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INTRODUCTION 
 

Breast cancer (BRCA), a neoplasm of the epithelium, is 

one of the most common cancers worldwide and the most 

common cause of cancer death among women, with more 

than 42,000 cases reported in 2020 [1]. Primary BRCA 

itself is not fatal; however, BRCA cells metastasize easily 

to other organs, including the brain, lung, liver, and bone, 

which is the main cause of BRCA-related death [2]. 

Despite advances in diagnosis and treatment strategies, 

nearly 60% of BRCA cases are diagnosed at advanced 

stages when chances of mortality are very high [3]. 

Between 25% and 50% of patients diagnosed with BRCA 

will eventually develop into deadly metastases, often 

decades after the diagnosis and removal of the primary 

tumor [4]. While significant progress has been made in 

understanding the progression and prognosis of BRCA, 

the specific mechanism underlying BRCA progression 

remains unclear. Currently, clinicopathological factors, 

such as tumor size, axillary lymph-node status, and 

pathologic et al. have been used most frequently to predict 

diagnosis and prognosis of breast cancer patients [5]; 

nevertheless, their use alone was insufficient for choosing 

therapeutic strategy and predicting BRCA prognosis. 

BRCA is multifactorial disease most caused by genetic 

mutation [6]. Numerous genetic alternations influence 

BRCA progression and indicate BRCA prognosis. It is 

meaningful to find biomarkers to evaluate BRCA 

progression and prognosis, which might prompt patients 

to take therapy at the early stage and improve their 

survival rate. Thus, further research is needed to diagnose 

and treat BRCA more effectively and thereby improve the 

survival and prognosis of BRCA patients.  

 

Long noncoding RNAs (lncRNAs) are endogenous 

cellular RNAs that have recently been detected in 
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various cancers, including BRCA. They are involved in 

multiple biological processes and are promising 

candidates for the diagnosis, prognosis, and treatment of 

BRCA [7, 8]. The lncRNA transcripts are greater than 

200 nt in length without the ability to encode proteins 

[9]. lncRNAs can hybridize to the overlapping sense 

transcript and modulate alternative splicing patterns or 

generate endo-siRNAs as well as bind with specific 

protein partners to modulate protein activity, alter 

protein localization, or serve as a structural component 

that allows formation of larger RNA–protein complexes 

[10]. Analogical to protein-coding genes and miRNAs, 

lncRNAs can participate in cancer progression. Several 

lncRNAs have been found to be aberrantly expressed in 

BRCA. For example, lncRNA HOTAIR is activated by 

carcinoma-associated fibroblasts via TGF-β1 secretion 

to promote BRCA metastasis [11]. Similarly, lncRNA 

H19 is a sponge for miR-200b/c and let-7b that induces 

the expression of miRNA targets Git2 and Cyth3 to 

promote cell migration [12]. 

 

Recent technological advances, including microarray 

and high-throughput sequencing, have improved our 

understanding of molecular biology, particularly with 

regard to lncRNAs. The weighted gene co-expression 

network analysis (WGCNA) algorithm is a novel 

biological approach used to identify highly correlated 

gene modules and key genes based on gene expression 

data [13, 14]. WGCNA simplifies the interpretation of 

thousands of genes and constructs a co-expression 

network on the basis of similarities in expression 

profiles among samples [15]. Highly co-expressed and 

closely connected genes are enriched in the same 

module, which is conserved across phylogenies and 

enriched in protein-protein interactions (PPIs) [16]. 

WGCNA addresses one drawback of traditional 

microarray analysis, which only focuses on individual 

genes and ignores the correlations between genes [17, 

18]. By constructing gene networks between normal and 

tumor tissue expression data and combining them with 

clinical traits, it is possible to identify potential 

biomarkers or therapeutic targets [19]. For example, 

WGCNA was used to identify eight lncRNAs that 

significantly reduced overall survival in laryngeal 

cancer, which may be important biomarkers for 

laryngeal cancer development and disease progression 

[20]. In one prognostic study performed using 

WGCNA, the lncRNA TRPM2 was found to be a 

competing endogenous RNA (ceRNA) that promotes 

the proliferation and inhibits the apoptosis of BRCA 

cells via the TRPM2-AS/miR-140-3p/PYCR1 axis [21]. 

 

In the present study, we applied WGCNA to BRCA 
gene expression data (including lncRNA and mRNA 

expression data) from The Cancer Genome Atlas 

(TCGA) database to identify key co-expression modules 

in BRCA patients compared to healthy controls. These 

modules were closely related to clinical traits in patients 

with BRCA. Genes in the identified modules may affect 

the development of BRCA. The co-expression Brown 

module was selected for further analysis because it was 

significantly associated with prognosis of BRCA. In 

addition, analysis of the lncRNA-miRNA-mRNA and 

lncRNA-RNA binding protein (RBP)-mRNA networks 

may offer novel insights into the molecular mechanisms 

of BRCA and provide novel techniques for the 

diagnosis of BRCA to improve BRCA prognosis. 

 

RESULTS 
 

Identification of differentially expressed lncRNAs 

and mRNAs and gene function enrichment analysis 

of DEmRNAs 
 

The TCGA RNA-seq expression dataset contains 

lncRNAs, mRNAs, and miRNAs obtained from 1098 

BRCA patients and 113 healthy subjects. After the raw 

data were normalized, 3301 differential genes were 

identified between the tumor and normal samples using 

|log2FC| > 2 and adj-p < 1e-3 in the DESeq2 R package. 

