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INTRODUCTION 
 

Intracerebral hemorrhage (ICH) is one of most fatal 

subtypes of stroke caused by rupture of blood vessels 

in brain parenchyma, and has extremely high 

morbidity and mortality worldwide [1, 2]. The 

mortality rate of acute ICH is approximately 40% in 

the first three weeks, and those who survive often 

suffer from different degrees of neurological deficit 

[3]. Currently, management of ICH is largely carried 

out via mechanically removing the hematoma, 

decreasing intracranial pressure, controlling severe 

brain edema and maintaining life function [4]. 

However, these treatments are not yet sufficiently 

effective to improve ICH survival rates and promote 
functional recovery [5, 6]. Therefore, new treatment 

drugs need to be explored under the guidance of 

evidence-based medicine. 

Melatonin (N-acetyl-5-methoxytryptamine) is a type of 

pineal gland hormone, which is secreted from the pineal 

gland during the dark phase of the light–dark cycle [7, 

8]. It has a variety of biological properties: scavenging 

reactive oxygen species (ROS), increasing antioxidant 

enzymes, protecting mitochondrial function, reducing 

inflammation, and inhibiting apoptosis [9–12]. 

Abundant experimental evidence has demonstrated that 

melatonin could be a promising neuroprotective agent 

in both acute brain injuries and chronic neuro-

degenerative diseases [13–15]. In particular, the 

neuroprotective effects of melatonin have been 

repeatedly tested in different experimental models of 

ICH [16]. For example, Rogas et al. [17] found that 

melatonin (15 or 150mg/kg) administration did not 

improve neurobehavioral outcome or brain edema at 24 

h post-ICH. Moreover, Lekic et al. [18] demonstrated 

that melatonin (5 or 15mg/kg) failed to show any 
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significant effect on brain edema and neurological 

deficits at one day post ICH, in spite of oxidative stress 

reductions. On the contrary, positive results of 

melatonin administration in animal models of ICH have 

also been reported, including improvements in 

neurological outcome as well as reductions in brain 

water content [19–21]. To date, there is no systematic 

review and meta-analysis to evaluate the quality of pre-

clinical studies and synthesize evidence on the effects of 

melatonin with ICH. The aim of this study is to provide 

evidences relating to the efficacy of melatonin 

treatments on the behavioral and pathological outcome 

in animal models of ICH, to inform and guide the 

design of evidence-based, large-scale clinical trials, and 

supporting the clinical application of melatonin 

administration against ICH. 

 

RESULTS 
 

Study selection 

 

The systematic review and meta-analysis were 

conducted and reported in compliance with Preferred 

Reporting Items for Systematic Review and Meta- 

Analyses (PRISMA) guidelines [22]. The literature 

search identified 282 potential studies, at the primary 

retrieval. After review and exclusion, 16 full-text 

articles remained, which were then assessed for 

inclusion eligibility. From these, 8 records were 

excluded due to the reasons given in Figure 1. Finally, 

this systematic review included eight articles published 

from 2008 to 2019 that met the inclusion criteria,  

which comprised 15 comparisons describing the 

neurobehavioral scores and 14 comparisons describing 

the brain water content. 

 

Study characteristics 

 

The overall study characteristics are shown in Table 1. 

The eight included studies involved Sprague–Dawley 

rats (n = 5) [17–20, 23], Wistar rats (n = 2) [24, 25],  

and C57 mice (n = 1) [21]. Most studies used male 

animals (n = 7), while one publication [23] did not 

mention the gender of animals and used neonatal 

animals. Half of the studies used autologous blood 

model (n = 4) and the remaining four studies applied 

 

 
 

Figure 1. The flow diagram describing literature search and study selection. 
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Table 1. Characteristics of comparisons which included in 8 elected studies. 

Legends: lower is bettera: = lower value indicates more favorable outcome; higher is betterb: = higher value indicates more 
favorable outcome; Con, control; SD, Sprague–Dawley; NR, not reported; IP: intraperitoneal injection; BWC, brain water 
content. 

