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INTRODUCTION 
 

Breast cancer (BC) is the most common cancer in 

women worldwide [1]. Triple-negative breast cancer 

(TNBC) is a subtype of BC that is negative for estrogen 

receptor, progesterone receptor, and human epidermal 

growth factor receptor-2 [2]. TNBC accounts for 15–20 

% of all BC cases; however, TNBC shows stronger 

aggressiveness, higher degree of malignancy, and 

poorer prognosis than other subtypes [3, 4]. The 

conventional treatment modalities of TNBC include 

local treatment, surgery [5], systemic treatment [6], and 

chemotherapy [7]. However, surgical treatment is 

associated with a high recurrence rate, and mainly 

targets localized lesions. Systemic treatments 

(endocrine and traditional targeted treatments), which 

show good prognosis in BC patients with positive 

hormone receptors, are ineffective in TNBC. Further, 

chemotherapy, which is an exclusive effective treatment 

for patients with TNBC, has drug toxicity that may be 

too severe for some patients to tolerate [8]. In addition, 

once chemotherapeutic drug-resistance occurs, the 

tumors recur rapidly [9]. To prevent drug resistance, 

neoadjuvant chemotherapy has been utilized for TNBC 

treatment using a combination chemotherapy of taxane 

and anthracycline [10]; unfortunately, anthracycline 

drugs show an irreversible toxicity to the heart. Thus, a 

safer and more effective treatment strategy should be 

developed for TNBC. 

 

Recent evidence has highlighted the important role of 

tumor microenvironment (TME) in cancer initiation, 

progression, metastasis, and therapeutic resistance [11]. 

The immune TME is where immune surveillance and 

immune escape confront each other in the context of the 
human immune system and tumor cells [12, 13]. 

Compared with other subtypes of BC, TNBC has a 

unique immune microenvironment with higher 
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validated. In summary, we comprehensively evaluated the TME of TNBC and constructed a TME signature that 
correlated with prognosis. Our results provide new insights for the immunotherapy of TNBC. 
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expression of vascular endothelial growth factor, other 

molecules that promote the growth and migration of 

tumor cells, tumor-infiltrating lymphocytes, and tumor 

associated macrophages [14]. Moreover, the interaction 

between death receptor 1 (PD-1) on T cells and 

programmed cell death ligand 1 (PD-L1) on tumor cells 

suppresses the immune system, resulting in tumor cell 

immune escape [15]. In fact, PD-1/PD-L1 has been an 

effective target for cancer immunotherapy. Therefore, to 

better understand the dynamics and pathogenic role of 

various immune cells in TNBC, it is essential to develop 

more effective biomarkers for the treatment of TNBC.  

 

In this study, we analyzed the TME landscape of 

TNBC, performed differential expression analysis and 

pathway enrichment analysis to reveal the underlying 

molecular mechanisms, developed a TME signature, 

and evaluated the correlation between the TME 

signature and TME cells. 

 

RESULTS 
 

Different TME clusters of TNBC 

 

Immune cell populations modulate different immune 

responses through the infiltration of TNBC TME and 

lead to antitumor effects. To investigate whether there 

was immune-related TME heterogeneity in TNBC, we 

collected 29 immune-related terms from published 

reports. Then, single-sample Gene Set Enrichment 

Analysis (ssGSEA) method was applied to assess the 

enrichment status of these 29 immune-related terms for 

each TNBC patient from the GSE58812 cohort (training 

set consisting of 107 TNBC samples). Unsupervised 

clustering of the enrichment scores of the 29 immune-

related terms identified two clusters in the TNBC 

patients (Figure 1A): Cluster 1, which included 65 cases 

of TNBC, was defined as a “low immune infiltration” 

cluster because of its low enrichment in the immune-

related terms; whereas Cluster 2, which included 42 

cases of TNBC, was defined as a “high immune 

infiltration” cluster because of its high enrichment in the 

immune-related terms. This result reflected different 

patterns of infiltration of the immune cells based on the 

adaptive and innate immune systems of each patient. To 

validate the results of the TME clusters, we used two 

independent algorithms, TIMER2.0 and CIBERSORTx, 

to estimate the TME cell abundance. We observed 

similar results as most of the tumor infiltrating immune 

cells were significantly increased in Cluster 2 than in 

Cluster 1 (TIMER2.0: Supplementary Figure 1; 

CIBERSORTx: Supplementary Figure 2). These results 

indicated that Cluster 2 was associated with high 

immune infiltration. Further analysis showed that the 

patients in the two clusters manifested different 

outcomes. For instance, the patients in Cluster 2 

displayed better metastasis-free survival (MFS; Figure 

1C; P = 0.012) and overall survival (OS; Figure 1D; P = 

0.0054) compared with the patients in Cluster 1. To 

validate the identified TME clusters, we independently 

performed ssGSEA and unsupervised clustering for the 

validation METABRIC cohort (validation set consisting 

of 299 TNBC patients). The results showed that all the 

patients were also categorized into two heterogeneous 

clusters with 131 and 168 patients each (Figure 1B). 

