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INTRODUCTION 
 

Colorectal cancer (CRC) is the third most commonly 

diagnosed cancer among men and women, and the 

second leading cause of cancer deaths worldwide [1, 2]. 

The tumor microenvironment (TME) plays a crucial role 

in tumor development and progression and consists of 

cancer cells, stromal cells, and several types of immune 

cells [3, 4]. Colorectal cancer is highly immunogenic and 

may show positive response to immunotherapy [5–7]. In 

several cancers, normalization of the tumor 

microenvironment improves the efficacy of targeted 

therapies, radiotherapy, and chemotherapy [8–10]. This 

suggests that the proportion of different immune cell 

types and their functional status in the TME determines 

the efficacy of immunotherapy in CRC. 

Several studies have demonstrated the association 

between TME and survival outcomes as well as tumor 

recurrence in CRC patients. Xiong et al. showed that 

reduced levels of M1 macrophages and elevated levels 

of M2 macrophages, neutrophils, and eosinophils in the 

TME were associated with poor prognosis of CRC 

patients [11]. Furthermore, Ye et al. reported significant 

correlation between the levels of Tregs, neutrophils, and 

macrophages in the TME and the prognosis of CRC 

patients [12]. Recent advances in high-throughput 

sequencing technologies have helped define the genomic 

landscape of CRC and identify several TME-related 

molecular signatures for predicting the prognosis of 

CRC patients [13–15]. However, these molecular 

signatures require further analysis and validation to 

explore their utility in clinical applications. 
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ABSTRACT 
 

In this study, we used the ESTIMATE algorithm to analyze clinical data and transcriptome profiles of 1635 
colorectal cancer (CRC) samples from the Gene Expression Omnibus and The Cancer Genome Atlas databases 
and identify prognostic immune-related genes (IRGs). We identified 941 differentially expressed (4 
downregulated and 937 upregulated) genes by comparing samples with high and low immune, stromal scores 
and tumor purity. LASSO Cox regression analyses showed that the risk score based on a ten-IRG signature was 
an independent prognostic factor in CRC. The nomogram with pathological stages (TNM) and the ten-IRG 
signature showed a C-index of 0.769 (95% CI, 0.717-0.821), and area under ROC curve values of 0.788, 0.782 and 
0.789 for 1-, 3-, and 5-year OS, respectively. TIMER database analysis showed positive correlation between the 
ten prognostic IRGs and the levels of tumor-infiltrated immune cells, including CD4+ and CD8+ T cells, 
macrophages, neutrophils, and dendritic cells. These findings demonstrate that this novel ten-IRG signature 
correlates with the pathological stages and the levels of multiple tumor-infiltrated immune cell types. This 
makes the ten-IRG signature a potential prognostic factor for CRC patients. 
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Large-scale transcriptome, genomic, mutational, and 

clinical data of cancer patients is now available from 

public databases like Gene Expression Omnibus (GEO) 

and The Cancer Genome Atlas (TCGA). Yoshihara et 

al. developed a novel algorithm to called ESTIMATE 

(Estimation of Stromal and Immune cells in Malignant 

Tumors using Expression data) to compute the fraction 

of stromal and immune cells in tumor tissues [16]. 

ESTIMATE algorithm generates three scores-stromal, 

immune, and estimate. Stromal and immune scores are a 

measure of the proportion of stromal cells and immune 

cells in the tumor tissues, respectively. Estimate score 

indicates tumor purity, which is defined as the 

percentage of tumor cells in the TME and is closely 

related to the prognosis of cancer. Recent studies have 

shown that ESTIMATE scores show the extent of 

infiltration of non-tumor cells such as the immune cell 

types into the TME of cutaneous melanoma, 

glioblastoma, and adrenocortical carcinoma [17–19]. 

 

In this study, we analyzed the transcriptome data of 

CRC patients from the TCGA and GEO databases using 

the ESTIMATE algorithm to identify and characterize 

immune-related genes (IRGs) that can be used to 

accurately predict the prognosis of CRC patients. 

Furthermore, we analyzed the potential prognostic IRGs 

using the LASSO (Least Absolute Shrinkage and 

Selection Operator) Cox regression model and We 

constructed a nomogram with ten prognostic IRGs  

after analysis using the LASSO Cox regression model 

and further evaluated the correlation between 

clinicopathological features and the expression status of 

the prognostic IRGs in CRC samples. 

 

RESULTS 
 

ESTIMATE analysis shows relationship between 

tumor purity, stromal scores, and immune scores 

with CRC prognosis 

 

We downloaded OS and clinicopathological data for 

1635 eligible CRC patients from the TCGA and GEO 

databases with a mean age of 68 years at diagnosis. 

Among these, 53.9% of the CRC patients were males. 

ESTIMATE results showed that immune scores  

ranged from -899.57 and 3202.84, stromal scores ranged 

from -2232.54 to 2193.08, and tumor purity ranged from  

0.27 to 0.98. We then classified the CRC patients into 

low- and high-score groups based on their immune, 

stromal, and tumor purity scores, and investigated their 

correlation with OS rates. We observed positive 

correlation between stromal scores and OS of CRC 

patients (p=0.035; Figure 1A). However, immune scores 

did not show any significant correlation with OS of CRC 

 

 
 

Figure 1. The relationship between stromal score, immune score and tumor purity of CRC patient samples with pathological 
stages and overall survival. (A) Kaplan-Meier survival curve analysis shows overall survival of CRC patients with high and low stromal 

scores. (B) Kaplan-Meier survival curve analysis shows overall survival of CRC patients with high and low immune scores. (C) Kaplan-Meier 
survival curve analysis shows overall survival of CRC patients with high and low tumor purity. (D) Correlation analysis between stromal scores 
and pathological stages of CRC patients. (E) Correlation analysis between immune scores and pathological stages of CRC patients.  
(F) Correlation analysis between tumor purity and pathological stages of CRC patients. 



