
www.aging-us.com 24141 AGING 

www.aging-us.com AGING 2020, Vol. 12, No. 23 

Research Paper 

Accelerated epigenetic age as a biomarker of cardiovascular 
sensitivity to traffic-related air pollution 
 

Cavin K. Ward-Caviness1, Armistead G. Russell2, Anne M. Weaver1, Erik Slawsky3, Radhika 
Dhingra4,5, Lydia Coulter Kwee6, Rong Jiang7, Lucas M. Neas1, David Diaz-Sanchez1, Robert B. 
Devlin1, Wayne E. Cascio1, Kenneth Olden1, Elizabeth R. Hauser6,8,9, Svati H. Shah6,10, William E. 
Kraus6,10 
 
1Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, NC 
27709, USA 
2Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA 
3Oak Ridge Associated Universities at the US Environmental Protection Agency, Chapel Hill, NC 27709, USA 
4Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North 
Carolina, Chapel Hill, NC 27599, USA 
5Institute for Environmental Health Solutions, University of North Carolina, Chapel Hill, NC 27599, USA 
6Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA 
7Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA 
8Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA 
9Cooperative Studies Program Epidemiology Center, Durham Veterans Affairs Medical Center, Durham, NC 27705, 
USA 
10Division of Cardiology, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA 
 
Correspondence to: Cavin K. Ward-Caviness; email: ward-caviness.cavin@epa.gov 
Keywords: DNA methylation age, traffic, environmental sensitivity, cardiovascular disease, air pollution 
Received: July 9, 2020    Accepted: October 27, 2020  Published: December 7, 2020 

 
Copyright: © 2020 Ward-Caviness et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 

 

ABSTRACT 
 

Background: Accelerated epigenetic age has been proposed as a biomarker of increased aging, which may 
indicate disruptions in cellular and organ system homeostasis and thus contribute to sensitivity to 
environmental exposures.  
Methods: Using 497 participants from the CATHGEN cohort, we evaluated whether accelerated epigenetic aging 
increases cardiovascular sensitivity to traffic-related air pollution (TRAP) exposure. We used residential 
proximity to major roadways and source apportioned air pollution models as measures of TRAP exposure, and 
chose peripheral arterial disease (PAD) and blood pressure as outcomes based on previous associations with 
TRAP. We used Horvath epigenetic age acceleration (AAD) and phenotypic age acceleration (PhenoAAD) as 
measures of age acceleration, and adjusted all models for chronological age, race, sex, smoking, and 
socioeconomic status. 
Results: We observed significant interactions between TRAP and both AAD and PhenoAAD. Interactions 
indicated that increased epigenetic age acceleration elevated associations between proximity to roadways and 
PAD. Interactions were also observed between AAD and gasoline and diesel source apportioned PM2.5.  
Conclusion: Epigenetic age acceleration may be a biomarker of sensitivity to air pollution, particularly for TRAP 
in urban cohorts. This presents a novel means by which to understand sensitivity to air pollution and provides a 
molecular measure of environmental sensitivity. 
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INTRODUCTION 
 

Air pollution continues to be a significant contributor to 

morbidity and mortality worldwide [1]. Concerningly, 

though air quality continues to improve worldwide, 

particularly decreases in particulate matter < 2.5 µm in 

diameter (PM2.5), a globally aging population may result 

in substantial segments of the population still 

experiencing significant environmental health risks as 

the elderly are highly sensitive to even low level of air 

pollution [2, 3]. This increased sensitivity is potentially 

due to breakdown in biological homeostasis at the 

cellular and organ system level accompanied by the 

accumulation of chronic disease and functional deficits. 

However, there is significant heterogeneity in how 

people age and accumulate the biochemical, functional, 

and clinical deficits which may contribute to increased 

sensitivity to environmental exposures.  

 

Recently epigenetic (DNA methylation) age has 

emerged as a promising biomarker of "biological age" 

which, while correlated with chronological age, is more 

inherently tied to biological processes (e.g. alterations 

in DNA methylation) than chronological age itself [4]. 

DNA methylation-derived aging biomarkers have 

proven to be dynamic and responsive to the 

environment [5–7], and differences between DNA 

methylation age and chronological age, e.g. epigenetic 

age acceleration, are associated with mortality, cancer, 

obesity, and several other health outcomes [8–12]. 

Given its role as an indicator of biological age, DNA 

methylation-derived aging biomarkers may better 

function as indicators of heightened sensitivity to air 

pollution exposure than chronological age. To evaluate 

the role of DNA methylation age acceleration as an 

environmental sensitivity factor, we utilized the 

CATHGEN cohort, which had the necessary clinical 

outcomes, environmental exposures, and molecular data 

for analyses. CATHGEN participants were recruited 

from cardiac catheterization patients and have strong 

associations with air pollution, particularly traffic-

related air pollutants [13–15]. 

