Work flow chart. 
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examine the relationship between the two, we defined 

the CNV value of CNV > 0.3 as gain, < -0.3 as Loss, 

the β value of methylation > 0.8 as hypermethylation 

(MetHyper) and < 0.2 as demethylation (MetHypo). 

The number of CNV Gain, CNV Loss, MetHyper and 

MetHypo for each sample were counted to analyze the 

relationship between the frequency of CNV Gain and 

CNV Loss in each sample, and we detected a significant 

positive correlation (R=0.52, p=2.1e-12) (Figure 2A), 

which suggested that high frequency of copy number 

amplification events in the EC patients’ genome were 

accompanied by high frequency of deletions. Similarly, 

the frequency of CNV Gain in each patient was 

significantly positively correlated with the frequency of 

MetHyper (R=0.27, p=7e-04) (Figure 2B), and the 

frequency of CNV Gain in each patient also showed a 

close correlation with the frequency of MetHypo 

(R=0.27, p=0.00049) (Figure 2C). Moreover, the 

frequency of CNV Loss was significantly positively 

correlated with the frequency of MetHyper in each 

patient (R=0.19, p=0.0018) (Figure 2D), and a 

significant positive correlation between the frequency of 

CNV Loss and the frequency of MetHypo was detected 

in each patient (R=0.34, p=9.1e-06) (Figure 2E). These 

results indicated that EC patients’ genome instability 

was accompanied by abnormal DNA methylation. 

Furthermore, the occurrence of MetHyper frequency 

and MetHypo in each patient was determined to be 

closely negatively correlated (R=-0.28, P =0.00032) 

(Figure 2F). The occurrence of DNA hypermethylation 

and hypomethylation events in patients seemed to be 

mutually exclusive. These results suggested that 

patients with frequent CNV dysregulation were more 

likely to exhibit methylation disorders, and that  

DNA copy number abnormalities and methylation 

abnormalities might be co-regulatory. 

 

Identification of CNV-G and MET-G gene sets 

 

The data of copy number variations, gene expressions 

and methylations in TCGA were collected to analyze 

the correlation between CNVs and expression profiles, 

and between methylations and expression profiles. The 

correlation distribution between methylation and gene 

expressions was calculated for all gene promoter 

regions, and it was found that the overall correlation 

coefficient was less than 0, suggesting that methylation 

tended to be negatively correlated with gene 

expressions. The correlation distribution between gene 

copy numbers and gene expressions was analyzed, we 

 

 
 

Figure 2. DNA copy number anomalies were highly consistent with methylation abnormalities. (A) Correlation between 
frequencies of CNV Gain and Loss. (B) Correlation between frequencies of CNV Gain and MetHyper. (C) Correlation between frequencies of 
CNV Gain and MetHypo. (D) Correlation between frequencies of CNV Loss and MetHyper. (E) Correlation between frequencies of CNV Loss 
and MetHypo. (F) Correlation between frequencies of MetHyper and MetHypo. Correlation was calculated using the Pearson correlation 
coefficient. 



 

www.aging-us.com 7002 AGING 

found that the overall correlation coefficient was greater 

than 0, suggesting that copy number tended to be 

positively correlated with gene expressions (Figure 3A). 

These findings were consistent with previous research. 

However, a significant difference in the distribution was 

in the two sets of correlations (D'Agostino test, p < 1e-

5), suggesting that the overall effect of positive and 

negative transcriptional dysregulation was caused by 

abnormal DNA copy number and DNA methylation. A 

total of 4151 CNV-Gs (Supplementary Table 1) and 

2744 MET-Gs (Supplementary Table 2) were identified. 

The distribution of CNV-Gs and MET-Gs on the 

genome were analyzed, and we observed that CNV-Gs 

were mainly distributed on chromosome 12 (Figure 3B), 

but the MET-Gs were mainly distributed on 

chromosomes 6 and 7 (Figure 3C). Most of these MET-

Gs were protein-coding (Figure 3D), the methylation 

sites of MET-G were mainly distributed on CpG Island 

 