 

collagenase model [17, 18, 23, 25]. All interventions 

were given by intraperitoneal (IP) injection except in 

one study, in which it was administered orally [25]. The 

initial dosage of melatonin ranged from 5mg/kg to 

150mg/kg, although the most frequent dose was 

15mg/kg. The intervention was given once in 11 unique 

comparisons of five studies [17, 18, 20, 21, 23]. and the 

dose was repeated or multiple times in 4 unique 

comparisons of three studies [19, 24, 25]. The total 

melatonin dose ranged from 5 mg/kg to150 mg/kg. The 

Author, 

Year 

Animal, 

gender 
Age 

Anesthetic 

drugs 

Method of 

ICH 

Initial 

dose 
Total dose 

Treatment 

point 
Route 

Treated(n)/ 

control(n) 

Assessment 

time 

Outcome measure 

(direction) 

Rogas, 

2008 

SD rats, 

Male 

Adult isoflurane collagenase 15mg/kg 15mg/kg 15min post 

ICH 

IP 4,4 24 h BWC(lower is 

bettera); 

Garcia score (higher 

is betterb) 

Rogas, 

2008 

SD rats, 

Male 

Adult isoflurane collagenase 15mg/kg; 

150mg/kg 

15mg/kg; 

150mg/kg 

3h post ICH IP 4,2; 

4,2 

24 h BWC(lower is 

better); 

Garcia score (higher 

is better) 

Li.  

2009 

Wistar 

rats, 

Male 

Adult chloral 

hydrate 

Whole 

blood 

10mg/kg 20mg/kg 1h, 4h post 

ICH 

IP 5,5 24 h BWC(lower is 

better) 

Lekic,  

2010 

SD rats, 

Male 

Adult isoflurane collagenase 15mg/kg 15mg/kg 15min post 

ICH 

IP 6.6 24 h BWC(lower is 

better); 

Garcia score (higher 

is better) 

Lekic,  

2010 

SD rats, 

Male 

Adult isoflurane collagenase 5mg/kg; 

15mg/kg 

5mg/kg; 

15mg/kg 

3h post ICH IP 6,3 

6,3 

24 h BWC(lower is 

better); 

Garcia score (higher 

is better) 

Lekic,  

2011 

SD rats, 

NR 

Neonatal isoflurane collagenase 5mg/kg; 

10mg/kg 

5mg/kg; 

10mg/kg 

1h post ICH IP 8,4; 

8,4 

4 weeks Neurodeficit score 

(lower is better) 

Ueda,  

2014 

Wistar 

rats, 

Male 

Adult pentobarbital collagenase 15mg/kg 105mg/kg every 24h for 

7d (from 6h 

post ICH) 

Oral 14,12 1d, 3d, 7d Motor deficit score 

(lower is better) 

Ueda,  

2014 

Wistar 

rats, 

Male 

Adult pentobarbital collagenase 15mg/kg 105mg/kg every 24h for 

7d (from 1h 

before ICH) 

Oral 9,19 1d, 3d, 7d Motor deficit score 

(lower is better) 

Wang,  

2018 

SD rats, 

Male 

Adult Chloral 

hydrate 

Whole 

blood 

5mg/kg 15mg/kg 1h,24h,48h 

post ICH 

IP 12,12 72h BWC(lower is 

better); 

Clinical behavioral 

scores (lower is 

better) 

Xu,  

2018 

SD rats, 

Male 

Adult pentobarbital Whole 

blood 

100mg/kg 

150mg/kg 

100mg/kg; 

150mg/kg 

1h post ICH IP 6,3 

6,3 

24h BWC(lower is 

better); 

NSS score (higher is 

better) 

Lu,  

2019 

C57 

mice, 

Male 

Adult pentobarbital Whole 

blood 

20mg/kg 20mg/kg 30min before 

ICH 

IP 6,6 1d,3d,7d BWC(lower is 

better); 

Neurodeficit score 

(lower is better) 
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interventions of different comparisons were commenced 

30 min or 1 h before the ICH induction [21, 25] or 15 

min [17, 18] or 1 h [19, 20, 23, 24]. or 3 h [17, 18] or 6 

h post ICH [25]. Assessment was performed 24 h to 4 

weeks after induction of ICH. 