 

RESULTS 
 

Of the 563 total participants available for this analysis, 

542 had the street-level geocoding necessary to estimate 

residential proximity to roadway, and 497 participants 

overlapped with the modeling time period for source 

apportioned PM2.5 (Table 1). Participants had an 

average age of 60.1 y and resided an average of 1.02 km 

from the nearest roadway. The average systolic blood 

pressure (SBP) was 146 mmHg while the average 
diastolic blood pressure (DBP) was 82.2 mmHg, 

slightly elevated readings which are likely driven by the 

30.2% (170) participants with a history of hypertension. 

A total of 34 participants (6.0%) reported a history of 

peripheral arterial disease (PAD). The mean age 

acceleration difference (AAD) and phenotypic age 

acceleration difference (PhenoAAD) were 4.77 y, and -

8.83 y respectively. Supplementary Figure 1 gives the 

distribution of AAD by PhenoAAD tertiles. Figure 1 

gives the distribution of total PM2.5 as well as source 

apportioned PM2.5 for the sources examined in this 

analysis. We used neighborhood socioeconomic clusters 

to adjust for socioeconomic status in the analyses 

(Supplementary Table 1) [16]. 

 

Our primary outcomes were PAD, SBP, and DBP. We 

report only the estimates from the more parsimonious full 

model as the effect estimates from both the full and 

clinical models were concordant (Supplementary Figure 

2). Estimates for the clinical model can be found in 

Supplementary Table 2. As air quality and clinical 

practices can change from year to year, there can be 

potential confounding by year of assessment on the 

relationship between air quality and health outcomes. Our 

primary exposure, residential proximity to roadways, 

would be unaffected by this as it was assessed at a single 

point in time. The source apportioned PM2.5 did not have 

strong correlations with year (Supplementary Figure 3), 

an including year as a covariate did not modify 

associations (Supplementary Table 3). Thus, we kept the 

models as described in the methods. 

 

We observed interactions between residential proximity 

to major roads and AAD for PAD, SBP, and DBP. For 

PhenoAAD we only observed interactions for DBP 

(Table 2). These associations did not differ when 

additionally adjusting for cell type proportions 

(Supplementary Table 4). When examining 

chronological age, we did not observe any interactions 

between chronological age and residential proximity to 

major roadways either with or without adjustment for 

AAD and PhenoAAD (Supplementary Table 5), 

highlighting that interactions with AAD and PhenoAAD 

are primarily driven by accelerated DNA methylation 

age as opposed to simply increased chronological age. 

 

We additionally examined associations for traffic-

related air pollution by using modeled source-specific 

PM2.5 concentrations. For PAD we observed even 

stronger interactions between AAD and traffic-related 

air pollution when examining gasoline and diesel 

generated PM2.5 as we did when examining residential 

proximity to roadways. We did also observe an 

interaction between total PM2.5 and AAD in association 

with PAD (β = 0.09; 95% confidence interval = 0.01 – 

0.17; P = 0.02), however after regressing out diesel and 
gasoline generated PM2.5, the remaining PM2.5 residuals 

did not have an interaction with AAD. SBP and  

DBP were not associated with the PM2.5 sources
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Table 1. Cohort description. 
 

Mean SD N non-missing IQR 

Age (y) 60.1 12.4 563 19.0 

Body Mass Index (kg/m2) 30.6 7.53 556 8.26 

AAD (y) 4.77 6.62 563 8.41 

PhenoAAD (y) -8.83 7.74 563 10.0 

Distance to major roadway (km) 1.02 1.07 542 1.09 

Total PM2.5 (µg/m3) 10.9 0.76 497 0.91 

Diesel PM2.5 (µg/m3) 0.54 0.31 497 0.51 

Gasoline PM2.5 (µg/m3) 0.55 0.16 497 0.26 

Secondary Organic Carbon PM2.5 (µg/m3) 1.26 0.25 497 0.34 

Biomass PM2.5 (µg/m3) 1.99 0.22 497 0.32 

Diastolic Blood Pressure (mmHg) 82.2 14.0 539 18.0 

Systolic Blood Pressure (mmHg) 146 24.8 539 36.0  
N % N non-missing 

 

Males 234 41.6 563 
 

Females 329 58.4 563 
 

African Americans 214 38.0 563 
 

European Americans 349 62.0 563 
 

Smokers 249 44.2 563 
 

Peripheral Arterial Disease 34 6.04 563 
 

Diabetes 162 28.8 563 
 

Hyperlipidemia 324 57.5 563 
 

Description of the study cohort. AAD = Age Acceleration Difference; mmHg = millimeters of mercury; IQR = interquartile 
range; PhenoAAD = Phenotypic Age Acceleration Difference; SD = standard deviation. 