 
 

Figure 3. Identification of CNV-G and MET-G gene sets. (A) Correlation z-values between CNV (CNV-G) and expression profiles, or 
between methylation (MET-G) and expression profiles. Distributions of (B) CNV-Gs and (C) MET-Gs on the genome were mapped. (D) 
Functional composition and (E) distribution of methylation sites were determined for MET-Gs. (F) The overlapping part between prognostic 
CNV-Gs and MET-Gs. (G) Chromosomal localization of the 43 genes and (H) their functional annotations. Different colors in the right half 
circle represent different pathways, the outer ring in the left half circle represents the genes corresponding to the pathway, the 
corresponding inner ring represents the significant P value, and the connections in the circle represent the relationship between the pathway 
and genes. 
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and N shore (2kb area immediately upstream of CpG 

islands) (Figure 3E), which was consistent with 

previous studies [20]. The correlations between these 

genes and overall survival (OS) were examined. 

Univariate survival analysis determined that 268 CNV-

Gs and 125 MET-Gs were significantly related to 

prognosis of EC (log rank p < 0.05), with an 

intersection of 43 genes (Figure 3F). These 43 genes 

were largely distributed on chromosome 7, 12, 20 and 

22 (Figure 3G), and were mainly enriched in regulation 

of protein folding, protein secretion, serine/threonine 

kinase activity and phosphorylation (Figure 3H). The 

data suggested that CNVs and methylation might be 

functionally related to the specifically genes regulated 

during tumor development. 

 

Primary identification of molecular subtypes based 

on CNV-G and MET-G genes 

 

Base on NMF, we performed subtyping for CNV-G 

and MET-G genes and obtained two subtypes 

(CNVCorC1, N=60 and CNVCorC2, N=98) for the 

CNV-G gene set (Figure 4A) and two subtypes 

(METCorC1, N=66 and METCorC2, N=92) for the 

MET-G gene set (Figure 4B). Significant prognostic 

differences were identified between CNVCorC1 and 

CNVCorC2 subtypes (Figure 4C). Although there was 

no significant difference between METCorC1 and 

METCorC2, the 3-year survival rate of METCorC2 

was significantly better than METCorC1 (Figure 4D). 

In addition, the subtype relationship between the two 

molecular types was compared, and a vast majority 

(96%) of METCorC1 cases belonged to the 

CNVCorC2 subtype, and 61% of the METCorC2 

cases belonged to the CNVCorC1 subtype, with a 

significant intersection between the two subtypes 

(Figure 4E, 4F). Such findings were consistent with 

the relevant regulation of the CNV-G and MET-G 

genes in EC. 

 

Multi-omics data based molecular subtyping 

 

To further identify molecular subtypes that reflected the 

multi-layer expression patterns of the CNV-G and 

MET-G genes, the genomic data of DNA copy 

numbers, DNA methylations and RNA expressions 

were integrated using iCluster (an integrated clustering 

method) with the number of clusters (K) = 2 or 3. The 

 

 
 

Figure 4. Identification of molecular subtypes of CNV-G and MET-G genes. NMF clustering results of (A) CNV-Gs and (B) MET-Gs 
were demonstrated, and survival proportions of (C) CNV-Gs and (D) MET-Gs were shown by Kaplan-Meier curves. (E, F) The overlapping 
between the subtypes of CNV-G clustering and the subtypes of MET-G clustering. 
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final lambda value of K=2 was 0.26756757, 

0.02432432, 0.29459459, and the lambda value of K=3 

was 0.95945946, 0.01351351, 0.57567568. To evaluate 

the optimal clustering results of iCluster, we repeated 

clustering 20 times at K=2 and K=3, respectively, and 

found that prognostic diversity of K=2 showed more 

significant clustering results (Supplementary Figure 1) 

than the results when K=3 (Supplementary Figure 2). 