 

www.aging-us.com 5508 AGING 

patients (p=0.381; Figure 1B). We also observed negative 

correlation between tumor purity and OS (p=0.03; Figure 

1C). We then assessed the relationship between immune 

scores, stromal scores and tumor purity with the 

pathological stages of CRC. We observed positive 

correlation between stromal scores and pathologic stage 

(p = 4.815e-10; Figure 1D). Immune scores were not 

associated with the pathological stage of CRC patients (p 

= 0.593; Figure 1E). Tumor purity showed inverse 

correlation with the pathological stages of CRC patients 

(p = 1.411e-04; Figure 1F). 

 

Identification of differentially expressed immune- 

related genes in CRC tissues 

 

As shown by the volcano plots, we identified several 

differentially expressed genes (upregulated and 

downregulated) between the low- and high-score groups 

in the TCGA-CRC cohort (n=611; Figure 2A–2C). We 

identified 9 downregulated and 1493 upregulated genes 

in the high stromal score group compared to the low 

stromal score group (Figure 2A), 61 downregulated and 

1235 upregulated genes in the high immune score group 

compared to the low immune score group (Figure 2B), 

and 1830 upregulated genes and 69 downregulated 

genes in the low tumor purity group compared to the 

high tumor purity score group (Figure 2C). Overall, we 

identified 4 downregulated and 937 upregulated IRGs 

that were common among all the three groups (Figure 

2D–2E). 

 

Functional enrichment analysis of the differentially 

expressed IRGs 

 

We performed functional enrichment analysis using the 

clusterProfiler R package and identified 1454 

significantly enriched GO terms and 54 significantly 

enriched KEGG pathways (FDR<0.05) associated with 

 

 
 

Figure 2. Identification of differentially expressed genes based on the immune scores, stromal scores, and tumor purity of 
CRC patients. (A) Volcano plots of the DEGs based on stromal scores. (B) Volcano plots of the DEGs based on immune scores. (C) Volcano 

plots of the DEGs based on tumor purity. (D) Venn diagram shows the numbers of upregulated genes in the immune score, stromal score and 
tumor purity groups as well as the upregulated genes that are common among the three groups. (E) Venn diagram shows the numbers of 
downregulated genes in immune score, stromal score and tumor purity groups as well as the downregulated genes that are common among 
the three groups. 
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the 941 differentially expressed IRGs. The top 20 GO 

terms and KEGG pathways are shown in Figure 3  

and Supplementary Table 1. The top GO terms related 

to biological processes (BF) included regulation  

of leukocyte activation (GO:0002694), leukocyte 

migration (GO:0050900), and T cell activation 

(GO:0042110). The top GO terms related to cellular 

components (CC) were membrane (GO:0098552) and 

extracellular matrix (GO:0031012). The top GO terms 

related to molecular functions (MF) included receptor 

regulator activity (GO:0030545) and receptor ligand 

activity (GO:0048018). The top enriched KEGG 

pathways were cytokine-cytokine receptor interactions 

(hsa04060), chemokine signaling pathway (hsa04062), 

PI3K-Akt signaling pathway (hsa04151), and 

phagosomes (hsa04145). 

 

Construction and validation of the IRG-based 

prognostic signature 

 

We used univariate COX regression and Lasso regression 

analysis to identify IRGs that predict the prognosis of 

CRC patients. We identified 172 IRGs based on the 

LASSO regression analysis results that were significantly 

correlated with the OS of CRC patients (Figure 4A, 4B). 

Subsequently, based on the co-efficient values, we 

generated an IRG-based prognostic risk signature with 

ten IRGs. The risk score was calculated with the 

following formula: (0.1235 × expression of MAP2) + 

(0.0873 × expression of NKAIN4) + (0.2936 × 

expression of VAX2 status) + (0.0321 × expression of 

CALB2) + (0.3958 × expression of FCRL2) + (0.0471 × 

expression of HAND1) + (0.0986 × expression of 

A2ML1) + (0.002 × expression of IDO1) + (0.0134 × 

expression of COL22A1) + (-0.4143 × expression of 

CD1B). CRC patients from the TCGA database (n=611) 

were then classified into low- and high-risk groups 

according to the cutoff risk score of 1.099 (Figure 4C, 

4D). The high-risk group CRC patients showed 

significantly lower OS than those in the low-risk group (p 

< 0.0001; Figure 4E). The area under the ROC curve 

(AUC) values for 1-, 3-, and 5-year OS were 0.708, 

0.716, and 0.680, respectively (Figure 4F). In the internal 

validation cohort, patients from the high-risk group 

demonstrated significantly worse survival outcomes 

compared to the low-risk group (P<0.001; Supplementary 

Figure 1). The AUC values for the internal validation 

cohort were 0.722, 0.712, and 0.738, for 1-, 3- and 5-year 

OS, respectively (Supplementary Figure 1). Next, we 

verified the prognostic model in the GSE39582 cohort 

(n=531) by first classifying the CRC patients into low- 

and high-risk groups according to the cutoff risk score of 

0.989 (Figure 4G, 4H). The high-risk CRC patients from 

the GSE39582 cohort showed significantly lower OS 

than the corresponding low-risk patients (p = 0.006; 

Figure 4I). The AUC values for 1-, 3-, and 5-year OS for 

CRC patients from the GSE39582 cohort were 0.711, 

0.632, and 0.613, respectively (Figure 4J). 