 

Study quality 

 

The quality score of the studies ranged from 4 to 7 

(mean 5.5), among them 7 (87.5%) included studies 

were regarded as high methodological quality (≥5) 

studies. All studies have been published in peer-

reviewed journals and stated compliance with animal 

welfare regulations. 6 of 8 studies reported describing 

control of temperature; 5 of 8 studies reported 

randomized allocation to treatment group; 3 of 8 studies 

reported blinded assessment of outcome. None of them 

used masked induction of haemorrhage or used animals 

with relevant comorbidities (e.g. hypertension) or 

reported a sample size calculation or used anesthetics 

with known marked intrinsic neuroprotective properties 

such as ketamine. 6 studies stated possible conflicts of 

interest. The details of quality index are concluded in 

Table 2. 

 

Global estimates of efficacy 

 

Melatonin treatment had a favorable effect on the 

neurobehavioral outcome (Figure 2A), by an SMD of -

0.81 (95% CI: -1.47 to -0.15; p=0.016, seven studies, 14 

comparisons, Figure 2A). The heterogeneity among 

comparisons of neurobehavioral outcomes was 

statistically significant (Q= 41.49, I2 = 68.7%; df = 13; 

p=0.000), so we did further subgroup analysis from 

methodological differences, especially dose and timing 

of treatments. On the other hand, melatonin reduced the 

brain water content by an SMD of -0.78 (95% CI: -1.23, 

-0.34; p=0.001, 7 studies, 11 comparisons, Figure 2B). 

The heterogeneity among comparisons of brain water 

content was low (Q = 12.88, I2 = 22.4%, df = 10, p 

=0.23); therefore, further subgroup analysis was not 

performed. 

 

Sensitivity analysis 

 

We conducted a sensitivity analysis to evaluate the 

stability of the results by sequential omission of each 

study if heterogeneity between the studies existed. The 

pooled SMD of neurobehavioral outcome was not 

significantly affected by any study, nor was the brain 

water content (Figure 3A, 3B). 

 

Publication bias 

 

The funnel plot was approximately symmetrical for the 

comparisons of neurobehavioral outcome (Figure 4A), 

and the results from the Egger’s test confirmed no 

significant publication bias (p=0.658). 

 

For the comparisons of brain water content, the funnel 

plot showed some asymmetry, which may suggest the 

presence of publication bias (Figure 4B). The results 

from the Egger test confirmed significant bias 

(p=0.007). Then, we used the trim-and-fill method to 

estimate missing studies and recalculated the overall 

pooled effect estimates. The imputed effect estimates 

were consistent (SMD -0.784, 95% CI: -1.230 to -0.338, 

p =0.001), indicating no “missing” studies (Figure 4C). 

 

Subgroup analysis 

 

Details of stratified analysis on neurobehavioral score 

are given in Table 3. If studies used neurobehavioral 

scales describing functional benefits, we classify them 

in “positive direction” group. On the contrary, if studies 

used neurobehavioral scales describing functional 

deficit, we classified them in “negative direction” 

group. We found significant differences in estimates of 

effect size between “positive direction” and “negative 

direction” groups (χ2 = 10.43, df = 1, p = 0.001, 

Supplementary Figure 1). Studies classified as low- and 

high-quality ones showed no significant difference in 

estimates of effect size (χ2 = 2.19, df = 1, p = 0.14, 

Supplementary Figure 2). The methods used to induce 

ICH model showed no significant differences in 

estimates of effect size (χ2 = 2.54, df = 1, p = 0.11, 

Supplementary Figure 3), nor was there any distinction 

among studies using different anesthetics drugs (χ2 = 

5.50, df = 2, p = 0.06, Supplementary Figure 4). The 

methods of melatonin administration also showed no 

significant differences in estimates of effect size (χ2 = 

2.19, df = 1, p = 0.14, Supplementary Figure 5). The 

melatonin dosage administered ranged from 5 mg/kg to 

150 mg/kg, and the neuroprotective effects were not 

seen with all doses of melatonin (Supplementary. Figure 

6). Although our study demonstrated that the greatest 

effect was exerted at a dosage of 20mg/kg 

(Supplementary. Figure 6), the wide dose range made 

the assessments less reliable. In addition, there was no 

significant difference between single dose and multiple 

dosage groups (χ2 = 1.24, df = 1, p = 0.27, 

Supplementary Figure 7). Finally, there was no 

significant difference between the pre-treatment and 

post-treatment groups (χ2 = 1.36, df = 1, p = 0.24, 

Supplementary Figure 8). 