Significant differences in OS and pattern of cellular 

infiltration were observed between these two TME 

clusters as well (P = 0.0034; Figure 1E). Further, in 

Cluster 1, microenvironmental cell permeability was 

relatively low. In contrast, Cluster 2 exhibited both 

innate and adaptive immune responses with high 

abundance of plasmacytoid dendritic cells (pDCs), 

immature dendritic cells (iDCs), macrophages, B cells, 

and a high penetration of T cells, cytotoxic cells. We 

systematically compared the abundance of immune-

related terms in the two clusters. The results likewise 

confirmed that the abundance of immune-related terms 

in Cluster 2 was significantly greater than in Cluster 1 

(Figure 1F).  

 

Clinical features of different TME clusters of TNBC 

 

We compared the clinical characteristics, including age, 

Nottingham prognostic index, cellularity, 

chemotherapy, laterality, tumor grade, tumor size, 

tumor stage, and positive lymph nodes between the two 

distinct TME clusters (Table 1). Cluster 1 (131 patients) 

was predominantly associated with low-immune 

infiltration and Cluster 2 (168 patients) was 

characterized by high immune infiltration. Cluster 2 had 

significantly smaller tumor sizes, while Cluster 1 had 

larger tumor sizes (P<0.001). However, the differences 

were not significant with respect to age, tumor grade, 

and tumor stage (age, P = 0.359; tumor grade, P = 

0.725; tumor stage, P = 0.773), indicating that the TME 

clusters were independent of age, and tumor grade and 

stage. 

 

Differential gene and pathway analysis of different 

TME clusters of TNBC 

 

To identify the potential biological characteristics of the 

two TME clusters, differentially expressed genes 

(DEGs) were identified between TME Cluster 1 and 

Cluster 2. In TME Cluster 1, 37 genes were 

significantly upregulated and 778 genes were 

significantly downregulated when compared with the 

expression in Cluster 2 (Figure 2A; P < 0.05). DEG 

expression between the two clusters was visualized 
using a heatmap (Figure 2B). Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment analysis of 

the DEGs revealed enrichment of immune-related 
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Figure 1. TME Clusters of Triple-negative breast cancer. (A) TNBC TME clusters in training set. Unsupervised clustering of tumor 

microenvironment immune cells for 107 TNBC patients from training set. Clinicopathological information including age, MFS, OS, as well as 
TME clusters, is shown in annotations above. (B) TNBC TME clustering in the validation set. Unsupervised clustering of tumor 
microenvironmental immune cells from 299 cases of TNBC from validation set. The OS and the number of months of survival are shown in 
the comments above. (C) Kaplan–Meier curves for Metastasis-free survival (MFS) stratified by TME clusters in the GEO cohort. (D) Kaplan–
Meier curves for overall survival (OS) stratified by TME clusters in the training set. Hierarchical clustering was performed using Euclidean 
distance and ward linkage. (E) Kaplan–Meier curves for overall survival (OS) stratified by TME clusters in the validation set. (F) The abundance 
of immune-related terms in the Cluster 1 and 2. 
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Table 1. Clinical characteristics of the TNBC patients in the different TME clusters.  

Characteristics Cluster1(%) (N=131) Cluster2(%)(N=168) P value 

Age (mean (SD)) 56.47 (14.43) 55.00 (13.17) 0.359 

NPI (mean (SD)) 4.48 (0.99) 4.67 (0.91) 0.093 

Cellularity (%)    

High 74 (56.5) 90 (53.6)  

Low 15 (11.5) 21 (12.5)  

Moderate 38 (29.0) 52 (31.0)  

NA 4 (3.1) 5 (3.0)  

Chemotherapy (%)   0.594 

Yes 66 (50.4) 91 (54.2)  

No 65 (49.6) 77 (45.8)  

Inferred Menopausal State (%)   0.926 

Pre 46 (35.1) 61 (36.3)  

Post 85 (64.9) 107 (63.7)  

Laterality (%)   0.623 

Left 57 (43.5) 82 (48.8)  

Right 65 (49.6) 77 (45.8)  

NA 9 (6.9) 9 (5.4)  

Grade (%)   0.725 

1 2 (1.5) 1 (0.6)  

2 16 (12.2) 20 (11.9)  

3 111 (84.7) 146 (86.9)  

NA 2 (1.5) 1 (0.6)  

Tumor size (mean (SD)) 31.30 (23.41) 24.91 (12.22) 0.003 

Tumor stage (%)   0.773 

1 28 (21.4) 34 (20.2)  

2 59 (45.0) 71 (42.3)  

3 12 (9.2) 13 (7.7)  

NA 32 (24.4) 50 (29.8)  

Positive lymph nodes (%)   0.798 

>5 18 (13.7) 26 (15.5)  

≤5 113 (86.3) 142 (84.5)  

NPI: Nottingham prognostic index. 