 

The ten-IRG signature is an independent prognostic 

predictor for CRC patients 

 

We performed univariate and multivariate Cox 

regression analyses using the TCGA and GEO CRC 

patient datasets after adjusting for clinicopathological 

parameters such as M stage, N stage, T stage, tumor 

stage, age and gender to determine if the risk score 

based on the ten-IRG signature accurately predicted 

 

 
 

Figure 3. Functional enrichment analysis of the differentially expressed IRGs. GO and KEGG pathway analyses results show the 
most enriched GO terms related to (A) biological functions (BF), (B) cellular component (CC), and (C) molecular functions (MF), and (D) KEGG 
pathways related to differentially expressed IRGs. 



 

www.aging-us.com 5510 AGING 

prognosis of CRC patients. The results showed that the 

ten-IRG signature-based risk score was an independent 

prognosis factor for determining the OS of CRC 

patients from the two datasets (Figure 5A, 5B, 5D, 5E 

and Supplementary Figure 1). Next, we analyzed the 

correlation between the ten-IRG signature and other 

clinicopathological parameters using the Chi-square 

test. In the TCGA cohort, the higher risk score based on 

the ten-IRG signature was associated with tumor stage 

(p<0.001), M stage (p<0.05), N stage (p<0.001), and T 

stage (p<0.001) (Figure 5C), but was not related to 

gender and age of CRC patients. We obtained similar 

results with the GSE39582 validation cohort of CRC 

patients (Figure 5F). 

Nomogram construction and validation 

 

Next, we analyzed if the ten-IRG prognostic signature 

would enhance the accuracy of predicting OS of CRC 

patients. Towards this, we constructed a nomogram with 

the ten-IRG signature-based risk score, M stage, N stage, 

T stage, and age to determine the 1-, 3-, and 5-year OS 

of CRC patients (Figure 6A). The calibration plots 

showed that the nomogram accurately predicted the 3-

year OS of CRC patients (Figure 6B). Overall, the 

nomogram significantly improved the prediction of the 

1-, 3-, and 5-year OS of CRC patients (Figure 6C). The 

OS prediction of the nomogram was significantly higher 

compared to the OS prediction based on TNM stages 

 

 
 

Figure 4. Construction and validation of the ten-IRG prognostic signature. (A) A plot of partial likelihood deviance of the LASSO 
coefficient profiles of differentially expressed IRGs. (B) A plot of the LASSO coefficient profiles for the differentially expressed IRGs associated 
with overall survival of CRC. (C) Distribution of risk scores for the CRC patients in the TCGA cohort based on the ten-IRG prognostic signature. 
(D) The survival status of 611 CRC patients in the TCGA cohort belonging to the high- and low-risk groups based on the ten-IRG prognostic 
signature. (E) Kaplan–Meier survival curves show overall survival of high and low-risk CRC patients in the TCGA cohort based on the ten-IRG 
prognostic signature. (F) Time-dependent ROC curves show the accuracy of overall survival prediction for the TCGA-CRC cohort based on the 
ten-IRG prognostic signature. (G) Distribution of risk scores for the GSE39582 cohort based on the ten-IRG prognostic signature. (H) The 
survival status of 531 CRC patients in the GSE3958 cohort belonging to the high- and low-risk groups based on the ten-IRG prognostic 
signature. (I) Kaplan–Meier survival curve analysis shows the overall survival of high and low-risk CRC patients in the GSE3958 cohort based 
on the ten-IRG prognostic signature. (J) Time-dependent ROC curves show the accuracy of overall survival prediction for the GSE3958 cohort 
based on the ten-IRG prognostic signature. 
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Figure 5. Association of the ten-IRG prognostic signature with overall survival of CRC patients. (A) Univariate COX regression 

analysis shows the clinicopathological parameters associated with the overall survival of CRC patients in the TCGA cohort. (B) Multivariate 
COX regression analysis shows clinicopathological parameters associated with the overall survival of CRC patients in the TCGA cohort. (C) 
Correlation analysis results show the relationship between the ten-IRG prognostic signature and the clinicopathological parameters in the 
TCGA-CRC cohort. (D) Univariate COX regression analysis shows the clinicopathological parameters associated with the overall survival of CRC 
patients in the GSE39582 cohort. (E) Multivariate COX regression analysis shows clinicopathological parameters associated with the overall 
survival of CRC patients in the GSE39582 cohort. (F) Correlation analysis results show the relationship between the ten-IRG prognostic 
signature and the clinicopathological parameters in the GSE39582-CRC cohort. 
 

 
 

Figure 6. Establishment and validation of the nomogram for predicting overall survival of CRC patients in the TCGA and 
GSE39582 cohorts. (A) Nomogram with the ten-IRG prognostic risk score, TNM stages and age for predicting the 1-year, 3-year, and 5-year 
OS of CRC patients. In the nomogram, each variable is assigned a score. The sum of scores for all variables is used to predict the probability of 
survival of the CRC patients. (B) Calibration plot shows the comparison between nomogram predicted and actual 3-year OS of the TCGA 
cohort. (C) Decision curve analysis shows the predicted 1-year, 3-year and 5-year overall survival of CRC patients based on the nomogram. (D) 
Decision curve analysis shows the predicted 1-year, 3-year, and 5-year OS of CRC patients based on the nomogram, TNM stage only, and age 
plus ten-IRG signature. (E) Kaplan–Meier survival curves show the overall survival of CRC patients in the TCGA cohort based on the 
nomogram. (F) Time-dependent ROC curves show the accuracy of overall survival prediction in the TCGA cohort based on the nomogram. (G) 
Kaplan–Meier survival curves show the overall survival of CRC patients in the GSE39582 cohort based on the nomogram. (H) Time-dependent 
ROC curves show the accuracy of overall survival prediction in the GSE39582 cohort based on the nomogram. 
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alone or age plus the ten-IRG signature-based risk score 