 

 
 

Figure 1. Distribution of total PM2.5 and source-apportioned PM2.5 averaged over all study years. gives the distribution of total 
PM2.5 mass as well as diesel and gasoline source-apportioned PM2.5. As expected for urban counties, the distribution of diesel and gasoline 
source-apportioned PM2.5 closely matches the distribution of total PM2.5. Lower levels of pollutants are given in green with high levels 
shading towards red. 
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Table 2. Interactions between accelerated aging and residential proximity to roadways. 

Outcome Accelerated aging measure β SE P 

PAD AAD 0.06 0.03 0.04 

DBP AAD 0.25 0.11 0.03 

SBP AAD 0.46 0.20 0.02 

PAD PhenoAAD 0.04 0.03 0.14 

DBP PhenoAAD 0.19 0.09 0.04 

SBP PhenoAAD 0.12 0.16 0.46 

Interactions between the inverse-log transform of distance to major roadways (primary exposure) and each accelerated aging 
measure and outcome for the Full model (age, race, sex, sociodemographic cluster, and smoking adjusted). Estimates shown 
are all from the multiplicative interaction term between aging measure and inverse-log transform of distance to major 
roadways. For the binary outcome of PAD the regression coefficient represents the log-odds ratio for the interaction term. 
AAD = age acceleration difference; β = regression coefficient; DBP = diastolic blood pressure; PAD = peripheral arterial 
disease; SBP = systolic blood pressure; SE = standard error. 

 

(Supplementary Table 2, Supplementary Table 3). In 

examining the variance inflation factor (VIF) for signs 

of multicollinearity we only observed potential 

multicollinearity (VIF > 5) for interactions with total 

PM2.5. Thus, these primary analyses do not appear to be 

impacted by multicollinearity. This is further 

highlighted by the fact that the Pearson correlation (r2) 

between each aging measure (AAD and PhenoAAD) 

and each exposure considered were all less than 0.0025. 

 

As interaction effect estimates can be difficult to 

visualize, we also examined interactions by classifying 

individuals based on tertiles of the distribution for each of 

the accelerated aging parameters and then compared the 

first (lowest age acceleration) versus third (highest age 

acceleration) tertiles. We focused these analyses on the 

AAD-proximity to roadways interaction for PAD as it 

was the only outcome and interaction that showed an 

interaction proximity to roadways as well as traffic-related 

air pollution sources. Associations between PAD and 

proximity to roadways was effectively null in individuals 

in the lowest tertile of the AAD distribution (interaction 

odds ratio = 0.81, 95% confidence interval = 0.34 – 1.90; 

mean AAD = -2.52 y) while we saw an elevated 

association in the highest tertile of the AAD distribution 

(interaction odds ratio = 2.79; 95% confidence interval = 

1.09 – 7.11; mean AAD = 11.5 y; Figure 2). The 

interaction between AAD tertile and proximity to 

roadways was also significant for PAD (P = 0.03). 

 

DISCUSSION 
 

Age has long been considered a potential vulnerability 

factor for environmental exposures, and the elderly can 

have increased and unique environmental health risks 

[2]. While chronological age is the standard indicator of 

age-related risks, recent research has demonstrated that 

biological age measures have associations with chronic 

disease and mortality even when controlling for 

chronological age [8–12]. Our results indicate that 

accelerated DNA methylation age may be a factor 

which increases sensitivity to traffic-related air 

pollution exposure. Chronological age itself did not 

seem to increase sensitivity in this cohort, further 

highlighting the potential for biological aging 

parameters to be more accurate indicators of 

environmental sensitivity than chronological age in 

some situations. As PAD is associated with near 

roadway exposures [13, 17, 18], these interactions may 

represent a path towards identifying molecular 
 

 

 

Figure 2. Association between residential proximity to 
roadways and PAD by AAD tertiles Interaction between 
AAD and residential proximity to roadways is visualized 
by associating residential proximity to roadways in the 
first tertile of the AAD distribution and comparing 
association to those seen for the third tertile of the AAD 
distribution. AAD = age acceleration difference, PAD = 

peripheral arterial disease. 
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indicators of increased sensitivity to relevant 

exposures. AAD appeared to be a more robust 

indicator of environmental sensitivity than PhenoAAD 

(Table 2). Individuals in the third tertile of the AAD 

distribution had a significant increased risk of PAD 

with decreasing distance to roadways, while 

individuals in the first tertile of the AAD distribution 

showed no association. 