Finally, the patient cohort was aggregated into three 

subclasses as follows: iC1 (N=30), iC2 (N=47), and iC3 

(N=82). These subtypes were consistent with the 

classification of CNV-G molecular typing and MET-G 

molecular typing based on NMF analysis, respectively 

(Figure 5A, 5B) (p < 1e-5, χ2 test). 

 

The landscape of CNVs and methylation modes 

between these three subtypes was shown in Figure 5C, 

5D. It should be noted that iC1 had the worst OS among 

the three subgroups, while iC3 had a significantly better 

OS (Figure 5E, 5F). Prognostic differences between iC1 

and iC2, or between iC2 and iC3 were displayed in 

Supplementary Figure 3A–3B, it could be found that the 

disease-free survival of these same subtypes was clearly 

different (Supplementary Figure 3C). These results 

indicated that a comprehensive analysis of the CNV-G 

and MET-G genes facilitated the identification of 

molecular subtypes, each of which had different 

combinations of genomic and epigenome features 

associated with transcriptional disorders and were 

correlated with different prognosis. 

 

Clinicopathological and microenvironmental 

characteristics of molecular subtypes 

 

Differences in clinical features (TNM, Stage, Gender, 

and Age) were compared among the three subtypes. 

Despite that the statistic differences were largely 

insignificant, the subtype iC1 with the worst prognosis 

showed a higher proportion of adverse clinical features, 

such as fewer T0/N0/M0 but more stage III/IV cases. 

Noticeably, iC1 and iC2 were mainly composed of 

adenocarcinoma cases, while iC3 were mainly 

composed of squamous subtypes (Supplementary 

Figure 4A). We then determined the diversity of tumor 

immune microenvironment (TIME) score for the three 

subtypes, and found that iC1 had the lowest stromal 

score, immune score, and estimate score 

(Supplementary Figure 4B). Furthermore, the tumor 

microenvironment of these three subtypes were 

analyzed and the immune cell content of the three 

subtypes were compared. We calculated the distribution 

of six types of immune cell scores for the three 

subtypes, and observed that iC2 had the highest B cell, 
CD4+ T cell and CD8+ T cell scores, while iC1 had the 

lowest Neutrophil/Dendritic scores (Figure 6A). The 

diversity of tumor immune microenvironment (TIME) 

score for the three subtypes were calculated, and it 

could be found that iC1 had the lowest stromal score, 

immune score, and estimate score (Supplementary 

Figure 4). The difference in white blood cell ratio and 

BCR/TCR diversities of the three subtypes were also 

analyzed, as expected, iC1 had the lowest leukocyte 

ratio (Figure 6B), while iC2 had the highest BCR and 

TCR Shannon scores (Figure 6C, 6D). These results 

suggested that the iC1 subtype was in a state of 

immunosuppression, which could explain the poor 

clinical outcome in iC1 subtype compared with other 

two subtypes. 

 

As molecular subtyping has been proposed by TCGA 

study of EC [14], we compared the mutual correlation 

between our subtypes (iC1-iC3) and TCGA-EC 

subtypes (C1-C3). For CNV, iC1/iC2 were composed of 

both C1 and C2, while iC3 mainly overlapped with C3 

(Figure 6E); for methylation, iC1/iC2 were mainly 

composed of C1, while iC3 shared a consistency with 

C2 (Figure 6F); for transcriptional expression, iC1/iC2 

were mainly composed of C1, while iC3 was mainly 

composed of C3 (Figure 6G). Collectively, these 

similarities and diversities suggested that our subtyping 

classified based on multi-omics was complementary to 

the TCGA-EC subtypes. 