 

DISCUSSION 
 

Summary of evidence 

 

As a promising neuroprotective candidate, there is 

extensive and systematically summarized preclinical 



 

www.aging-us.com 3014 AGING 

Table 2. Methodological quality of 8 studies included in the meta-analysis. 

Study (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Total 
Rogas, 
2008 

√ √   √ √   √  5 

Li. 
2009 

√ √ √   √   √  5 

Lekic, 
2010 

√ √ √  √ √   √ √ 7 

Lekic, 
2011 

√  √   √   √ √ 5 

Ueda, 
2014 

√     √   √ √ 4 

Wang, 
2018 

√ √ √  √ √   √ √ 7 

Xu, 
2018 

√ √    √   √ √ 5 

Lu, 
2019 

√ √ √   √   √ √ 6 

Legends: (1) peer reviewed publication; (2) control of temperature; (3) random allocation to treatment or control; (4) blinded 
induction of haemorrhage; (5) blinded assessment of outcome; (6) use of anesthetic without marked intrinsic 
neuroprotective activity; (7) animal model (aged, diabetic or hypertensive); (8) sample size calculation; (9) compliance with 
animal welfare regulations; and (10) statement of potential conflict of interests. 

evidence on the use of melatonin and its potential to 

improve neurobehavioral and pathological outcomes in 

animal models with ischemic stroke [26] and traumatic 

brain injury [27]. However, the potential of melatonin in 

animal models of ICH remains unknown. To our 

knowledge, this is the first systematic review of the 

evidence evaluating the literature for the efficacy of 

melatonin in animal models with ICH. Our study 

demonstrated that melatonin significantly improved 

neurobehavioral outcome [SMD -0.81 (95% CI: -1.47, -

0.15)] and reduced cerebral edema after ICH [SMD -

0.78 (95% CI: -1.23, -0.34)]. Based on the results of our 

meta-analysis in pre-clinical studies, there is potential 

for treatment with melatonin to improve functional 

outcome with acute ICH. 

 

Possible mechanisms for the effect of melatonin in 

ICH 

 

Although the role of melatonin in the chronoregulation 

of major physiological processes (e.g., the light–dark 

cycle) was well accepted, its therapeutic potential was 

only gradually explored in ICH. Ueda et al. 

demonstrated that oral administration (15 mg/kg) for 7 

days after ICH resulted in significant recovery of motor 

function via reducing oxidative stress and enhancing 

electrical responsiveness [25]. Besides, other properties 

of melatonin have been described in ICH, including a 

neuroprotective effect in mitochondrial function, an 

inhibiting effect in proinflammatory cytokine 

production and anti-apoptotic effects [19]. In addition, 
Lu et al. found that pretreatment with melatonin 

suppressed necroptosis of microglia in mice via 

regulating the deubiquitinating enzyme A20 [21].  

Thus, we propose that melatonin is a promising 

neuroprotective candidate that is worthy of further 

evaluation for its potential therapeutic application in 

this devastating disease. 

 

Interpretation of subgroup analysis 

 

The heterogeneity among comparisons of neuro-

behavioral outcomes was statistically significant (χ2 = 

41.49, I2 = 68.7%; df = 13; p=0.016), so we did further 

subgroup analysis for methodological differences, 

especially dose and timing treatments. 

 

Neurobehavioral scales 

 

Significant differences in estimates of effect size were 

found between “positive direction” and “negative 

direction” groups. The reality is that there are 

diversified neurobehavioral scale for ICH animal 

models around the world [28], and the score of different 

scales were sometimes affected by observers with 

different experiences. Thus, developing a unified and 

standardized scale for assessing neurobehavioral score 

is very important to decrease the heterogeneity between 

individual studies. 