 

Horvath epigenetic age (the basis for AAD) is 

designed to estimate epigenetic age in a diverse set of 

cells and tissues using a single set of 353 epigenetic 

loci [19], and it has been widely validated in several 

studies [4]. PhenoAAD is designed to specifically 

estimate epigenetic age as correlated with several 

clinical parameters and was developed specifically 

using blood samples [20]. Both AAD and PhenoAAD 

are associated with mortality [9, 20]. AAD is 

associated with multiple clinical outcomes including 

obesity [10, 21], birth weight [21], hemostasis and 

blood clotting [12], infection [22], and cancer [8]. 

PhenoAAD is associated with a smaller number of 

clinical outcomes [23] likely due to its more recent 

development. Given the broad association of AAD 

with several clinical traits, there are a number of 

biological mechanisms that could explain its 

interaction with near roadways. 

 

A recent, comprehensive review highlighted the 

associations between epigenetic age measures and 

environmental exposures. The chemical, social, and even 

infectious environment are all associated with epigenetic 

age and accelerated epigenetic aging [5]. However, this is 

the first time that a study has highlighted epigenetic age as 

a potential modifier of the associations between 

environmental exposures and health outcomes. While 

genetic variation can modify associations between air 

pollution and vascular outcomes [24], relatively little has 

been reported using DNA methylation as a modifier of 

exposures. Mitochondrial DNA methylation modifies 

associations between traffic-related air pollution and 

inflammation biomarkers [25], however, neither AAD nor 

PhenoAAD are dependent on mitochondrial DNA 

methylation loci. Also, the genetic variants associated 

with AAD and PhenoAAD, do not overlap with the 

genetic variants found to modify associations between 

near roadway exposures and PAD [26]. Thus, these 

interactions represent novel interactions inherently linked 

to a key biological parameter, aging. These associations 

offer insight into alternative measures of aging, e.g. 

epigenetic age, which may serve as better biomarkers of 

environmental sensitivity. After refinement and 

replication in future studies, these interactions may offer 
clues into making more personalized environmental 

health recommendations based on the underlying biology 

of the individual. 

There are several strengths and limitations of this study. 

At 497 participants, this is a relatively small study. The 

moderate sample size limits our ability to examine a 

wider range of outcomes or to examine interactions with 

extremes of the AAD or PhenoAAD distribution which 

might be even stronger than the interactions observed 

here. This study also assumes, that the participants have 

been long-term residents of their listed primary address. 

This is a common assumption for studies of long-term 

exposures, that has been reasonable in similar exposure 

studies within the CATHGEN cohort [13, 15] and thus 

we believe to also be reasonable here. While individual-

level socioeconomic status was not available in the 

cohort we did have access to an area-level socioeconomic 

status indicator that incorporates 11 census variables and 

has been associated with health outcomes [16]. As a 

study entirely based within a cardiac catheterization 

cohort, these results may not generalize to the general 

population. However, in previous studies associations 

found in CATHGEN have been similar or stronger than 

associations found in more general populations [13, 14]. 

Additionally, underlying cardiovascular disease has also 

been proposed as a sensitivity factor for environmental 

exposures, making cardiac catheterization patients a 

population of interest where air pollution associations 

may be stronger than the general population. 

 

While proximity to major roadways is a rather coarse 

indicator of near roadway air pollution exposure, we 

complemented this with estimates of residential 

exposure to gasoline and diesel generated PM2.5, which 

may be more direct indicators of traffic-related air 

pollution exposure. As the resolution of the source-

specific PM2.5 model was 12km, these measures likely 

incorporate background air pollution from many nearby 

sources, as opposed to traffic immediately nearby the 

residence, as would be captured by proximity to major 

roads. AAD had interactions with both of these 

exposures as well as with PM2.5, but not with the 

residuals of PM2.5 after regressing out diesel and 

gasoline sources, suggesting observed interactions may 

be strongest with traffic-related air pollution if not 

specific to it. PhenoAAD had interactions with 

residential proximity to major roadways but not 

gasoline or diesel source-specific PM2.5. This could 

indicate that PhenoAAD is associated with other aspects 

of near roadway exposure that are not captured by 

gasoline or diesel-generated PM2.5, e.g. noise. Noise 

maps are not available for the study area, but noise 

remains an important exposure worth future 

exploration. An additional explanation could be that at 

12 km the spatial resolution of the diesel and gasoline 

exposure assessment was not high enough to capture 
associations with PhenoAAD. Finally, both AAD and 

PhenoAAD were assessed in blood. While AAD is valid 

in a wide range of tissues, and typically correlated 
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among tissues from the same individual [19], we are 

still only able to speak to the discrimination of blood 

AAD and PhenoAAD for environmental sensitivity, as 

opposed to other tissues which may be more directly 

impacted by air pollution exposure. However, blood is 

often used as a surrogate tissue, particularly for 

inflammation associated outcomes like PAD and blood 

pressure, and would be the tissue most likely to be 

sampled in large studies that seek to understand 

environmental sensitivity in the broader population. 