 

Molecular characteristics of three molecular 

subtypes 

 

To explore the differences in CNV, methylation, and 

gene expressions between the worst prognostic iC1 and 

the optimal prognostic iC3 subtype, Fisher-exact test 

was used to identify the distribution of CNVs (Gain, 

Loss and Normal) and differences in methylation 

(HyperMethy, HypoMethy and Normal), and DEseq2 

was used to screen differences in gene expressions for 

the two subtypes. A total of 78 CNV genes 

(Supplementary Table 3), 285 methylation sites (108 

genes, Supplementary Table 4), and 5154 expression 

genes (Supplementary Table 5) were identified to be 

significantly diverse between iC1 and iC3 subtypes 

(Figure 7A). Differences in single nucleotide mutations 

between subtypes iC1 and iC3 subtypes were also 

analyzed, and we found 61 genes with significantly 

higher mutation frequencies in iC1 than in iC3 samples 

(Figure 7B, Supplementary Table 6). Of the 61 genes, 

several candidates (such as GABRB3, SYNE1, RP13-

580B18.4, HMCN1 and SLITRK5) were related to the 

development of EC. Specifically, GABRB3 is an 

inhibitory gene of head and neck cancer [21]; SYNE1 

gene hypermethylation can be used as biomarkers in 

colorectal [22]; SYNE1 polymorphisms are associated 
with the risk of developing invasive epithelial ovarian 

cancer [23]; intratumoral heterogeneity of HMCN1 

mutant alleles is associated with poor prognosis of 
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Figure 5. Identification of molecular subtypes based on multi-omics data. Overlapping of (A) CNV-G or (B) MET-G subtypes with 
iCluster subtypes. The landscape of (C) CNV and (D) methylation genes across all subtypes. Overall survival proportions for (E) each iCluster 
subtype or (F) between iC1 and iC3 subtype. 



 

www.aging-us.com 7006 AGING 

breast cancer patients [24]; the combination of 

SLITRK5 and TP53 is associated with the clinical 

outcome of gastric cancer patients [25]. 

 

To further investigate the relationship among gene 

expressions, CNVs, and methylation, univariate survival 

analysis identified a total of 19 differentially expressed 

genes between iC1 and iC3 subtypes and between CNV 

gain/loss and hypo/hyper methylation. Four genes 

(GDF15 (p=0.0018), YBX2 (p=0.0034), FAM221A 

(p=0.0041), CLDN3 (p=0.0087)) were found to be 

significantly associated with prognosis, all of them were 

low-expressed in iC3 subtype. We observed in both 

TCGA-EC and GSE53625 datasets that these 4 genes 

 

 
 

Figure 6. Microenvironmental characteristics of molecular subtypes. Distribution of (A) six immune cell scores, (B) leukocyte 
fractions, (C) BCR Shannon scores, (D) TCR Shannon scores across three subtypes. The mutual correlation between subtypes iC1-iC3 and 
TCGA-EC subtypes C1-C3 from the view of (E) CNV, (F) methylation and (G) gene expression. 
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were adverse prognostic factors, and their elevated 

expression cascades from low (L1), middle (L2) to high 

(L3) were consistent with an overall survival lowering 

from iC1 to iC3 subtypes (Figure 8A–8D). Therefore, 

these genes might be potential biomarkers of three 

molecular subtypes. 

 

DISCUSSION 
 

As a hallmark of malignancy, genomic instability leads 

to DNA copy number variations in multiple cancer 

types [26, 27], and these CNVs were important factors 

affecting changes in gene expressions [28]. In addition 

to copy number abnormalities, DNA methylation is a 

critical regulator of gene transcription and one of the 

most studied epigenetic modifications [29]. Abnormal 

hypomethylation could induce genomic instability and 

overexpression of oncogenes, while hypermethylation 

of the tumor suppressor promoter region disrupts cell 

cycle regulation, apoptosis and DNA repair, and leads 

to malignant cell transformation [30]. Recent studies 

have shown that genomic, epigenomic and trans-

criptomic dysregulations play crucial roles in the 

development and progression of tumors [16, 31]. Thus, 

comprehensively analyzing the multi-layer genomic 

features of cancer could help identify molecular 

subtypes, providing new mechanisms and clinical 

insights into tumor heterogeneity for finding candidate 

therapeutic targets and biomarkers. 