 

pathways, such as “leukocyte migration” and 

“leukocyte proliferation” in TME Cluster 2, which was 

supportive of the high immune cell infiltration patterns 

in this cluster (Figure 2C). In TME Cluster 1, 
significant upregulated genes were associated with 

development (Figure 2D), which were not immune-

related. We further examined the expression of several 

immune checkpoint molecule genes between the two 

clusters, and found that four genes, PD-1, PD-L1, 

CTLA-4, and TIM-3, were significantly upregulated in 

TME Cluster 2 than in TME Cluster 1 (Figure 2E).  

 
Establishment and validation of TME signature 

 

To establish a prognostic prediction model by TME-

related characteristics, we applied univariate Cox 
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Figure 2. Differential gene and pathway Analysis of Different TME Cluster of TNBC. (A) The volcano plot showing the differentially 

expressed gene (DEGs) between TME Cluster 1 and Cluster 2. Blue is highly expressed in Cluster 2 and red is highly expressed in Cluster1. (B) 
Heatmap shows the expression of DEGs between the two clusters. (C) KEGG functional enrichment analyses of the up-regulated genes in 
Cluster 2. (D) KEGG functional enrichment analyses of the up-regulated genes in Cluster 1. (E) Expression of four immune checkpoint 
molecules genes in the two clusters.  
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regression to the survival data of the TNBC patients and 

expression profiles of 815 DEGs. Genes with P values < 

0.1 in the univariate Cox regression were further 

subjected to multivariate Cox regression and stepwise 

regression [16, 17]. The final TME signature consisted 

of eight genes, PPFIA4, TNFRSF1B, ARHGAP9, 

ZNF831, CTLA4, BLK, ANKRD22, and CLEC4E. The 

hazard ratio (HR) and P values of the eight genes in the 

TME signature are shown in Figure 3A. Next, TME 

scores were obtained according to the TME signature, 

and the patients were categorized into high- and low-

risk groups according to the median TME score. 

Survival analysis demonstrated that the TME scores 

exhibited strong power to distinguish good outcomes 

from poor in the TNBC patients in the training set (P < 

0.001; Figure 3B). Patients at high-risk had significantly 

shorter survival compared to those at low-risk. To 

confirm our findings, we validated the TME signature 

in the validation set. Using the same model in the 

training set, we calculated the TME scores for each 

patient in the validation set, and evaluated the 

relationship between the TME score and their survival 

status. As shown in Figure 3C, patients at high-risk had 

significantly shorter survival compared to those at low-

risk in the validation set. The distribution of the risk 

scores, survival statuses, and prognostic gene 

expression in the training and validation sets is shown 

in Figures 3D, 3E. To assess the prediction accuracy of 

the prognostic prediction model, receiver operating 

characteristic (ROC) curve was used. The ROC curve 

showed that the TME score demonstrated good 

discrimination in the training set with an area under the 

 

 
 

Figure 3. TME signature is a promising marker of survival in TNBC patients. (A) the HR and P-value from the eight genes in the 
prognostic model. (B) The survival curves for patients with high-risk and low-risk in the training set. (C) The survival curves for patients with 
high-risk and low-risk in the validation set. (D) Distribution of risk scores, survival profiles, and heat maps showing characteristic expressions 
of the low and high risky groups in the training set. Top panels indicate risk scores of patients. Middle panels depict survival status and 
survival time of patients distributed by risk score. Bottom panels display heatmap of expression for eight predictive factors distributed by risk 
score. (E) Distribution of risk scores, survival profiles, and heat maps showing characteristic expressions of low- and high-risk groups in the 
validation set. (F) Comparison of the predictive accuracy of the training set (GSE58812) and the validation set (METABRIC). 



 

www.aging-us.com 5491 AGING 

curve (AUC) of 0.84, and an acceptable discrimination 

in the validation set with an AUC of 0.64 (Figure 3F). 

Together, these results indicated that the prognostic 

prediction model based on the TME scores could be 

used to predict the survival of the TNBC patients. Since 

proteins seldom affect in isolation, it is important to 

know the interactions between the genes included in 

TME signature to identify the hub genes. We 

constructed a protein-protein interaction (PPI) network 

using STRING database. The PPI network comprised 8 

nodes and 10 edges (Supplementary Figure 3). 

TNFRSF1B and BLK had the maximum neighboring 

genes, and were identified as the hub genes. We used 

immunohistochemistry (IHC) to analyze the correlation 

of TNFRSF1B and BLK expression with the prognosis 

of TNBC patients using an in-house paraffin embedded 

sample. Representative IHC figures are shown in Figure 

4A. TNBC patients with high expression of either 

TNFRSF1B or BLK showed poorer prognosis than those 

with low expression of these hub genes (Figure 4B, 4C). 

These results were also consistent with the TME 

signature (HRs of TNFRSF1B and BLK were >1; Figure 

3A), suggesting that TNFRSF1B and BLK were risk 

factors for poor prognosis in TNBC patients. 