(Figure 6D). The C-index value for the nomogram was 

0.769 (95% CI, 0.717-0.821). The AUC values for the  

1-, 3-, and 5-year OS based on the nomogram were 

0.788, 0.782 and 0.789, respectively (Figure 6F). We 

then verified the predictive value of the nomogram in the 

TCGA and GSE39582 validation cohorts. The C-index 

value for the internal validation cohort (TCGA) was 

0.781 (95% CI, 0.709-0.853), and the AUC values for 1-

, 3-, and 5-year OS were 0.834, 0.780, and 0.752, 

respectively (Supplementary Figure 2). The C-index 

value for the GSE39582 cohort was 0.732 (95% CI, 

0.691-0.773) and the AUC values for 1-, 3-, and 5-year 

OS were 0.834, 0.780, and 0.752, respectively (Figure 

6H). Furthermore, we stratified the CRC patients into 

high- and low-risk groups based on the median risk 

score cut off value of the nomogram. Kaplan-Meier 

survival curves and time-dependent ROC curves showed 

significantly worse survival outcomes for patients from 

the high-risk group compared to those from the low-risk 

group in both the TCGA cohort (P<0.001; Figure 6E, 

6F) and GSE39582 cohort (P<0.001; Figure 6G, 6H and 

Supplementary Figure 2). 

 

Survival and immune cells infiltration analysis of ten 

IRGs in signature 

 

We performed Kaplan-Meier survival curve analysis of 

the TCGA-CRC patients based on the expression of the 

ten prognostic IRGs to determine their independent 

prognostic values. High expression of A2ML1 (Figure 

7A), CALB2 (Figure 7B), COL22A1 (Figure 7D), 

FCRL2 (Figure 7E), HAND1 (Figure 7F), IDO1 (cut off 

value: 34, Figure 7G), MAP2 (Figure 7H), NKAIN4 

(Figure 7I) and VAX2 (Figure 7J) correlated with 

shorter OS in CRC patients, whereas, high expression of 

CD1B (Figure 7C) significantly correlated with longer 

OS. We observed similar results in the GSE39582 

cohort (Supplementary Figure 3A–3J). Interestingly, 

IDO1 may also have another tumor suppressor gene 

identity in the GSE39582 cohort (Supplementary Figure 

3G) and in TCGA database when expression was 

between 1.06 and 34 (Supplementary Figure 4). 

 

We performed TIMER database analysis to determine 

the correlation between the ten-IRG prognostic 

signature and tumor infiltration of six types of immune 

cells, namely B cells, CD4+ T cells, CD8+ T cells, 

macrophages, neutrophils, and dendritic cells in the 

TME. The ten-IRG signature-related risk score showed 

positive correlation with the levels of CD4+ T cells, 

CD8+ T cells, macrophages, neutrophils, and dendritic 

cells in the TME (all P < 0.05), but was not significantly 

associated with the levels of B cells (P > 0.05; Figure 

8). The levels of CD1B expression correlated with the 

infiltration levels of neutrophils (r= 0.468, p= 3.31E-23) 

and dendritic cells (r = 0.505, P = 2.05E-27) in colon 

adenocarcinoma (COAD) samples (Figure 9A and 

Table 1). Moreover, FCRL2 expression levels showed 

significant correlation with the infiltration levels of B 

cells (r= 0.484, p= 3.74E-25), CD4+ T Cells (r= 0.447, 

p= 3.63E-21), and dendritic cells (r = 0.434, P = 6.73E-

20) (Figure 9B and Table 1). IDO1 expression levels 

were significantly associated with the infiltration levels 

 

 
 

Figure 7. Correlation between the expression levels of individual IRGs from the ten-IRG prognostic signature and OS of CRC 
patients in the TCGA database. Kaplan-Meier survival plots show OS of CRC patients with high (red line) and low (blue line) expression of 
the ten individual IRGs. Kaplan-Meier survival curves for (A) A2ML1, (B) CALB2, (C) CD1B, (D) COL22A1, (E) FCRL2, (F) HAND1, (G) IDO1, (H) 
MAP2, (I) NKAIN4, (J) VAX2. Note: p<0.05 by the log-rank test. 
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of CD8+ T cells (r = 0.4, P = 4.66E-17), neutrophils  

(r= 0.638, p= 3.97E-47), and dendritic cells (r = 0.564, 

P = 3.47E-35) (Table 1). MAP2 expression levels were 

significantly associated with the infiltration levels of 

CD4+ T Cells (r= 0.441, p= 1.38E-20), macrophages (r= 

0.535, p= 3.03E-31), and dendritic cells (r = 0.465, P = 

5.68E-23) (Figure 9C and Table 1). 