 

The relationship between genomic, epigenetic and 

potential regulatory machineries in EC has not yet been 

investigated. Therefore, we were interested in analyzing 

the relationship between epigenetic and CNVs using 

159 samples from TCGA, and found that DNA copy 

number abnormalities were consistent with methylation 

abnormalities. Moreover, we identified CNV-G and 

MET-G gene sets based on multi-omics association 

analysis, and established the relationship between CNV 

and methylation according to gene expressions. Finally, 

three molecular subtypes (iC1, iC2, iC3) were identified 

by combining CNV, methylation and gene expression 

information through multi-omics clustering. Here, iC1 

was found to be associated with adverse clinical 

outcomes, but iC3 was related to favorable clinical 

outcomes. 

 

Significant differences in the tumor immune micro-

environment of the three molecular subtypes were 

examined. Studies had increasingly shown that tumor 

infiltrating lymphocytes (TILs) are involved in tumor 

progression and invasiveness. TILs include various 

lymphocytes with different activities, and the most 

common lymphocytes are CD8+ and CD4+ T cells [32]. 

 

 
 

Figure 7. Multi-omics molecular landscape of the subtypes. (A) Heat map of differential CNV, methylation site and gene expressions 

across molecular subtypes. (B) Heatmap of mutations across molecular subtypes. 
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T lymphocyte infiltration of primary tumors is used to 

predict clinical outcomes of many cancers, including 

breast cancer [33], head and neck cancer [34], non-

small cell lung cancer [35], colorectal cancer [36], and 

gastric cancer [37]. As found in our study, to some 

extent, the heterogeneity of EC might be resulted from 

the unevenly distributed lymphocyte spectrums across 

iC1-3 subtypes. On the other hand, the neutrophil and 

dendritic scores of iC1 with the worst prognosis were 

significantly lower than those of iC2 and iC3, which 

was in line with a previous report, in which neutrophil 

was found to be able to serve as a prognostic marker for 

patients with locally advanced EC [38]. Similarly, iC1 

leukocyte ratio was sharply lower than that of iC2 and 

 

 
 

Figure 8. 4 genes as potential biomarkers for the three molecular subtypes. The relationship between gene expression (horizontal) 
and methylation (vertical) levels (left panel), expression distribution in three iCluster subtypes (middle panel), and overall survival proportions 
in TCGA and GSE53625 data sets (right panel) were analyzed for (A) GDF15, (B) YBX2, (C) CLDN3 and (D) FAM221A. 
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iC3, and the iC2 TCR and BCR library diversity was 

significantly different from iC1 and iC2. In conclusion, the 

three molecular subtypes displayed diverse tumor immune 

microenvironmental features, the differences of which 

might be related to their heterogenic clinical outcomes and 

therefore were potential targets for immunotherapy of EC. 

 

Furthermore, by comparing the molecular characteristics, 

4 representative biomarkers (CLDN3, FAM221A, 

GDF15 and YBX2) were identified and validated in the 

three subtypes. These four genes predicted poor 

prognosis and were all significantly low-expressed in 

iC3, which was the subtype with a low risk of developing 

EC. In addition, the expressions of the four genes were 

negatively correlated with methylation, suggesting that 

their expressions may be influenced by epigenetic 

regulation. Among the four genes, CLDN3 and GDF15 

were reported to be associated with cancer. CLDNs are 

transmembrane proteins and major components of the 

tight junction, changes of which will disrupt the 

intracellular adhesion and promote malignant 

transformation [39–41]. Abnormal methylation of 

CLDN3 has been reported to be associated with the 

occurrence of ESCC [42]. GDF-15, which is a distal 

member of the transforming growth factor beta (TGF-

beta) superfamily, is widely expressed in a variety of 

mammalian tissues, and its expression is usually induced 

in conditions associated with cellular stress. Serum level 

of GDF-15 is closely related to many diseases, including 

inflammation, cancer, cardiovascular disease and obesity, 

thus, GDF-15 could be used as a reliable predictor of 

disease progression. Fisher OM et al found that plasma 

and tissue levels of GDF15 are significantly elevated in 

Barrett's oesophagus and oesophageal adenocarcinoma 

patients, showing potential in the diagnosis and 

monitoring of Barrett's disease [43]. These findings 

supported the application of these genes as biomarkers 

for identifying EC subtypes. 