 

Correlation of TME signature with different TME 

clusters 

 

Relationship between the TME signature and TME 

clusters were evaluated by a correlation analysis. A 

TME cell network, depicting a comprehensive 

landscape of tumor-immune cell interactions with TME 

scores, was constructed. There was an almost all-round 

positive correlation between the abundance of the 29 

immune-related terms. This phenomenon was most 

likely due to co-infiltration effects (Figure 5A). 

Interestingly, the TME scores were negatively 

correlated with all immune-related terms, indicating that 

the TME scores reflected the “cold” intratumoral 

microenvironment of TNBC. The association of TME 

scores with TNBC in different clusters was also 

analyzed, and the results showed that the high-

infiltration group had a lower score than the low-

infiltration group in the training set (Figure 5B). The 

same trend was also observed in the validation set 

(Figure 5C). Since the expression of immune 

checkpoint molecules, such as PD-1, were promising 

predictive factors for immune treatment response, we 

explored the association between immune checkpoint 

molecule expression and TME scores. Interestingly, 

TME scores were negatively correlated with all four 

immune checkpoint molecules (PD-1, PD-L1, CTLA-4, 

and TIM-3; P < 0.05; Figure 5D). To determine whether 

the patients with high- or low-risk scores were enriched 

for genes in previously defined biological pathways, 

GSEA analysis was performed. The results showed that 

in the low-risk score group, “intestinal immune network 

for IgA production,” “Th17 cell differentiation,” “B cell 

receptor signaling pathway,” “T cell receptor signaling 

pathway,” and “inflammatory bowel disease” were 

significantly upregulated (Figure 5E). In contrast, in the 

high-risk score group, “steroid hormone biosynthesis,” 

“synaptic vesicle cycle,” “biosynthesis of amino acids,” 

“ECM-receptor interaction,” and “glucagon signaling 

pathway” were the predominantly upregulated pathways 

(Figure 5F). Since the 29 immune-related terms 

contained 16 types of immune cells, we analyzed the 

association between the TME score and tumor-

infiltrating immune cells . Th1 cells, CD8+ T cells, Treg 

cells, T cells, and 12 other immune-related cell types 

were shown in Figure 6. A negative correlation was 

found between the TME score and the tumor-infiltrating 

 

 
 

Figure 4. The correlation between TNFRSF1B and BLK expression levels and TNBC prognosis. (A) Representative 

immunohistochemical figure showed the high and low expression of TNFRSF1B and BLK. (B) The correlation between TNFRSF1B expression 
levels and TNBC prognosis. (C) The correlation between BLK expression levels and TNBC prognosis. 
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immune cells, indicating that the TME scores reflected 

the intrinsic characteristics of the TME. 

 

Correlation of TME signature with clinical 

parameters 

 

We further investigated the relationship between the 

TME signature and clinical parameters. The patients were 

categorized into two groups according to the median of 

the TME scores. High TME scores were significantly 

associated with larger tumor sizes (P < 0.001; 

Supplementary Table 1). Univariate Cox analysis 

indicated that age, tumor stage, and TME signature were 

significantly associated with a poor prognosis of TNBC 

(all P < 0.05; Table 2). Multivariate Cox analysis 

indicated that age, tumor stage, and TME signature were 

 

 
 

Figure 5. Correlation of TME signature with different TME clusters. (A) The correlation between TME signature and infiltrating 
immune cells. (B) Distribution of TME scores in different TME clusters of training set. (C) Distribution of TME scores in different TME clusters 
of the validation set. (D) The correlation between TME scores and immune checkpoint molecules. (E) Pathways enriched in low-risk group. (F) 
Pathways enriched in high-risk group. 
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Figure 6. Correlation between TME score and Tumor-infiltrating immune cells. The correlation between TME scores with 16 kinds 

of tumor-infiltrating immune cells.  
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Table 2. Univariate and multivariate analyses of TME signature with common clinical parameters. 

Variable 
Univariate analysis Multivariate analysis 

HR 95%CI P-values HR 95%CI P-values 

Age 1.02 1.01-1.04 0.00011* 1.02 1.01-1.04 0.0066* 

Cellularity 0.92 0.74-1.14 0.44    

Tumor stage 1.63 1.20-2.20 0.0016* 1.61 1.20-2.15 0.0014* 

Grad 1.05 0.70-1.56 0.83    

TME signature 1.31 1.11-1.54 0.0012* 1.25 1.04-1.51 0.017* 

Laterality 1.10 0.79-1.52 0.57    

Tumor size 1.45 0.93-2.25 0.10    

*P<0.05. 

 

independent prognostic factors for TNBC (Table 2). We 

constructed a nomogram based on three independent 

prognostic factors: age, tumor stage, and TME signature 

(Figure 7A) to obtain the estimated 3- and 5-year survival 

probabilities. To assess the calibration of the nomogram, 

we compared the predicted 3- and 5-year survival 

probabilities to the actual 3- and 5-year survival 

probabilities, and found that the calibration curve 

revealed good concordance between the predicted and 

observed probabilities (Figure 7B, 7C). These results 

indicated that the nomogram had proper calibration, and 

the ROC curve demonstrated that the nomogram had 

good discrimination with an AUC of 0.88, which was 

superior to that of the tumor stage (AUC = 0.82) and age 

(AUC = 0.55) (Figure 7D). 