 

DISCUSSION 
 

In this study, we used the ESTIMATE algorithm to 

analyze the transcriptome and clinical data of CRC 

patients from the GEO and TCGA databases to 

determine immune-related gene (IRG) signatures that 

predict survival outcomes. The ESTIMATE algorithm 

calculates stromal and immune scores and predicts 

tumor purity based on single-sample gene set enrichment 

analysis (ssGSEA) of specific gene signatures that are 

related to the proportions of stromal and immune cells in 

the TME. The accuracy of the ESTIMATE algorithm 

has been validated in several cancer types and shown 

promising results. However, the ESTIMATE algorithm 

has not been used to evaluate prostate or pancreatic 

cancers because of the atypical nature of the tumor cells 

and lack of sufficient data [16]. We screened 

differentially expressed IRGs by comparing CRC 

patients from the TCGA database with high and low 

immune, stromal or tumor purity scores and built a risk 

signature including ten IRG genes based on the LASSO 

Cox regression analyses. The ten-IRG risk signature was 

significantly associated with the OS of CRC patients 

from the TCGA and GSE39582 cohorts. Furthermore, 

the risk signature was significantly associated with the 

TNM stages. These results demonstrate that the ten-IRG 

signature predicts the prognosis of patients with CRC. 

 

We then established a nomogram that included the risk 

score based on the ten-IRG signature and 

clinicopathological parameters including TNM stages 

and age to accurately predict OS of CRC patients. The 

predictive performance of the nomogram was 

satisfactory. The calibration plots demonstrated that the 

actual OS and predicted OS values were comparable. 

The C-index values for the nomogram were 0.769 and 

0.732 for the TCGA and GSE39582 cohorts, 

respectively. The prognostic accuracy was higher when 

the clinicopathological parameters were combined with 

the ten-IRG prognostic signature compared to 

clinicopathological parameters alone or the ten-IRG 

prognostic signature alone. This demonstrated that the 

ten-IRG signature improved the prognostic prediction of 

the clinicopathological parameters. 

 

 
 

Figure 8. The abundance of six immune cell types in the CRC tissues correlates with the risk scores according to the ten -
IRG prognostic signature. (A) The abundance of six immune cell types (B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, 

and dendritic cells) in the high and low risk groups based on the ten-IRG prognostic signature. (B–G) The correlation between the ten-
IRG prognostic signature and the abundance of B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells in the 
CRC tissues. 
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In general, the status and function of tumor-infiltrating 

immune cells regulates the biological behavior of 

cancers. CD4+ and CD8+ T cells identify cancer cell-

related antigens and play a significant role in cancer 

immunotherapy [20, 21]. Conversely, tumor-associated 

macrophages (TAMs) provide trophic and nutritional 

support to the malignant cancer cells and mediate 

therapeutic resistance and disease progression [22]. 

TAMs also represent potential targets for human 

anticancer therapies [23]. Neutrophils play a significant 

role in tumor initiation, growth and progression, and 

have been identified as therapeutic targets and clinical 

biomarkers in several cancers [24]. TIMER database 

analysis demonstrated significant positive correlation 

between the ten-IRG signature and the infiltration of 

CD4+ T cells, CD8+ T cells, macrophages, neutrophils, 

and dendritic cells. This suggests that higher tumor 

infiltration of immune cell types indicates CRC patients 

 

 
 

Figure 9. The expression of specific prognostic IRGs correlates with the abundance of tumor-infiltrated immune cell types in 
the CRC tissues. (A) The correlation analysis between CD1B gene expression and the proportions of six types of immune cells (B cells, CD4+ 
T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells) in the CRC tissues. (B) The correlation analysis between FCRL2 gene 
expression and the proportions of six types of immune cells (B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells) 
in the CRC tissues. (C) The correlation analysis between MAP2 gene expression and the proportions of six types of immune cells (B cells, CD4+ 
T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells) in the CRC tissues. 



 

www.aging-us.com 5515 AGING 

Table 1. Correlation analysis between the ten prognostic IRGs and immune cell infiltration in the CRC tissues. 

IRGs 
CRC Tumor purity B Cells CD8+ T Cells CD4+ T Cells Macrophages Neutrophils Dendritic cells 