 

In all, this study represents an initial examination of the 

potential for DNA methylation aging biomarkers, to be 

indicators of sensitivity to environmental exposures. In 

the case of PAD, there may be a specificity of these 

interactions for near roadway exposures, however this 

needs to be validated in large, diverse populations and for 

a wider variety of outcomes and exposures. The potential 

for molecular biomarkers to be markers of environmental 

sensitivity has broad public health and personalized 

medicine implications including identification of 

individuals most at risk, targeting of communication and 

intervention strategies based on individual risk, and 

narrowing uncertainties in the estimation of the public 

health impacts of environmental exposures. All of these 

opportunities should be explored as we seek to under-

stand, inform, and protect the most vulnerable and 

sensitive populations. 

 

MATERIALS AND METHODS 
 

CATHGEN 

 

The Catheterization Genetics (CATHGEN) cohort is a 

cohort of patients seen at Duke University Medical 

Center for a cardiac catheterization procedure between 

2001 and 2010 [27]. Each CATHGEN participant 

provided informed consent for the collection of medical 

data as well as biosamples at the time of catheterization. 

The study was approved by the Duke University 

Institutional Review Board. Assessment of DNA 

methylation was performed on 563 individuals using the 

Illumina 850k microarray platform using published 

methods [28]. In previous research, six neighborhood 

clusters were created in Wake, Durham, and Orange 

counties, NC in which neighborhoods (census block 

groups) were clustered based on sociodemographic 

characteristics [16, 29]. The individuals chosen for DNA 

methylation assessment were randomly selected from 

these sociodemographic clusters (~112 per cluster). 

 

Age acceleration measures 

 

DNA methylation age acceleration is a measure of  

the difference between age estimated using DNA 

methylation loci (epigenetic/biological age) and 

chronological age. It is designed to estimate deviations 

between biological and chronological age, with positive 

values indicating age acceleration. We decided to 

examine two DNA methylation age acceleration 

measures: age acceleration difference (AAD) and 

phenotypic age acceleration difference (PhenoAAD). 

AAD and PhenoAAD are both defined as the difference 

between their respective epigenetic age estimation 

measures (DNA methylation age [19] and Phenotypic 

Age [20] respectively) and chronological age. AAD was 

developed using the Illumina 450k DNA methylation 

array platform while PhenoAAD was developed using 

the Illumina 850k DNA methylation array platform. 

Both platforms use identical chemistry to determine 

DNA methylation status, and differ primarily in the 

number of DNA methylation loci assessed, with the 

850k platform assessing nearly twice the number of 

DNA methylation loci. While there have been reports of 

underestimation of adult epigenetic age, from which 

AAD is derived, when assessed using the 850k platform 

[28] this was revealed to be a shift by a constant in the 

estimation of this aging parameter which does not bias 

the performance of this aging parameter in association 

analyses. In CATHGEN, AAD and PhenoAAD were 

moderately positively correlated with a Spearman r of 

0.60. We elected not to include age acceleration 

measures derived from the Hannum measure, another 

commonly used aging biomarker derived from DNA 

methylation data [30], as they might have DNA 

methylation platform-specific differences that are 

dependent on age and thus might bias associations [28]. 

 

Exposures 

 

Our primary exposure was residential proximity to 

major roadways. We defined major roadways as 

interstate and state highways and major intra-city 

arterials in identical fashion to previous CATHGEN 

publications [13, 15]. Similar to previous publications, 

we also performed an inverse-log transformation of the 

exposure as this transformation has been seen to best 

model near roadway exposure associations in the past 

[13]. We also examined associations with gasoline and 

diesel PM2.5 sources as sensitivity analyses for the 

primary analysis. PM2.5 sources were assessed using a 

Chemical Mass Balance [31] model with gas-constrained 

source apportionment [32]. Data for the model came 

from the two monitoring networks, the Chemical 

Speciation Network and the Interagency Monitoring of 

Protected Visual Environments network, and a chemical 

transport model, the Community Multiscale Air Quality 

model (version 4.5) [33]. Use of similar exposure 

assessment models within the CATHGEN cohort has 
been previously evaluated and compares well with other 

PM2.5 exposure assessment models [34, 35]. The model 

generated source apportioned PM2.5 estimates for the 
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North Carolina region of the USA from 2002 – 2011. 

Model estimates of daily and source apportioned PM2.5 

were provided at a 12x12 km resolution. We computed 

annual averages for each PM2.5 source to assess long-

term exposures and required one year of data for annual 

average estimates. As the resolution of the source-

specific PM2.5 model was 12km, these measures likely 

incorporate background air pollution from many nearby 

sources, as opposed to the model as opposed to traffic 

immediately nearby the residence, as would be captured 

by proximity to major roads. Participants were matched 

to exposure data based on their date of catheterization 

and primary address at the time of catheterization. 