 

DISCUSSION 
 

In this study, the TNBC patients were categorized into 

two clusters: Cluster 1 and Cluster 2. Cluster 1 was 

associated with low immune infiltration and poor 

prognosis, while Cluster 2 was associated with high 

immune infiltration and good prognosis. Further, the 

DEGs in Cluster 2 included highly expressed genes that 

were mainly associated with immunity, and enriched in 

immune-related pathways. Furthermore, a prognostic 

prediction TME score method was developed based on 

the DEGs, and this score was negatively correlated with 

immune infiltration. Thus, our findings enhance the 

understanding of the tumor immune microenvironment 

in TNBC.  

 

In recent years, an increasing number of studies have 

demonstrated that the TME, particularly the immune 

microenvironment, is associated with the development 

and progression of TNBC [18]. Lehmann et al and 

Burstein et al have reported that a subtype of TNBC 

displayed upregulated immunological responses, 

immune cell markers, and immune transcription factors, 

thereby implying the dysregulation of immune 

pathways in TNBC. Consequently, such studies have 

suggested that an immunotherapeutic approach may be 

a promising treatment strategy for TNBC patients [19].  

 

In our study, Cluster 2 was associated with high 

immune infiltration, low TME score and good 

prognosis. The T cell immune response is a central 

event in antitumor immunity [20], with CD4+ (helper T 

cells, Th) and CD8+ (cytotoxic T cells, Tc) T cells 

secreting factors such as IFN-γ, TNF-α, and IL17 that 

have antitumor effects. Cluster 2 showed high 

expression of pDCs, iDCs, macrophages, B cells, highly 

permeable T cells, and cytotoxic T cells. This finding 

could explain the fact that Cluster 2 patients showed 

better OS and MFS than that of Cluster 1.  

 

Some immune-related pathways were significantly 

enriched in Cluster 2 than in Cluster 1, which perhaps 

indicates a more active immune response in Cluster 2. 

The active immune microenvironment could further 

explain the better prognosis observed in Cluster 2. In 

addition, Cluster 2 appeared to coexist with higher 

levels of immune checkpoint molecules, such as PD-L1, 

PD-1, CTLA4, and TIM-3. Increased PD-L1 expression 

in immune cells of TME is accompanied by an increase 

in tumor-infiltrating lymphocytes and effector T cells 

[21, 22]. In addition, patients who are positive for PD-

L1 protein on immune cells significantly benefit from 

PD-L1 blockade [23]. These findings suggest that 

higher expression of PD-L1 protein on immune cells is 

associated with a better response to immunotherapy and 

prognosis; thus, the patients in Cluster 2 might have 

been more sensitive to immunotherapy than those in 

Cluster 1. Similarly, the TME signature we constructed 

also indicated that high expression levels of PD-1, PD-

L1, and CTLA-4 were correlated with a low TME 

score. Therefore, patients with a low TME score might 

benefit more from immunotherapy than patients with a 
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high-risk score. However, the effectiveness of the 

classification of patients according to TME immune-

related terms should be further assessed in large 

prospective clinical trials.  

 

Next, we built a TME signature that included eight 

genes, PPFIA4, TNFRSF1B, ARHGAP9, ZNF831, 

CTLA4, BLK, ANKRD22, and CLEC4E. The protein 

encoded by TNFRSF1B is a member of the TNF 

receptor superfamily that mediates the recruitment of 

two antiapoptotic proteins, C-IAP1 and C-IAP2, with 

E3 ubiquitin ligase activity. With respect to TNFRSF1B, 

susceptibility to BC reduces with the rs1061622 GT 

genotype and G allele, but increases with the TA 

(rs1061622 T-rs1061624 A) haplotype, indicating that 

TNFRSF1B might affect BC risk [24]. GTPase 

activating proteins (RhoGAPs) play an important role in 

several aspects of tumor biology. In BC, high 

expression of ARHGAP9 (gene encoding RhoGAPs) 

correlates with better relapse-free survival and OS, 

thereby suggesting that ARHGAP9 may be a potential 

target for the precise treatment of BC [25]. Further, 

CTLA-4 is an efficient immunomodulatory molecule 

that downregulates T cell activation and suppresses the 

antitumor immune response. CTLA-4 is expressed in 

human BC cells and functions in vitro by influencing 

dendritic cell (DC) maturation and function. Blocking 

CTLA-4 restores DC maturation, promotes cytokine 

production, enhances DC antigen-presenting function, 

reverses Th1/CTLs response, and inhibits the biological 

activity of BC cells [26]. Furthermore, BLK encodes a 

non-receptor tyrosine kinase of Src family of proto-

oncogenes, whose members promote the aggressiveness 

of BC cells, and enhance the antitumor effects of 

polyamine depletion upon inhibition [27]. Gene 

knockdown and overexpression analyses have shown 

 