 

Study quality 

 

There was no clear relationship between the score of 

quality and the estimate of effect size. Some analyses 

found grouping studies by quality may account for 

substantial heterogeneity between them [29, 30], but 
others found no significant difference in effect size 

among studies with different research design qualities 

[31, 32]. In our meta-analysis, low quality studies 

tended to show higher efficacy, but no significant 
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Figure 2. Effect size of included comparisons. Forest plot shows mean effect size and 95 % CI for (A) neurobehavioral outcomes and (B) 

brain water content. 
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Figure 3. Sensitivity analysis for the included comparisons. Figures show mean effect size and 95 % CI for (A) neurobehavioral 

outcomes and (B) brain water content. 
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difference was observed between low- and high- quality 

studies. Besides, to what extent deficiencies in study 

quality might have overestimated the effect of 

melatonin was not known. Therefore, this area remains 

to be explored in depth in future research. 

 

Methods of animal model induction 

 

Bacterial collagenase model and autologous blood 

model are most commonly used in animal models of 

ICH. MacLellan et al. [33] reported that hematoma size 

became larger in the stage of secondary brain injury and 

severe neurological dysfunction occurred in the 

collagenase model rather than autologous blood model. 

Besides, bacterial collagenase model produced greater 

edema, and inflammation than autologous blood model 

[34]. Despite the differences of pathophysiological 

mechanisms in these two models, we found no 

significant difference in estimates of effect size between 

studies using autologous blood model and those using 

collagenase model. Therefore, both models can be used 

in the test for effective ICH therapies. 

Anesthetic 

 

One systematic review found that phenobarbital 

anesthesia showed the most effective result for 

deferoxamine treatment in animal models of ICH [35]. 

However, our results showed no significant difference 

of effect size among the use of phenobarbital, 

isoflurane, and chloral hydrate. As commonly used 

anesthesia drugs, though they have demonstrated 

varying degrees of neuroprotective properties [36–38], 

their efficacy remains uncertain in the experimental 

ICH model [39]. Therefore, new anesthetics may need 

to be sought out with minimized influence on the 

pathophysiologic process of ICH. 

 

Time and dosage 

 

The dose, timing, and frequency of interventions varied 

greatly, making it difficult to draw conclusions. 

Although our results showed that the greatest effect was 

exerted at dosage of 20 mg/kg, the wide dose range 

made the assessments less reliable. In humans,

 

 
 

Figure 4. Publication bias. Funnel plots for (A) neurobehavioral outcomes and (B) brain water content; (C) trim-and-fill method. 



 

www.aging-us.com 3018 AGING 

Table 3. Stratified meta-analysis of neurobehavioral score. 

Subgroup analysis No. of studies SMD (95%CI) 
Heterogeneity test 

χ2  p 
Q I2 pQ 

3.1 neurobehavioral scales        

positive direction 6 -1.74(-2.59,-0.89) 13.82 64% 0.02   

negative-direction 8 -0.01(-0.64,0.63) 9.76 28% 0.20   

      10.43 0.001* 

3.2 Study quality        

high 12 -0.68 (-1.48, 0.11) 35.93 69% 0.000   

low 2 -1.45 (-2.08, -0.82) 0.28 0% 0.59   

      2.19 0.14 

3.3 Methods to induce ICH        

collagenase 10 -0.51 (-1.23, 0.22) 27.05 67% 0.001   

whole blood 4 -2.03 (-3.76, -0.30) 12.18 75% 0.007   

      2.54 0.11 

3.4 Anesthetics        

pentobarbital 5 -1.78 (-2.85, -0.71) 11.34 65% 0.02*   

isoflurane 8 -0.18 (-1.01, 0.64) 16.90 59% 0.02*   

chloral hydrate 1 -0.97 (-1.82, -0.11) 0.00     

      5.50 0.06 

3.5 Routes of injection        

Intraperitoneal injection 12 -0.68 (-1.48, 0.11) 35.93 69% <0.001*   

Oral injection 2 -1.45(-2.08, -0.82) 0.28 0% 0.59   

      2.19 0.14 

3.6 Dose administration        

single dose 11 -0.68 (-1.60, 0.24) 34.83 71% <0.001*   

multiple dosage 3 -1.28 (-1.78, -0.77) 1.08 0% 0.58   

      1.24 0.27 

3.7 Time administration        

Pre-ICH treatment 2 -5.41 (-13.53, 2.7) 10.34 90% 0.001*   

Post-ICH treatment 12 -0.58 (-1.17, 0.01) 24.84 56% 0.01*   

      1.36 0.24 

Legends: *means p < 0.05. 