 

Although we systemically analyzed the epigenetics, 

genomics and transcriptomics data of EC in this study, 

some limitations should be noted. Firstly, with limited 

clinical follow-up information, we did not consider 

factors such as the presence of other health status of the 

patients in affecting clinical outcomes. Secondly, 

current results were obtained only through bio-

informatics analysis and may be biased, thus further 

genetic and experimental studies involving larger 

populations should be conducted. Apart from these 

limitations, our work provided molecular characteristics 

of EC based on multi-omics. 

 

CONCLUSIONS 
 

In conclusion, we investigated the molecular 

characteristics of EC through multi-omics analysis of 

genomics, epigenomics, and transcriptomics data. We 

found that CNV and methylation of DNA play 

important roles in EC, and identified three potential 

clinically relevant molecular subtypes and four key 

biomarkers. These novel classifications may facilitate 

the development of precision medicine for treating EC 

patients. 

 

MATERIALS AND METHODS 
 

Data origination 

 

The Cancer Genome Atlas (TCGA) (https://portal.gdc. 

cancer.gov/) dataset for EC was downloaded with GDC 

API (https://gdc.cancer.gov/developers/gdc-application-

programming-interface-api). Here, we obtained 185 

samples with CNV detection, 168 samples with 

methylation (MET) data, 195 samples with RNA-seq 

detection and 184 samples with SNP data. A total of 

159 primary tumor samples with CNV, methylation, 

RNA-seq, and SNP data were selected, and the clinical 

follow-up information of these 159 samples 

(Supplementary Table 7) were downloaded. Another 

EC dataset, GSE53625 (https://www.ncbi.nlm.nih.gov/ 

geo/query/acc.cgi?acc=GSE53625) [44], was 

downloaded from Gene Expression Omnibus (GEO) 

database (https://www.ncbi.nlm.nih.gov/geo). The data 

platform was agilent-038314 CBC Homo sapiens 

lncRNA + mRNA microarray V2.0 (Feature Number 

version), which contained a total of 358 samples 

incorporating 179 EC samples and 179 normal samples. 

Data of all samples were shown in Table 1. 

 

Data preprocessing 

 

The CNV data were preprocessed. For the combination 

of CNV probes, 50% regional overlap in the two 

intervals was considered the same, while the number of 

coverage probes < 5 intervals were removed. CNV 

probe were mapped into the corresponding gene using 

gtf of the GENCODE [45] GRCh38.p12 version, while 

multiple CNV probes in one gene region were 

combined as one, and the combined CNV values were 

averaged. For preprocessing of methylation data, sites 

missing from more than 70% of samples were removed. 

The missing values were filled by the k-Nearest 

Neighbour (KNN) algorithm [46], and the gtf upstream 

of the TSS and the downstream 200 bp CpG probe were 

retained using the gtf of the GENCODE GRCh38.p12 

version and mapped into the corresponding gene. For 

RNA-seq data, low-expressed genes in each sample (the 

sample with fragments per kilobase of transcript per 

million mapped reads (FPKM) of 0 accounted for < 0.5 

of the total sample ratio) were removed, while the gene 

set with higher expression were retained. For SNP data, 

the file in MAF format was parsed, the mutations in the 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://gdc.cancer.gov/developers/gdc-application-programming-interface-api
https://gdc.cancer.gov/developers/gdc-application-programming-interface-api
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53625
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53625
https://www.ncbi.nlm.nih.gov/geo
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Table 1. Demographic and clinical characteristic descriptions for esophageal carcinoma patients in different datasets. 