 
 

Figure 7. Nomogram construction and evaluation. (A) Nomogram for predicting 3- and 5-year survival probabilities of TNBC. Three 

points are allocated for age, tumor stage and TME signature. Draw a vertical straight line from the variable value to the axis labeled “Points”. 
Then calculate all variables’ points. The total points on the bottom scales that correspond to the 3- and 5-y survival were showed apparently. 
(B, C) Calibration curves for predicting 3-y (B) and 5-y (C) OS. Predicted survival produced by nomogram is plotted on the x-axis, and actual 
survival is plotted on the y-axis. Dashed lines represent an identical calibration model in which predicted OS approximate to actual OS. (D) 
Comparison of the predictive accuracy of nomogram, tumor stage and age.  
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that ANKRD22 promotes tumor progression via 

increasing cell proliferation. In xenograft experiments, 

knockdown of ANKRD22 or in vivo treatment with 

ANKRD22 siRNA inhibits tumor growth [28]. CLEC4E 

(also called MINCLE) drives the maturation of antigen-

presenting cells and shifts T cells toward effector Th1 

and Th17 cell subtypes to form antigen-specific 

triggers. In addition, in the TME, MINCLE induces 

immune suppression and cancer progression, which are 

achieved by macrophages [29]. Thus, these key genes 

may be new therapeutic targets for TNBC and further 

mechanistic research is required to elucidate their role 

in TME of TNBC. 

 

Although this study has demonstrated valuable insights 

regarding TNBC, its limitations should be 

acknowledged. Firstly, this is a retrospective study; 

therefore, the robustness of the predictive value of the 

gene signature should be further validated. Secondly, 

downstream functional studies are required to further 

elucidate the biological function of the prognostic gene 

signature identified in this study. Finally, although 

tissue microarray (TMA) enables efficient gene 

expression profiling of large number of samples, it may 

only reflect averaged cell components and immune 

activation in TME. Thus, TMA has limited ability to 

capture the heterogeneity of infiltrating immune cells, 

immune responses, and tumor cells. As a result, the 

effectiveness of our model requires further 

investigations. 

 

CONCLUSIONS 
 

In this study, we analyzed the TME clusters of TNBC 

and their relationship with clinical characteristics. A 

TME signature for prognostic prediction of TNBC was 

developed and validated, and patients were categorized 

into high- and low-risk groups according to their TME 

scores. The prognosis of the two groups was found to be 

significantly different. Further, we identified a cluster of 

TNBC patients with high immune infiltration, who may 

show a high response rate to immunotherapy. We 

believe that this study improves the understanding of 

the immune microenvironment; thus, the analysis of 

immune infiltration patterns of TME may provide new 

insights for immunotherapy in TNBC cases and 

guidance for the development of novel drug 

combination strategies. 

 

MATERIALS AND METHODS 
 

Clinical specimens 

 
A total of 41 specimens of TNBC tissues were obtained 

from patients at the Guangxi Medical University Cancer 

Hospital, People’s Republic of China between 2011 and 

2019. TNBC was pathologically confirmed in all patients 

who were not on chemotherapy or radiotherapy before 

the collection of the tissues. Written informed consent 

was obtained from all patients, and the study was 

approved by the Ethics and Human Subject Committee of 

Guangxi Medical University Cancer Hospital. All 

experiments and methods were performed according to 

relevant guidelines and regulations formulated by the 

Guangxi Medical University Cancer Hospital. 

 

Data acquisition and processing 

 

We retrieved two transcriptomic expression datasets of 

BC cohorts from public databases: a microarray dataset 

from Gene Expression Omnibus (GEO; https://www. 

ncbi.nlm.nih.gov/geo/) database with accession number 

GSE58812 [30] and a dataset of clinical and mRNA 

expression from the Molecular Taxonomy of Breast 

Cancer International Consortium (METABRIC; 

cBioportal of Cancer Genomics [https://www. 

cbioportal.org/]) [31]. For GSE58812, the probes in the 

microarray data were annotated according to Affymetrix 

Human Genome U133 Plus 2.0, batch effects caused by 

different studies were removed by “ComBat” (empirical 

Bayes method) from the “sva” package [32, 33], and 

background noise was cancelled via data normalization 

using the “limma” package [34]. For the METABRIC 

cohort, Illumina HT-12v3 platform was used to measure 

mRNA expression. METABRIC data was formerly 

median-centered and log-transformed. GEO and 

METABRIC datasets were utilized for model 

development and validation, respectively.  

 

IHC analysis 

 

All tissue specimens obtained from the patients were 

fixed in 10 % neutral formalin and then embedded using 

paraffin. The embedded specimens were cut into 5 µM 

serial sections just before the staining. IHC was 

performed using SPlink Detection Kits SP-9000 (ZSGB-

BIO, China) according to the manufacturer’s instructions. 