TYPES Cor P Cor P Cor P Cor P Cor P Cor P Cor P 

A2ML1 COAD -0.156 0.002 -0.103 0.039 -0.016 0.743 0.136 0.006 0.048 0.339 0.019 0.705 0.025 0.624 

READ -0.029 0.73 -0.04 0.639 -0.119 0.162 -0.101 0.239 0.014 0.866 -0.005 0.957 0.115 0.179 

CALB2 COAD -0.291 2.26E-09 0.014 0.769 0.109 0.028 0.263 9.11E-08 0.331 8.51E-12 0.284 7.19E-09 0.299 8.76E-10 

READ -0.334 5.49E-05 -0.081 0.345 -0.002 0.984 0.286 6.37E-04 0.321 1.16E-04 0.204 0.02 0.291 5.13E-04 

CD1B COAD -0.205 2.99E-05 0.256 1.86E-07 0.264 6.42E-08 0.315 9.91E-11 0.36 8.18E-14 0.468 3.31E-23 0.505 2.05E-27 

READ -0.289 5.29E-04 0.237 0.005 0.016 0.853 0.29 5.34E-04 0.147 0.085 0.109 0.204 0.408 6.25E-07 

COL22A1 COAD -0.265 5.40E-08 0.022 0.664 0.131 0.008 0.396 1.62E-16 0.473 6.29E-24 0.398 1.06E-16 0.395 1.91E-16 

READ -0.296 3.84E-04 0.099 0.242 0.0006 0.994 0.411 5.07E-07 0.399 1.16E-06 0.254 0.002 0.299 3.50E-04 

FCRL2 COAD -0.395 1.21E-16 0.484 3.74E-25 0.237 1.35E-06 0.447 3.63E-21 0.297 1.12E-09 0.378 4.34E-15 0.434 6.73E-20 

READ -0.411 4.66E-07 0.516 8.06E-11 0.232 0.006 0.123 0.15 -0.015 0.861 0.115 0.181 0.304 2.73E-04 

HAND1 COAD -0.176 3.49E-04 -0.103 0.038 0.038 0.446 0.256 2.06E-07 0.377 4.04E-15 0.155 0.002 0.211 1.93E-05 

READ -0.067 0.433 -0.016 0.856 -0.06 0.479 0.219 0.01 0.317 1.46E-04 -0.019 0.828 0.111 0.191 

IDO1 COAD -0.353 2.17E-13 0.248 4.42E-07 0.4 4.66E-17 0.286 5.44E-09 0.303 5.33E-10 0.638 3.97E-47 0.564 3.47E-35 

READ -0.377 4.46E-06 0.25 0.003 0.342 3.82E-05 0.184 0.031 0.046 0.594 0.364 1.16E-05 0.567 3.38E-13 

MAP2 COAD -0.255 1.82E-07 0.125 0.012 0.286 4.59E-09 0.441 1.38E-20 0.535 3.03E-31 0.429 2.22E-19 0.465 5.68E-23 

READ -0.283 7.15E-04 0.074 0.389 0.311 1.92E-04 0.214 0.012 0.419 2.74E-07 0.234 0.006 0.335 5.54E-05 

NKAIN4 COAD -0.274 1.92E-08 -0.07 0.161 -0.007 0.887 0.301 7.29E-10 0.341 1.90E-12 0.229 3.78E-06 0.273 2.79E-08 

READ -0.325 9.17E-05 -0.08 0.327 -0.123 0.149 0.389 2.20E-06 0.454 1.93E-08 0.113 0.188 0.197 0.02 

VAX2 COAD -0.239 1.12E-06 -0.016 0.742 0.118 0.017 0.239 1.21E-06 0.352 3.26E-13 0.284 7.00E-09 0.285 5.61E-09 

READ -0.108 0.203 -0.157 0.07 -0.119 0.163 0.206 0.015 0.139 0.104 0.012 0.89 0.096 0.261 

 

with advanced stage cancer. Furthermore, these data 

confirm the regulatory role of tumor-infiltrated immune 

cells in CRC progression. 

 

We observed significant correlation between the 

expression of several genes in the ten-IRG signature 

and tumor progression. Bagchi et al. demonstrated the 

anti-tumor potential of CD1b-autoreactive T cells and 

their potential in adoptive immunotherapy [25]. Guo et 

al. demonstrated that miR-582/CD1B regulates the 

function of dendritic cells and is associated with 

immunotherapeutic outcomes in patients with lung 

adenocarcinoma [26]. The role of CD1B in CRC is 

unclear. Chronic inflammation is a well-established 

risk factor for CRC [27]. IDO1 plays an important role 

in limiting adaptive immune responses in several 

inflammatory and malignant gut diseases including 

gastric, pancreatic, esophageal, and stromal tumors 

[28]. High IDO1 expression is associated with tumor 

progression and poor clinical outcomes in CRC 

patients [29]. IDO1 contributes to immune tolerance in 

colon cancer by suppressing CD8+ T cell responses 

[30]. Reversing IDO1-mediated immunosuppression 

improved responses to immunogenic chemotherapy in 

a subcutaneous colorectal tumor model by promoting 

dendritic cell maturation, increasing tumor infiltrating 

T lymphocytes, and decreasing the numbers of 

regulatory T cells [31]. Our study showed IDO1 may 

be a gene with Janus face. On one face, IDO1 

expression was higher than 34 that will be as an 

oncogene (Figure 7). The other face, IDO1 will be a 
cancer suppressor gene when expression was between 

1.06 and 34 (Supplementary Figure 4). And the 

significant correlation was confirmed between IDO1 

expression levels and the numbers of tumor-infiltrating 

dendritic cells and CD8+ T cells. 

 

There are several limitations in our study. Firstly, we 

performed this study by analyzing data of CRC patients 

from public databases with genetic algorithms. However, 

the findings of our study require further clinical 

validation. Secondly, we did not validate the selected 

IRGs independently. Therefore, further studies are 

necessary to establish the individual role of these IRGs 

in tumorigenesis and immunotherapy response in CRC. 

 

In conclusion, we used the ESTIMATE algorithm to 

analyze clinical and transcriptome data of CRC patients 

from the TCGA and GEO databases and identified a ten-

IRG signature that is significantly associated with the 

status of tumor-infiltrating immune cells and prognosis 

of CRC patients. Further investigations are necessary to 

determine the clinical utility of this ten-IRG prognostic 

signature. 

 

MATERIALS AND METHODS 
 

Data collection 

 

We searched the GSE and TGCA databases to identify 

CRC datasets with sample sizes exceeding 50 subjects. 

The selection criteria included: (1) RNA-Seq or 

microarray data from transcriptome studies; and (2) 

clinical data including data regarding clinicopathological 

parameters such as TNM stages and OS data. Based on 

these parameters, we selected six datasets, namely 

GSE103479, GSE72970, GSE41258, GSE39582, 

GSE12945, and TCGA [32–37] for this study. This 
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included 1635 primary CRC patients that were staged 

according to the American Joint Committee on Cancer 

(AJCC) staging system. The clinicopathological data 

was downloaded from the GEO (https://www.ncbi.nlm. 

nih.gov/geo/) and TCGA (https://tcga-data.nci.nih.gov/ 

tcga/) databases. The ESTIMATE algorithm was used to 

evaluate tumor purity as well as stromal and immune 

scores [16]. The entire TCGA dataset was used for 

genomic analysis and 60% of the patients from this 

dataset were randomly selected as an internal validation 

cohort. The results were also validated using the largest 

CRC dataset GSE39582 as the external validation cohort. 