Characteristics TCGA GSE53625 

Number of samples 159 179 

Median survival time (95%CI) (Days) 536 (468-605) 1088 (986-1189) 

Number of death (%) 63 (39.6) 106 (59) 

Age (years) 62.3 (±12.1) 59 (±9) 

Histology type (%)   

Esophagus adenocarcinoma 79 (49.6) - 

Esophagus squamous cell carcinoma 80 (50.4) - 

unknown - 179 (100) 

Stage_T (%)   

T1 25 (15.7) 12 (6.7) 

T2 40 (25.2) 27 (15.1) 

T3 87 (54.7) 110 (61.5) 

T4 5 (3.1) 30 (16.8) 

TX 2 (1.3) 0 (0) 

Stage_N (%)   

N0 64 (40.3) 83 (46.4) 

N1 69 (43.4) 62 (34.6) 

N2 9 (5.7) 22 (12.3) 

N3 5 (3.1) 12 (6.7) 

NX 12 (7.5) 0 (0) 

Stage_M (%)   

M0 126 (79.2) 0 (0) 

M1 15 (9.4) 0 (0) 

MX 15 (9.4) 0 (0) 

unknow 2 (2) 179 (100) 

Stage (%)   

Stage I 16 (10) 10 (5.6) 

Stage II 71 (44.7) 77 (43) 

Stage III 54 (34) 92 (51.4) 

Stage IV 14 (8.8) 0 (0) 

unknow 4 (2.5) 0 (0) 

 

intron interval and the mutations annotated as silence 

were removed. For chip data, the standardized expression 

profile (EXP) matrix was directly downloaded, and 

probes were then matched to genes according to the 

annotation information of the platform. The median level 

of multiple probes matched to the same gene was 

determined as the expression of the gene, while probes 

matching to multiple genes were removed. 

 

Identification of CNV-G gene set and MET-G gene 

set 

 

The Pearson correlation coefficient (r) of each gene 

corresponding to CNV and expression profile (RNA-

seq), methylation and expression profile were calculated 

respectively, and the correlation coefficient was 

converted to z-value according to the formula ln((1+r)/(1-

r)). The genes of p < 1e-5 with correlation coefficient test 

constituted a gene set significantly related to CNV (copy 

number variation genes, CNV-Gs) and a gene set related 

to methylation (methylation genes, MET-G). 

Identification of molecular subtypes based on single 

omics data 

 

Nonnegative matrix factorization (NMF) is an 

unsupervised clustering method widely used in 

discovering genomics-based tumor molecular subtypes 

[47, 48]. To further examine the relationship between 

the expressions of the CNV-G/MET-G gene sets and 

phenotypes, the samples were clustered by the NMF 

method based on the expression profiles of the CNV-G 

and MET-G gene sets, respectively. Then the clinical 

features of the clustered sample and the link between 

the molecular subtypes of the two were analyzed, and 

50 iterations were performed with the standard "brunet" 

of the NMF method. The number of clusters K was set 

to 2-10, then the average profile width of the common 

member matrix was calculated using the R package 

NMF [49], with the minimum member of each subclass 

set as 10. According to the cophenetic correlation 

coefficient (CPCC), the optimal cluster number for 

molecular subgroups was determined by dispersion and 
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silhouette indexes based on CNV-G and molecular 

subgroups based on MET-G. 

 

Identifying molecular subtypes by multi-omics 

clustering 

 

[50] The “iCluster” [49] method in the R package was 

applied to perform multi-group data integration cluster 

analysis. We first extracted the methylation profile, 

SNV and gene expression profile data of CNV-G and 

MET-G as input data, and set these data distributions 

as Gaussian distributions. To optimize CNV, MET and 

EXP data weight values (lambda values), 20 iterations 

were used and 101 lambda sample points were selected 

between 0-1 for optimal lambda value screening. 

Cluster analysis with clusters K=2, 3, and 4 was 

performed to determine the optimal number of 

clusters, and 20 iterations were repeated at each cluster 

to analyze the cluster stability. Finally, molecular 

subgroups with stable clusters were obtained. 