The sections were processed by deparaffinization, 

rehydration, and blocking of endogenous peroxidase 

activity, and then incubated with primary antibodies 

(BLK, 1:200; ABCEPTA and TNFRSF1B, 1:200, 

ALS17735, ABCEPTA) overnight at 4° C. Next, the 

sections were incubated with a secondary antibody, i.e., a 

biotinylated donkey anti-goat IgG and horseradish 

peroxidase-labeled streptomycin working solution, and 

then treated with diaminobenzidine hydrochloride to 

visualize the immunoreactivity. The immunohistochemical 

scoring was performed independently by two authors 

who were blinded to the clinicopathological parameters. 
The score was composed of two parts. One was the 

extent of staining (percentage of positive tumor cells:  

0 % = 0; 1–25 % = 1; 26–50 % = 2; 51–75 % = 3; and 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.cbioportal.org/
https://www.cbioportal.org/
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75-100 % = 4), and the other was the intensity of staining 

(no staining = 0; weak staining = 1; moderate staining = 

2; and strong staining = 3). The total scores that ranged 

from 0 to 4 were considered “low expression,” while 

those that ranged from 5 to 7 were considered “high 

expression.” 

 

TME cell abundance calculation 

 

To investigate the TME immune cell abundance in 

TNBC, we methodically examined published studies, 

adopted the gene signatures proposed by Bindea et al 

[35], and obtained the marker gene sets for different 

immune cell types. Gene signatures signifying 

microenvironment cell subsets of both adaptive and 

innate immunity were also obtained. TNBC with 

qualitatively different immune cell infiltration patterns 

were grouped by hierarchical agglomerative clustering, 

depending upon Ward's linkage and Euclidean distance. 

ssGSEA, from the R package “GSVA,” was applied to 

identify the enrichment scores of each immune-related 

term to quantify the infiltration levels of different 

immune cell types in TME [32]. In addition, TIMER2.0 

and CIBERSORTx, were employed to validate the TME 

cell abundance calculated by ssGSEA using default 

parameters. TIMER2.0 integrates multiple state-of-the-art 

algorithms for estimating six types of tumor infiltrating 

immune cells [36]. Meanwhile, CIBERSORTx is a 

deconvolution algorithm based on support vector 

regression, which uses a set of reference gene expression 

values corresponding to a minimal representation for 

each cell type to infer the cell type proportions in data 

from bulk tumor samples with mixed cell types [37]. 

CIBERSORTx can sensitively and specifically 

discriminate between 22 human immune cell phenotypes. 

 

Unsupervised cluster analysis 

 

We identified characteristic expression patterns based on 

the infiltration of immune cells by using unsupervised 

clustering analysis based on Euclidean distance and 

Ward's linkage. The patients were categorized for further 

analysis. We established the best number of 

“TMEclusters” based on the percentage of variance of the 

data by applying the “ConsensusClusterPlus” package 

with 1000 repeats [38]. We categorized the patients into 

two groups based on the infiltrating degrees of the 

immune cells. Finally, we calculated the correlation 

matrix using Spearman's test and generated images using 

R package "ggplot2.”  

 

Identification of DEGs and construction of PPI 

networks 

 

In order to identify the DEGs between the two distinct 

TME clusters, we used the R package “limma” [39].  

P values were adjusted by Benjamini-Hochberg 

correction, and DEGs with adjusted P value < 0.05 and 

|log2 (fold change)| > 1 were retained. PPI networks 

were constructed using STRING (https://string-

db.org/) with confidence of interaction set at 0.15 [40]. 

The networks were visualized by Cytoscape version 

3.6.0 [41].  

 

Enrichment analysis 

 

DEGs were subjected to KEGG and Gene Ontology 

(GO) pathway enrichment analyses, and only terms with 

adjusted P < 0.05 were considered significant. The 

“GOSemSim” R package was used to assess the 

similarity between the significant GO terms of the two 

groups by referring to the annotation data GO.db. 

Similar GO terms between two groups were graphically 

represented by a heatmap and tree diagram [42]. The 

median TME signature was used as a cutoff value to 

classify the patients into high- and low-risk groups. 

Then, gene set enrichment analysis (GSEA) was 

performed to test whether the genes in the high- or low-

risk groups were enriched in the predefined KEGG gene 

sets. After 1000 permutations, the gene sets with P < 

0.05 and false discovery rate < 0.05 were considered 

significant.  

 

TME signature construction 

 

Unsupervised clustering was used to categorize the 

patients into two TME clusters (Cluster 1 and Cluster 

2). Based on the DEGs, a univariate Cox  

regression analysis was performed to identify the 

prognostic DEGs by applying the “survival” R 

package. To build the TME signature, DEGs with P 

value < 0.1 in the univariate Cox regression were 

considered the prognostic genes. Next, we used a 

stepwise multivariate Cox regression analysis to 

screen for key prognostic genes. Then, we  

computed the TME signature for each patient using the 

following formula:  

 

TME signature = β1 × exprG1 + β2 × exprG2 + ... βn × 

exprG  

 

where exprG is the expression level of the vital 

prognostic genes and β is the regression coefficient 

computed from the multivariate Cox regression model. 