This study complied with the approved publication 

guidelines for the TCGA and GEO databases. Since we 

used the data from these public databases, we did not 

require the approval of the ethics committee from  

our university or the consent of the patients included in 

this study. 

 

Identification of immune-related genes (IRGs) 

 

The ESTIMATE algorithm was used to calculate 

tumor purity, stromal scores, and immune scores of the 

CRC patient samples, which were then classified into 

low and high groups using X-tile [38]. X-tile is a novel 

tool for assessing the biological relationships between 

potential biomarker genes and prognosis, and 

identifies optimal cut-points based on the gene 

expression values [38]. Then, we used the limma R 

package [39] to identify differentially expressed genes 

using the cutoff values set at false discovery rate 

(FDR) < 0.05 and log2 | fold change | > 1. Finally, we 

identified the prognostic immune-related genes (IRGs) 

by comparing their stromal scores, immune scores, and 

tumor purity. 

 

Functional enrichment analysis of IRGs 

 

We used the clusterProfiler R package [40] to perform 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analysis and 

identified the most enriched biological pathways and 

functions related to the IRGs. We used the false 

discovery rate (FDR) to determine the adjusted P values 

and set the statistical significance as FDR < 0.05 to 

identify the most enriched GO terms for the biological 

processes (BP), molecular functions (MF), and cellular 

components (CC) as well as the KEGG pathways related 

to the IRGs. 

 

Establishment of the IRG prognostic signature for 

CRC 

 
We investigated the association between IRGs and 

prognosis of CRC patients by performing univariate 

Cox regression analysis. P < 0.05 was considered 

statistically significant. Based on this analysis, we 

selected a panel of IRGs, which were then evaluated 

using the LASSO Cox regression analysis with the R 

package “glmnet”. We then set up a multi-gene 

signature to evaluate the prognosis of the CRC patients 

after cross-validating 1000 times with standard error 

within one standard deviation of the minimum. We 

then established the most simplified (smallest 

perimeter) immune gene expression signature model 

and calculated the risk scores for all patients based on 

the sum of the corresponding coefficients and 

expression value of each gene in the prognostic IRG 

signature model. 

 

TIMER database analysis 

 

We used the deconvolution algorithm from the TIMER 

database (https://cistrome.shinyapps.io/timer/) to analyze 

the association between the prognostic risk-related IRGs 

and the tumor-infiltration levels of immune cells, such as 

B cells, CD4+ T cells, CD8+ T cells, macrophages, 

neutrophils, and dendritic cells [41]. 

 

Statistical analysis 

 

The median risk score was used as the cutoff value to 

classify CRC patients from the GSE39582 and TCGA 

datasets into low- and high-risk groups. Kaplan-Meier 

survival curves and log-rank test were used to evaluate 

the differences in OS rates between the low- and high-

risk groups. Univariate and multivariate analysis of 

clinicopathological parameters and the ten-IRG 

prognostic signature was performed to determine the 

prognostic factors for the CRC patients from the TCGA 

dataset. A nomogram was constructed with the 

prognostic clinicopathological factors to determine the 

OS of the CRC patients in the TCGA cohort. The 

performance of the nomogram was evaluated using C-

index and calibration plots with the “rms” R package. 

The efficiency of the nomogram was validated with the 

internal validation TCGA cohort and the GSE39582 

cohort. Two-tailed t-tests were used to determine 

statistical significance, which was set at P < 0.05. R 

software version 3.6.0 was used to perform all statistical 

analyses. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Validation of the ten-IRG signature in the internal validation cohort. (A) Kaplan–Meier survival curves 
show the overall survival of high- and low-risk CRC patients in the internal validation cohort based on the ten-IRG prognostic signature.  
(B) Time-dependent ROC curves show accuracy of the overall survival prediction based on the ten-IRG prognostic signature in the internal 
validation cohort. (C) Univariate Cox regression analysis shows the clinicopathological parameters associated with overall survival of CRC 
patients in the internal validation cohort. (D) Multivariate Cox regression analysis shows the clinicopathological parameters associated with 
overall survival of CRC patients in the internal validation cohort. 
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Supplementary Figure 2. Validation of the nomogram in accurately predicting overall survival of CRC patients in the internal 
validation cohort. (A) Kaplan–Meier survival curves show the overall survival of high-and low-risk CRC patients in the internal validation 

cohort based on the nomogram. (B) Time-dependent ROC curves show the accuracy of overall survival prediction based on the nomogram in 
CRC patients from the internal validation cohort. 
 

 
 

Supplementary Figure 3. Correlation analysis between expression levels of individual prognostic IRGs and OS of CRC patients 
in the GSE39582 cohort. Kaplan-Meier survival plots show the OS of CRC patients in the GSE39582 cohort with high (red line) and low 
(blue line) expression of the ten individual IRGs. (A), Kaplan-Meier survival curves for A2ML1. (B), Kaplan-Meier survival curves for CALB2. (C), 
Kaplan-Meier survival curves for CD1B. (D), Kaplan-Meier survival curves for COL22A1. (E), Kaplan-Meier survival curves for FCRL2. (F), 
Kaplan-Meier survival curves for HAND1. (G), Kaplan-Meier survival curves for IDO1. (H), Kaplan-Meier survival curves for MAP2. (I), Kaplan-
Meier survival curves for NKAIN4. (J), Kaplan-Meier survival curves for VAX2. Note: p<0.05 according to the log-rank test. 
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Supplementary Figure 4. Kaplan-Meier survival plot of IDO1 (cut-off value=1.06). 
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Supplementary Table 
 

Supplementary Table 1. Top 20 KEEG pathways and GO terms enriched by the IRGs. 