 

Analytic approach 

 

We used multiplicative interaction models to determine if 

there was an interaction between AAD or PhenoAAD and 

each exposure for three health outcomes: peripheral 

arterial disease (PAD), systolic blood pressure (SBP), and 

diastolic blood pressure (DBP). We initially also 

considered hypertension as an outcome, however logistic 

regression models involving hypertension were often 

plagued by near complete separation which could inflate 

regression coefficients, thus we evaluated SBP and DBP. 

Outcomes were chosen based on previous associations 

with traffic-related air pollution exposure in CATHGEN 

[13]. We examined two models: a full model adjusting for 

age, race, sex, smoking status, and sociodemographic 

cluster, and a clinical model which included all the  

terms of the full model plus diabetes status, body  

mass index, and history of hyperlipidemia. There  

were five sociodemographic clusters defined based  

on Ward's hierarchical clustering of 11 census variables 

and developed specifically to assess neighborhood 

socioeconomic status. These have been associated with 

health outcomes in CATHGEN previously [16, 29] and 

were the basis for sampling participants, with ~112 

participants sampled from each cluster (Supplementary 

Table 1). Thus, sociodemographic cluster was included as 

a factor variable to adjust for both socioeconomic status as 

well as cohort sampling strategy. As a sensitivity analysis 

to explore the impact of cell proportions we also adjusted 

analyses for proportions of the following cell types: CD8-

T, CD4-T, Natural Killer, B cell, Monocytes, and 

Granulocytes. AAD has been previously associated with 

air pollution exposure [5] which means that models could 

be subject to multicollinearity. We checked the variance 

inflation factor (VIF) and used a VIF above 5 as an 

indication of potential multicollinearity. 

 

To better aid in visualizing the interactions, we also 

evaluated interactions by classifying individuals into 
tertiles based on their AAD and PhenoAAD distributions. 

Supplementary Figure 1 shows the distribution of 

PhenoAAD tertiles for each tertile of AAD. We then 

evaluated the association between the first and the third 

tertile of inverse-log transformed distance to major 

roadways and each outcome (PAD, SBP, and DBP), and 

calculated an interaction p-value for age acceleration 

tertile and inverse-log transformed distance to major 

roadways using a multiplicative model (full model). We 

did not make this approach the primary approach  

as it reduces the sample size by a third, by removing  

the 2nd tertile from analysis, and because continuous 

traffic exposure metrics have shown better fits than 

binary measures in previous analyses of the CATHGEN 

cohort [13]. 
 

To examine if interactions were driven primarily by 

chronological age, we evaluated interactions between 

residential proximity to roadways and chronological 

age. We used the full model for confounder adjustment 

and additionally included adjustment for AAD and 

PhenoAAD. If our associations are driven primarily by 

a biological aging phenomenon, as opposed to 

chronological age, then we would expect attenuated 

interactions between chronological age and residential 

proximity to roadways, and little to no association after 

adjusting for AAD and PhenoAAD. 
 

Prior to analysis all exposures were interquartile range 

transformed to improve comparability of model effect 

estimates. Given the single primary exposure and the 

correlation among epigenetic aging measures and 

outcomes, we did not impose a multiple testing penalty 

and instead report on all interactions with P < 0.05 in 

the full model. As estimates were highly concordant for 

the full and clinical model, the clinical model was 

treated as a sensitivity analysis. All models were run in 

R version 3.5.1 [36]. Logistic regression was used for 

the binary outcome of PAD, while linear regression was 

used for the continuous outcomes of SBP and DBP. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Counts of Phenotypic Age Acceleration Difference (PhenoAAD) tertiles by Age Acceleration 
Difference (AAD) tertiles. 
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Supplementary Figure 2. Concordance of Models. Model concordance between the Full Model (adjusted for age, race, sex, smoking, 
and sociodemographic cluster) and the Clinical Model (Full Model + body mass index, history of diabetes, and history of hyperlipidemia) 
was determined by the correspondence of the exposure-aging interaction term. Plotted above are the interaction term regression 
coefficients (Beta) for each of the exposures (primary, positive controls, and negative controls) for all outcomes and aging measures. The 
red line is the y=x line which would indicate identity between the models. The Pearson correlation (r2) between the models was 0.96. 
 

 
 

Supplementary Figure 3. Source apportioned PM2.5 by year. Boxplots of the source apportioned PM2.5 (µg/m3) by year. 
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Supplementary Tables 
 

Supplementary Table 1. Neighborhood sociodemographic cluster definitions and participant counts. 