 
Assessing the relationship between molecular 

subtypes and tumor microenvironment 

 
[51] TIMER [51] is a web resource for systematical 

evaluations of the clinical impact of different immune cells 

on cancers, including the evaluation of the abundance of 

six immune cell types B cell, CD4 T cell, CD8 T cell, 

neutrophil, macrophage and dendritic cell in the tumor 

microenvironment of TCGA samples. These related data 

were downloaded, and the abundance distribution of the 

six types of immune cells corresponding to samples of 

different molecular subtypes was analyzed, also, statistical 

differences in the abundance of immune cells of different 

subtypes were assessed by the rank sum test. 

 
Analysis of genetic differences in molecular subtypes 

 
DESeq2 [52] is a widely used differential analysis 

method in transcriptome. Variance-mean dependence in 

count data was evaluated from high-throughput 

sequencing assays and test for differential expression 

based on a model using the negative binomial 

distribution. DESeq2 [52] was used to examine 

differences in gene expressions between different 

molecular subtypes, and 2 fold of the difference plus 

FDR < 0.05 was selected as a threshold to identify 

differentially expressed genes between molecular 

subtypes. 

 
Relationship between molecular subtypes and tumor 

genomic variation 

 
To determine the differences in genomic variation 

between molecular subtypes, SNP data of TCGA-EC 

were analyzed. Intron and silent mutations were 

removed, and fisher's exact test was used to analyze the 

differentially expressed genes between two groups. 

Gene with a threshold variation of p < 0.05 was selected 

to identify mutational differences. 

 

Functional enrichment analyses 

 

To analyze the function of the gene set, we used R 

package clusterprofiler [53] and performed Gene 

Ontology (GO) analysis to identify over-represented 

GO terms in three categories (biological processes, 

molecular function and cellular component). Also, 

pathway enrichment analysis was conducted referring 

to the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database. A FDR < 0 .05 was considered to 

denote a statistical significance. 

 

Identification of subgroup-associated prognostic 

markers 

 

To identify prognosis-related key molecules, differences 

in CNV, methylation, and gene expression were 

compared between the subtypes with the worst and 

optimal prognosis, and genes with abnormalities in 

different histologies were screened. Furthermore, the 

prognostic relevance of these genes was analyzed by 

univariate survival. Finally, prognostic-related gene 

markers were obtained. 

 

Survival analysis 

 

By using the R package survival, the prognostic 

differences between subtypes were visualized through 

univariate Kaplan-Meier (KM) survival analysis and 

Log-rank test. P < 0.05 was defined as statistically 

significant. Correlation coefficients greater than 0 and 

p<0.01 were defined as significant positive correlations, 

and correlation coefficients less than 0 and p<0.01 were 

defined as significant negative correlations. All of these 

analyses were performed in R 3.4.3. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Prognostic differences for each of the 20 clustering results identified by iCluster at k=2. 
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Supplementary Figure 2. Prognostic differences for each of the 20 clustering results identified by iCluster at k=3. 

 

 
 

Supplementary Figure 3. Prognostic diversities of the three iCluster subtypes. (A) Overall survival diversity between iC1 and iC2. (B) 

Overall survival diversity between iC2 and iC3. (C) Progression-free survival proportions for the iC1, iC2 and iC3 subtypes. 
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Supplementary Figure 4. Differences in tumor immune microenvironmental and clinical features for three subtypes. (A) 

Distribution of TNM, Stage, Gender, Age, BMI, Histological Type, Alcohol intake in the three subtypes. (B) Diversity of tumor immune 
microenvironment (TIME) score for the three subtypes. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–7. 

 

Supplementary Table 1. Copy number variation genes. 

 

Supplementary Table 2. Methylation genes. 

 

Supplementary Table 3. Copy number variation genes between iC1 and iC3 subtypes. 

 

Supplementary Table 4. Methylation sites between iC1 and iC3 subtypes. 

 

Supplementary Table 5. Differentially expressed gene between iC1 and iC3 subtypes. 

 

Supplementary Table 6. 61 genes with significantly higher mutation frequencies in iC1 than in iC3 samples. 

 

Supplementary Table 7. 159 primary tumor samples with CNV, methylation, RNA-seq, SNP data, and clinical follow-
up information. 

 