 

melatonin has an elimination half-life of approximately 

45 minutes following oral or intravenous administration 

[40]. On the other hand, the elimination half-life of 

melatonin following oral or intravenous administration 

in rats is less than 20 min [41], so multiple-dose 

treatment of melatonin can overcome the short duration 

of action in vivo and show increased efficacy compared 

with single-dose treatment in ischemia stroke. However, 

in our study, the effect size of studies using multiple 

dosage was not significantly different from those using 

once-only treatment. These may be affected by various 

dosage and small sample size in individual studies. In 

addition, the time of melatonin treatment theoretically 

could target different mechanisms. For instance, early 

administration of melatonin can target glutamate 

toxicity and free radical formation [42]; and late 

treatment can target neuroinflammation [9]. As we 

know, secondary brain injury is a rapidly progresses 

after ICH [43], especially in the first few hours. Thus, 

pre-administration of melatonin may be more 

neuroprotective. However, in our study there was no 

difference of effect size between pre-treatment group 

and post-treatment group. Indeed, significant 

heterogeneity still existed in both subgroups. Therefore, 

the dosage and timing of melatonin administration 

should be standardized in future trials to minimize the 

degree of heterogeneity. 

 

Strengths and limitations 

 

This study made great efforts to arrive at a relatively 

objective result. First, the study tried to collect most 

reports in this field, and therefore, provided the most 

complete evidences of melatonin in ICH animal models. 

Second, to reduce potential bias in assessing the 

methodological quality of the included studies, two 

practiced investigators independently evaluated and 

extracted data from all included studies. Finally, our 
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results showed that melatonin treatment significantly 

improved both behavioral and pathological outcomes in 

animal models of ICH and sensitivity analysis 

confirmed stable results of neurobehavioral outcome as 

well as brain water content. 
 

However, the present systematic review and meta-

analysis has some limitations. First, although our search 

strategy was exhaustive, it is also possible that some 

published studies were missed. Second, the meta-analysis 

was limited by a small data set; although 282 

publications were identified through electronic search, 

only 8 publications were found to meet our criteria. As a 

result, further studies with large sample sizes are 

warranted to provide sufficient evidence about the effect 

of melatonin on ICH. Third, in our meta-analysis, it was 

not possible to examine the effects of melatonin in 

specific ICH populations with comorbidities such as 

diabetes or hypertension, who may have different 

responses to melatonin treatment. Thus, there is 

significant work to be done when it comes to clinical 

translation. 

 

CONCLUSIONS 
 

Melatonin is an old drug that has been investigated for 

many years, and therefore has an advantage over new 

drugs that are not well characterized. Our current meta-

analysis demonstrates that melatonin treatment 

significantly improves both neurobehavioral and 

pathological outcomes in animal models of ICH. 

However, the results should be interpreted in light of the 

limitations in experimental design and methodological 

quality of the studies included in the meta-analysis. 

Therefore, further studies are warranted to improve 

study quality and reduce potentially confounded 

publication bias. 

 

MATERIALS AND METHODS 
 

Search strategy 

 

We searched: PubMed, Embase and Web of Science 

from the inception to the end of June 2020. Medical 

Subject Headings and keywords related to melatonin 

and intracerebral hemorrhage were used in each 

database. Search strategy was provided in detail 

(Supplementary File 1). 

 

Inclusion and exclusion criteria 

 

Studies were included if they fulfilled the following 

criteria: (1) experimental ICH was induced and the 

therapeutic effect of melatonin was assessed; (2) control 

animals were used (saline, or similar vehicle); (3) 

melatonin was administered before the injury or at any 

time-point post-injury; (4) effect of melatonin was 

assessed by neurobehavioral outcome or brain water 

content; (5) There had to be full text available within a 

peer-reviewed journal, published in English. Articles 

that reported on the same sample were treated as a 

single study. Two reviewers (Zeng, LW and Zhu, YW) 

independently screened the abstracts according to the 

inclusion criteria, and disagreements were addressed by 

discussion with a third reviewer (Xiangyu, Hu). The 

meta-analysis excluded studies that used non-traumatic 

models of hemorrhagic injury or individual comparisons 

from which we could not calculate the number of 

animals, the mean outcome, or the variance in each 

group. 