The GSE58812 cohort was used as the training set to 

develop the TME signature, and the METABRIC cohort 

was used as the validation set to confirm the stability of 

the TME signature. A forecast value was calculated for 

the patients in the validation set according to the risk 
model that was made in the training set. The ROC curve 

and AUC were used to calculate the predictive risk 

model’s discrimination ability. 

https://string-db.org/
https://string-db.org/


 

www.aging-us.com 5498 AGING 

Construction of the nomogram 

 

Nomograms have recently attracted increased attention 

as a user-friendly tool for predicting prognosis with 

strong clinical utility [43, 44]. TME signature and 

clinical parameters were subjected to univariate Cox 

proportional hazards analyses. Features with P values < 

0.05 were subjected to multivariate Cox proportional 

hazards analysis. Features with P values < 0.05 after 

multivariate analysis were incorporated into nomograms 

that were constructed to predict the 3- and 5-year 

survival rates [45]. The nomogram was based on three 

independent prognostic factors: age, tumor stage, and 

TME signature. Each factor corresponded to a specific 

point by drawing a line straight upwards to the points 

axis. The sum of the three factor points was defined as 

total points. By drawing a perpendicular line from the 

total point axis to the two-outcome axes, the estimated 

3- and 5-year survival probabilities were obtained. The 

observed 3- and 5-year survival rates were compared 

with the predicted 3- and 5-year survival rates to further 

verify the predictive performance of the nomogram. We 

assessed the goodness-of-fit of the nomogram using 

calibration plots [46].  

 

Statistical analysis 

 

For comparison between two groups, non-parametric 

Mann-Whitney U test and parametric unpaired 

Student’s t-test were used. For comparison between 

more than two groups, non-parametric Kruskal-Wallis 

test and parametric one-way analysis of variance 

(ANOVA) test were used. Spearman and distance 

analysis were used to perform correlation analysis. The 

survival curves concerning the prognostic analysis were 

prepared by Kaplan-Meier method, and log-rank tests 

were employed to identify the significance of the 

survival differences. We used the "LR forward" 

stepwise approach and Cox proportional risk model for 

the univariate and multivariate analyses. To assess the 

accuracy of survival prediction by the prognostic model, 

we used a time-related ROC analysis. All statistical 

analyses were performed in R version 3.5.0. Two-sided 

P value < 0.05 was regarded as significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The abundance of tumor infiltrating immune cells in the Cluster 1 and 2 estimated by TIMER2.0. 
TIMER2.0 estimated 6 kinds of tumor infiltrating immune cells.  
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Supplementary Figure 2. The abundance of tumor infiltrating immune cells in the Cluster1 and 2 estimated by CIBERSORTx. 
CIBERSORTx estimated 22 kinds of tumor infiltrating immune cells. 
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Supplementary Figure 3. Protein-protein interaction network of 8 genes in the TME signature. TNFRSF1B and BLK with the most 

neighbor genes were identified as hub genes. 
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Supplementary Table 
 

Supplementary Table 1. Clinical characteristics of the TNBC patients with different TME scores.  

Characteristics Low risk group High risk group P value 

Age (mean (SD)) 54.52(13.01) 57.16(14.58) 0.100 

NPI (mean (SD)) 4.62(0.92) 4.55(0.99) 0.524 

Cellularity (%)   0.412 

High 88(51.2) 76(59.8)  

Low 21(12.2) 15(11.8)  

Moderate 56(32.6) 34(26.8)  

NA 7(4.1) 2(1.6)  

Chemotherapy (%)   0.510 

Yes 87(50.6) 70(55.1)  

No 85(49.4) 57(44.9)  

Inferred Menopausal State (%)   0.227 

Pre 67(39.0) 40(31.5)  

Post 105(61.0) 87(68.5)  

Laterality (%)   0.694 

Left 79(45.9) 60(47.2)  

Right 85(49.4) 57(44.9)  

NA 8(4.7) 10(7.9)  

Grade (%)   0.690 

1 1(0.6) 2(1.6)  

2 21(12.2) 15(11.8)  

3 149(86.6) 108(85.0)  

NA 1(0.6) 2(1.6)  

Tumor size (mean (SD)) 23.88(10.28) 32.89(24.42) <0.001* 

Tumor stage (%)   0.233 

1 37(21.5) 25(19.7)  

2 81(47.1) 49(38.6)  

3 11(6.4) 14(11.0)  

NA 43(25.0) 39(30.7)  

Positive lymph nodes (%)   0.900 

>5 21(12.2) 17(13.4)  

≤5 151(87.8) 110(86.6)  

NPI: Nottingham prognostic index. 
* P<0.05. 

 