Sociodemographic cluster N Description 

Cluster 1 112 Urban with high percentages people who are African-American and are 

employed in non-managerial positions 

Cluster 2 112 Urban, lower income, with a high proportion of residents on public assistance, 

unemployed and in non-managerial occupations 

Cluster 3 112 Less urban than Clusters 1 and 2 with most of the population above the poverty 

level and unemployed as well as a large percentage of the population having a 

Bachelor's degree and in non-managerial occupations 

Cluster 4 113 Cluster with the highest percentage of residents not identified as African or 

European American. This Cluster has a high percentage of people with a 

Bachelor's degree and low unemployment 

Cluster 5 114 This Cluster is predominantly rural and has a low percentage of the population 

living below the poverty line. A low percentage of the population reported 

being unemployed, most were non-African-American and this cluster has high 

rates of owner-occupied housing 

 

Supplementary Table 2. Interactions for full and clinical model. 

Model Outcome Aging Exposure Beta SE Interaction P 

Full PAD AAD Proximity to major roadways 0.06 0.03 0.04 

Clinical PAD AAD Proximity to major roadways 0.06 0.03 0.05 

Full PAD AAD Gasoline generated PM 0.13 0.05 0.008 

Clinical PAD AAD Gasoline generated PM 0.13 0.05 0.01 

Full PAD AAD Diesel generated PM 0.13 0.05 0.01 

Clinical PAD AAD Diesel generated PM 0.13 0.05 0.02 

Full PAD AAD non-traffic PM 0.03 0.04 0.42 

Clinical PAD AAD non-traffic PM 0.01 0.04 0.88 

Full PAD PhenoAAD Proximity to major roadways 0.04 0.03 0.14 

Clinical PAD PhenoAAD Proximity to major roadways 0.04 0.03 0.16 

Full PAD PhenoAAD Gasoline generated PM 0.01 0.05 0.84 

Clinical PAD PhenoAAD Gasoline generated PM 0.02 0.05 0.74 

Full PAD PhenoAAD Diesel generated PM 0.00 0.05 0.98 

Clinical PAD PhenoAAD Diesel generated PM 0.01 0.05 0.83 

Full PAD PhenoAAD non-traffic PM -0.01 0.04 0.84 

Clinical PAD PhenoAAD non-traffic PM -0.02 0.04 0.55 

Full SBP AAD Proximity to major roadways 0.46 0.20 0.02 

Clinical SBP AAD Proximity to major roadways 0.44 0.20 0.03 

Full SBP AAD Gasoline generated PM 0.35 0.28 0.21 

Clinical SBP AAD Gasoline generated PM 0.31 0.28 0.27 

Full SBP AAD Diesel generated PM 0.33 0.28 0.24 

Clinical SBP AAD Diesel generated PM 0.28 0.28 0.32 

Full SBP AAD non-traffic PM -0.04 0.21 0.84 

Clinical SBP AAD non-traffic PM -0.04 0.21 0.85 

Full SBP PhenoAAD Proximity to major roadways 0.12 0.16 0.46 

Clinical SBP PhenoAAD Proximity to major roadways 0.13 0.16 0.41 

Full SBP PhenoAAD Gasoline generated PM 0.05 0.24 0.84 

Clinical SBP PhenoAAD Gasoline generated PM 0.00 0.23 0.99 

Full SBP PhenoAAD Diesel generated PM 0.12 0.23 0.60 

Clinical SBP PhenoAAD Diesel generated PM 0.08 0.23 0.73 

Full SBP PhenoAAD non-traffic PM 0.08 0.19 0.66 

Clinical SBP PhenoAAD non-traffic PM 0.07 0.19 0.71 

Full DBP AAD Proximity to major roadways 0.25 0.11 0.03 

Clinical DBP AAD Proximity to major roadways 0.24 0.11 0.03 
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Full DBP AAD Gasoline generated PM 0.17 0.15 0.29 

Clinical DBP AAD Gasoline generated PM 0.17 0.16 0.28 

Full DBP AAD Diesel generated PM 0.09 0.16 0.57 

Clinical DBP AAD Diesel generated PM 0.09 0.16 0.57 

Full DBP AAD non-traffic PM 0.06 0.12 0.61 

Clinical DBP AAD non-traffic PM 0.07 0.12 0.55 

Full DBP PhenoAAD Proximity to major roadways 0.19 0.09 0.04 

Clinical DBP PhenoAAD Proximity to major roadways 0.19 0.09 0.04 

Full DBP PhenoAAD Gasoline generated PM 0.00 0.13 1.00 

Clinical DBP PhenoAAD Gasoline generated PM 0.00 0.13 0.97 

Full DBP PhenoAAD Diesel generated PM 0.02 0.13 0.91 

Clinical DBP PhenoAAD Diesel generated PM 0.01 0.13 0.95 

Full DBP PhenoAAD non-traffic PM 0.09 0.10 0.39 

Clinical DBP PhenoAAD non-traffic PM 0.09 0.10 0.39 

Interactions for the Full and Clinical model for all exposures, aging measures, and outcomes. Estimates provided are for the 
interaction between the exposure and the accelerated aging measure given in each row. Non-traffic PM2.5 refers to the 
residuals of PM2.5 after regressing out PM2.5 from diesel and gasoline sources. AAD = age acceleration difference;  
Beta = regression coefficient for interaction term; DBP = diastolic blood pressure; PAD = peripheral arterial disease;  
PM = particulate matter < 2.5 micrometers in diameter (PM2.5); PhenoAAD = phenotypic age acceleration difference;  
SBP = systolic blood pressure. 