 

Data collection 

 

The following items from the eligible studies were 

independently extracted by the two researchers (Zeng 

LW and Zhu YW): general study information (first 

author, publication year); animal species, gender and 

age; anesthetics used; method of ICH induction; 

intervention dose (initial and total dose); time of 

administration; route of delivery; functional outcome 

(neurobehavioral score measured on any scale) or 

pathological outcome (brain water content); number of 

animals per group for individual comparisons; 

assessment time and study quality index. For every 

treatment comparison (a given dose of an intervention 

at a given time of administration after ICH), we 

extracted data regarding mean and standard deviation 

(SD) from both the control and treatment groups to 

compare the drug efficacy. If data were only presented 

graphically, we measured values for the mean and SD 

from graphs using quantitative methods on highly 

magnified images (GetData Graph Digitizer, version 

2.26). If the SD was not directly reported, we 

calculated it by multiplying the reported standard error 

(SE) by the square root of the group size. Besides, if 

outcome assessments were performed at different 

times, we only included the final time point 

assessment. In addition, if the study included more 

than one experimental group differentiated by different 

dosages or treatment time which was compared against 

a common control group, these parallel groups would 

be included separately as independent experiments and 

the control group size divided equally among the 

numbers of treatment groups. Moreover, if the data 

from multiple brain slices were reported in structural 

outcomes, we only extracted the data of ipsilateral 

basal ganglia. 

 
Methodological quality of studies 

 
The quality of each experiment was assessed according 

to the CAMARADES checklists, which consist of the 
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following: (1) peer-reviewed publication; (2) control of 

temperature; (3) random allocation to treatment or 

control; (4) blinded induction of hemorrhage; (5) 

blinded assessment of outcome; (6) use of anesthetic 

without marked intrinsic neuroprotective activity, such 

as ketamine; (7) animal model with relevant 

comorbidities (aged, diabetic, or hypertensive); (8) 

sample size calculation; (9) compliance with animal 

welfare regulations; and (10) statement of potential 

conflict of interests. We defined studies that scored < 5 

points as low quality, and those that scored ≥5 points as 

high quality. 

 

Statistical analysis 

 

The Hedges calculation was adopted to determine a 

comprehensive estimation of effect size with standard 

mean differences (SMD), and meta-analysis was 

performed using Stata statistical software version 12.0 

(StataCorp LP, College Station, TX, USA). The effects 

of melatonin on the neurobehavioral score and brain 

water content were compared between the treatment and 

control groups. The percentage of heterogeneity across 

the studies was estimated by I2 statistic. An I2 statistic of 

< 25% indicated low heterogeneity, 25% to 50% 

indicated moderate heterogeneity, and >50% indicated 

high heterogeneity [44]. Fixed-effect model was used if 

no substantial heterogeneity was observed. On the 

contrary, random-effect model was used when 

substantial heterogeneity was observed [45]. Sensitivity 

analyses were performed by omitting one study at a 

time to evaluate whether the results were affected by a 

single study. Publication bias was detected by funnel 

plotting. Asymmetry was assessed using an Egger’s test 

and the trim-and-fill method [46]. Subgroup analyses 

were also performed to explore substantial hetero-

geneity using Cochrane Review Manager 5.3 (The 

Cochrane Collaboration). Statistical significance was set 

at p < 0.05, and the 95% confidence intervals (CIs) of 

all results were calculated. 
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Supplementary Figure 1. Subgroup analysis by neurobehavioral scales. 
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Supplementary Figure 2. Subgroup analysis by study quality. 

 

 
 

Supplementary Figure 3. Subgroup analysis by methods to induce ICH. 
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Supplementary Figure 4. Subgroup analysis by different anesthetics. 
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Supplementary Figure 5. Subgroup analysis by routes of injection. 
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Supplementary Figure 6. Subgroup analysis by different dosages. 
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Supplementary Figure 7. Subgroup analysis by times of melatonin administration. 

 

 
 

Supplementary Figure 8. Subgroup analysis by time administration. 
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SUPPLEMENTARY FILE 
 

Please browse Full Text version to see the data of Supplementary File 1. 