Categories Term Description Count FDR 

KEGG 

pathways 

hsa04060 Cytokine-cytokine receptor interaction 68 4.11E-21 

hsa04062 Chemokine signaling pathway 45 1.51E-14 

hsa04151 PI3K-Akt signaling pathway 42 0.000122 

hsa04145 Phagosome 41 3.35E-15 

hsa04061 Viral protein interaction with cytokine and cytokine receptor 40 3.85E-21 

hsa05152 Tuberculosis 39 2.31E-11 

hsa05150 Staphylococcus aureus infection 38 2.70E-20 

hsa04640 Hematopoietic cell lineage 38 7.47E-20 

hsa04514 Cell adhesion molecules (CAMs) 37 9.65E-13 

hsa04380 Osteoclast differentiation 35 3.21E-13 

hsa05323 Rheumatoid arthritis 33 5.13E-16 

hsa05140 Leishmaniasis 26 2.94E-12 

hsa05322 Systemic lupus erythematosus 26 1.23E-06 

hsa05166 Human T-cell leukemia virus 1 infection 24 0.01797 

hsa04610 Complement and coagulation cascades 23 1.06E-08 

hsa04620 Toll-like receptor signaling pathway 23 5.17E-07 

hsa05164 Influenza A 23 0.001474 

hsa04510 Focal adhesion 23 0.012233 

hsa04015 Rap1 signaling pathway 23 0.020275 

hsa05144 Malaria 22 4.66E-13 

GO BP GO:0002694 regulation of leukocyte activation 100 2.45E-33 

GO:0050900 leukocyte migration 98 1.54E-33 

GO:0042110 T cell activation 86 3.07E-27 

GO:0002521 leukocyte differentiation 86 1.34E-24 

GO:0001819 positive regulation of cytokine production 85 1.89E-26 

GO:0042119 neutrophil activation 85 3.42E-23 

GO:0043062 extracellular structure organization 83 3.31E-29 

GO:0050727 regulation of inflammatory response 82 1.68E-22 

GO:0002446 neutrophil mediated immunity 82 2.31E-21 

GO:0002283 neutrophil activation involved in immune response 81 2.31E-21 

GO:0043312 neutrophil degranulation 80 5.85E-21 

GO:0030198 extracellular matrix organization 78 7.27E-30 

GO:0051249 regulation of lymphocyte activation 77 3.24E-24 

GO:0050867 positive regulation of cell activation 75 4.78E-29 

GO:0032103 positive regulation of response to external stimulus 73 7.40E-28 

GO:0002683 negative regulation of immune system process 72 4.76E-18 

GO:0007159 leukocyte cell-cell adhesion 71 2.26E-25 

GO:0002697 regulation of immune effector process 71 5.28E-18 

GO:0002696 positive regulation of leukocyte activation 70 1.60E-26 

GO:0022407 regulation of cell-cell adhesion 70 2.12E-20 

GO CC GO:0031012 extracellular matrix 107 1.76E-41 

GO:0098552 side of membrane 62 3.05E-17 

GO:0030667 secretory granule membrane 60 3.28E-20 

GO:0098797 plasma membrane protein complex 49 1.32E-06 

GO:0009897 external side of plasma membrane 48 2.95E-19 

GO:0070820 tertiary granule 40 2.38E-16 
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GO:0005788 endoplasmic reticulum lumen 39 5.17E-07 

GO:0045121 membrane raft 38 1.69E-06 

GO:0098857 membrane microdomain 38 1.74E-06 

GO:0098589 membrane region 38 3.53E-06 

GO:0043025 neuronal cell body 38 0.004156 

GO:0030139 endocytic vesicle 37 9.93E-07 

GO:0060205 cytoplasmic vesicle lumen 37 2.55E-05 

GO:0031983 vesicle lumen 37 2.65E-05 

GO:0034774 secretory granule lumen 36 2.13E-05 

GO:0042581 specific granule 35 8.24E-13 

GO:0043235 receptor complex 35 7.29E-06 

GO:0031252 cell leading edge 32 0.009968 

GO:0005581 collagen trimer 31 7.80E-18 

GO:0005925 focal adhesion 31 0.027118 

GO MF GO:0030545 receptor regulator activity 60 3.55E-12 

GO:0048018 receptor ligand activity 59 7.02E-13 

GO:0030246 carbohydrate binding 54 1.28E-18 

GO:0005539 glycosaminoglycan binding 53 7.93E-23 

GO:0005201 extracellular matrix structural constituent 52 5.50E-27 

GO:1901681 sulfur compound binding 44 6.34E-14 

GO:0008201 heparin binding 41 2.33E-18 

GO:0005126 cytokine receptor binding 37 3.10E-10 

GO:0005125 cytokine activity 35 7.02E-13 

GO:0008047 enzyme activator activity 35 0.010079 

GO:0001664 G-protein coupled receptor binding 34 9.06E-09 

GO:0033218 amide binding 31 8.09E-05 

GO:0042277 peptide binding 29 1.07E-05 

GO:0004175 endopeptidase activity 29 0.008894 

GO:0003779 actin binding 29 0.037972 

GO:0005178 integrin binding 25 5.00E-09 

GO:0019955 cytokine binding 23 9.95E-09 

GO:0005518 collagen binding 21 2.15E-11 

GO:0019838 growth factor binding 21 6.77E-06 

GO:0031406 carboxylic acid binding 21 0.00145 

 