 

Supplementary Table 3. Comparison of models with and without adjustment for year of catheterization. 

Outcome Aging Poll 
Full Full + Year of catheterization 

Beta SE P Beta SE P 

DBP AAD Diesel generated PM 0.09 0.16 0.57 0.07 0.16 0.66 

DBP AAD Gasoline generated PM 0.17 0.15 0.29 0.13 0.15 0.39 

DBP AAD non-traffic PM 0.06 0.12 0.61 0.08 0.12 0.47 

DBP AAD Total PM2.5 0.07 0.12 0.55 0.08 0.12 0.49 

PAD AAD Diesel generated PM 0.13 0.05 0.01 0.12 0.05 0.02 

PAD AAD Gasoline generated PM 0.13 0.05 0.01 0.12 0.05 0.01 

PAD AAD non-traffic PM 0.03 0.04 0.42 0.03 0.04 0.42 

PAD AAD Total PM2.5 0.09 0.04 0.02 0.09 0.04 0.02 

SBP AAD Diesel generated PM 0.33 0.28 0.24 0.33 0.29 0.25 

SBP AAD Gasoline generated PM 0.35 0.28 0.21 0.35 0.28 0.21 

SBP AAD non-traffic PM -0.04 0.21 0.84 -0.05 0.22 0.83 

SBP AAD Total PM2.5 0.21 0.22 0.33 0.21 0.22 0.33 

Year can be an important confounder in some air pollution models as both air quality and clinical factors can vary over 
years. Here we justify not including year within the models by showing it has little effect on the interaction term in the Full 
model. As PAD was a binary outcome it estimates are given on the log-odds scale. All estimates are for the aging-air 
pollution interaction term. Full model adjustment was age, race, sex, smoking status, and sociodemographic cluster. The 
Clinical model adjustment included all terms for the Full model plus diabetes status, body mass index, and history of 
hyperlipidemia. Beta = regression coefficient for interaction term; Diesel generated PM = diesel source apportioned PM2.5; 
Gasoline generated PM = gasoline source apportioned PM2.5; PM2.5 = particulate matter < 2.5 µm in diameter; SE = 
standard error. 
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Supplementary Table 4. Full interaction model with additional adjustment for cell counts. 

Outcome Aging Beta SE P 

PAD AAD 0.06 0.03 0.04 

DBP AAD 0.29 0.11 0.01 

SBP AAD 0.55 0.20 0.01 

PAD PhenoAAD 0.05 0.03 0.11 

DBP PhenoAAD 0.19 0.09 0.04 

SBP PhenoAAD 0.14 0.16 0.41 

Shown in this table are the interactions between proximity to major roadways (inverse log of distance to major roadway) 
and the epigenetic aging biomarkers (Aging) for each of the outcomes considered. The model used was the full model with 
additional adjustment for the following cell types: CD4-T, CD8-T, Natural Killer, B cells, Granulocytes, and Monocytes.  
AAD = age acceleration difference; Beta = interaction term coefficient; DBP = diastolic blood pressure; P = p-value; 
PhenoAAD = phenotypic age acceleration difference; SBP = systolic blood pressure; SE = standard error. 

 

Supplementary Table 5. Interactions between chronological age and residential proximity to major roadways. 

Model Outcome Beta SE P 

Full + AAD + PhenoAAD PAD -0.01 0.01 0.58 

Full PAD -0.01 0.01 0.62 

Full + AAD + PhenoAAD SBP -0.06 0.08 0.45 

Full SBP -0.05 0.08 0.53 

Full + AAD + PhenoAAD DBP -0.03 0.04 0.44 

Full DBP -0.03 0.04 0.49 

We observed no interactions between chronological age and residential proximity to major roadways (inverse-log 
transform of distance to major roadways). Each row in the table above represents estimates from the interaction term for 
the multiplicative interaction between chronological age and inverse-log transform of distance to major roadways for  
the Model and Outcome listed. Full model adjustment was age, race, sex, smoking status, and sociodemographic cluster. 
Beta = regression coefficient; DBP = diastolic blood pressure; PAD = peripheral arterial disease; SBP = systolic blood 
pressure; SE = standard error. 


