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Aging is the progressive decline in physiological 

functioning with increasing age, and multiple 

mechanisms attempt to explain such a phenomenon. 

The field of geroscience, defined as the intersection of 

basic aging biology, chronic disease, and health, is 

always seeking to develop new models of aging or to 

refine existing ones. The Ercc1
-/∆

 progeroid mouse 

model is not only valuable for studying basic 

fundamentals of aging, but also testing therapeutic 

interventions or evaluating surrogate biomarkers of 

biological age.  These mice mimic the human progeroid 

syndrome XFE and age roughly six times faster than 

WT mice due to a deficiency in the ERCC1-XPF DNA 

repair endonuclease complex [1, 2]. DNA damage, in 

particular cyclopurine adducts (cPu), are known to 

increase in the multiple organs of mice with age and in 

Ercc1
-/∆

 [3]. These mice accumulate DNA damage like 

naturally aged mice, albeit at a faster rate and exhibit 

the onset of numerous aspects of both natural murine 

aging and human aging [1]. One mechanism for this 

progeroid phenotype in Ercc1
-/∆

 mice is that enhanced 

endogenous DNA damage promotes cellular 

senescence, which in turn drives aging [4–6]. 

 

The senescent cell burden is known to impair tissue 

homeostasis, enhance age-associated pathologies, and 

shorten both health span and lifespan [7–12]. Senescent 

cells can negatively impact the surrounding healthy tissue 

environment via the release of inflammatory soluble 

factors in what is known as the senescence-associated 

secretory phenotype (SASP) [13]. Multiple biomarkers 

are used to identify senescent cells both in vitro and in 
vivo. Consistent with prior findings, naturally aged mice 

display elevated senescence and SASP marker expression 

in multiple tissues including in peripheral T lymphocytes 

that are used for measuring biological age in humans. 
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ABSTRACT 
 

Progeroid murine models represent an emerging tool to investigate mechanisms of aging in an expedient and 
efficient manner. One prominent mechanism of aging is the accumulation of DNA damage and subsequent 
increase in cellular senescence, leading to age related pathologies. Ercc1-/Δ hypomorphic mice, which have a 
reduced level of the ERCC1-XPF DNA repair endonuclease complex, accumulate spontaneously occurring 
endogenous DNA damage similar to naturally aged mice, but at a faster rate. The resulting genomic damage 
gives rise to a senescent cell burden that is comparable to that of a naturally aged mouse. In fact, the 
expression of senescence and senescence-associated secretory phenotype (SASP) markers in 4-5-month-old 
Ercc1-/Δ mice, along with other measurements of senescence, were equivalent and never exceeded the extent 
of that found in naturally aged mice.  Furthermore, many features of both natural murine aging and human 
aging are present in Ercc1-/Δ mice. An emerging use of these mice is the ability to study age-related signaling 
pathways, including identifying different types of senescent cells and their key senescent cell anti-apoptotic 
pathways (SCAPs).  Most importantly, this model represents a rapid, cost-effective mouse model for the 
evaluation in vivo of senolytic drugs and other gerotherapeutics. 
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Remarkably, increased expression of senescence and 

SASP genes was found in those same tissues of 4-5-

month-old Ercc1
-/∆

 progeroid mice, often to a comparable 

extent to, but never exceeding the level found in old WT 

mice. These findings were supported by the increase in 

percentage of cells positive for senescence-associated ß-

galactosidase staining in multiple tissues of Ercc1
-/∆

 and 

old WT mice. Elevated levels of multiple SASP factors 

were present in the blood of both naturally aged mice and 

Ercc1
-/∆

 mice relative to their young littermate controls. 

The progressive increase in senescent cell burden was 

measured by cross-sectional and longitudinal predictor 

using both gene expression analysis and in vivo 

bioluminescence imaging of a p16
INK4a

-luciferase 

transgenic reporter [6]. These findings strongly support 

the notion that the Ercc1
-/∆

 mouse model of accelerated 

aging experiences a similar breadth and depth of 

senescent cell burden as do naturally aged mice, but 

which accumulates at an accelerated rate. 

 

This model of accelerated senescence and aging can be 

used to further study the close relationship between 

senescent cells and aging with the intention of developing 

techniques for predicting health span and treating age-

related disease. Due to the fact that there are tissue-

specific senescence profiles in multiple tissues, which 

utilize different senescent cell anti-apoptotic pathways 

(SCAPs), no one senolytic will be pancellular. Ercc1
-/∆

 

mice, which have a comparable profile of cellular 

senescence in comparison to naturally aged mice, can 

also be used to further study SCAPs and identify 

senolytics which are effective against specific tissue or 

cell populations. In fact, many senolytics have already 

been tested in Ercc1
-/∆

 mice [14–16]. The natural product 

fisetin has been shown as an effective senotherapeutic in 

both mice and human cells. Treatment of aged WT and 

Ercc1
-/∆

 mice with fisetin reduced expression of 

senescence markers in multiple tissues leading to reduced 

age-related pathology, and an overall health span 

improvement [15]. Altogether, the results demonstrate 

that Ercc1
-/∆

 mice are a proper model of accelerated 

aging, allowing for efficient, cost effective 

experimentation and evaluation of senotherapeutics for 

aging studies.  Utilization of these mice should accelerate 

the identification of new therapeutic targets and the 

development of age-related interventions. 
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