In total, 2008 and 1293 genes were increased and 

decreased in tumor samples, respectively (Supplementary 

Table 1). Volcano plots and heatmaps were plotted to 

show the distribution of 853 lncRNAs (DElncRNAs) 

(Figure 1A, 1B) and 2448 mRNAs (DEmRNAs) (Figure 

1C, 1D) that were differentially expressed in BRCA in 

comparison to the normal samples. 
 

We obtained the target genes of DElncRNA using the 

RAID 2.0 database and identified 237 target genes, 

which had 40 overlapping genes with DEmRNAs 

(Supplementary Table 2). The KOBAS online database 

was used to conduct GO and KEGG pathway annotation 

analyses for the 2645 mRNAs (DEmRNAs and target 

genes). Enrichment results were visualized by the R 

package ggplot2 (Figure 1E, 1F). GO analysis showed 

that these genes were significantly enriched in protein 

binding, signaling receptor activity, enzyme binding, 

and G protein-coupled receptor binding (Figure 1E). 

Moreover, cytokine-cytokine receptor interaction, 

PI3K-Akt signaling pathway, IL-17 signaling pathway, 

cAMP signaling pathway, cell cycle, PPAR signaling 

pathway, and Ras signaling pathway, among others, 

were also obtained from KEGG pathway enrichment 

analysis (Figure 1F, Supplementary Table 3). 
 

Construction of co-expression modules of BRCA by 

WGCNA 

 
All DEmRNAs, including 853 DElncRNAs and 2448 

DEmRNAs, were normalized by voom function using 

the Limma package (Figure 2). TCGA-G-A2C8-11, an 
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Figure 1. Volcano plots, heatmap, and gene enrichment analysis of DElncRNAs and DEmRNAs. (A) Volcano plot of DElncRNAs. (B) 
Heatmap of DElncRNAs. (C) Volcano plot of DEmRNAs. (D) Heatmap of DEmRNAs. NS: no significant, Log2FC: |Log2FC|>2, p-value: p-
value<1e-3, p-value and Log2FC: p-value<1e-3 and |Log2FC|>2. (E) GO enrichment of DEmRNAs. (F) KEGG pathway enrichment of DEmRNAs. 
Red pathways are common with DEmRNAs of the Brown module. 
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obvious outlier sample based on gene expression, was 

excluded (Supplementary Figure 1A). The clinical trait 

heatmap and sample dendrogram divided the selected 

samples into different clusters and provided a distribution 

map of clinical trait data (Supplementary Figure 1B), 

including age at initial pathologic diagnosis (a), 

pathologic_M (b), pathologic_N (c), pathologic_T (d), 

tumor stage (e), additional pharmaceutical therapy (f), 

radiation therapy (g), vital status (h), days to new tumor 

event after initial treatment (i), and days to death (j) 

(Supplementary Table 4 and Supplementary Figure 1B). 

 

We used the WGCNA algorithm to construct a co-

expression network and modules for the 1210 samples. 

The Pearson’s correlation matrix of the genes was 

converted into a strengthening adjacency matrix by 

power β = 4 based on a scale-free topology with R2 = 

0.97 (Figure 2A). All of the selected genes were 

clustered using a topological overlap matrix (TOM)-

based dissimilarity measure based on the Dynamic Tree 

Cut algorithm to divide the tree into eight modules 

(Figure 2B) labeled with different colors. The number 

of genes in each module is shown in Table 1. Next, 

Pearson’s correlation coefficient was used to analyze 

the interaction of these co-expression modules. 

Hierarchical clustering of module eigengenes 

summarizing the modules was found in the clustering 

analysis. Branches of the dendrogram (the meta-

modules) were grouped together based on the 

correlation of eigengenes (Figure 2C). Each module 

contained different gene clusters and was labeled by a 

different color in the heatmap plot of topological 

overlap; red represented a positive correlation, while 

blue represented negative correlation (Figure 2D). 

 

 
 

Figure 2. Construction of co-expression modules based on BRCA RNA-seq data from TCGA database by WGCNA. (A) Analysis of 

network topology for various soft-threshold powers. Check scale-free topology; the adjacency matrix was defined using soft-thresholds with 
β=4. (B) Clustering dendrograms of genes, with dissimilarity based on topological overlap, together with assigned module colors. (C) Heatmap 
depicting the topological overlap matrix (TOM) among genes based on co-expression modules. A redder background indicates a higher 
module correlation. (D) Visualization of the gene network using a heatmap plot.  
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Table 1. The number of genes in the co-expression modules. 

Module Genes 
Turquoise 1296 
Green 68 
Blue 1071 
Red 42 
Yellow 130 
Brown 453 
Black 35 
Grey 206 

 

Identification of key modules and hub genes related 

to BRCA prognosis 

 

We summarized the gene co-expression by eigengenes 

and calculated the correlation of each eigengene with 

clinical traits, such as age at initial pathologic diagnosis 

(a), pathologic_M (b), pathologic_N (c), pathologic_T 

(d), tumor stage I (e), additional pharmaceutical therapy 

(f), radiation therapy (g), vital status (h), days to new 

tumor event after initial treatment (i), and days to death 

(j) (Figure 3A). The module-trait relationship plot 

showed that the co-expression Brown module was most 

significantly positively associated with days to new 

tumor event after initial treatment (i) (R=0.29, p=3e-24) 

and days to death (R = 0.12, p = 6e-05) and negatively 

associated with vital status (h) (R = ‒0.12, p = 3e-05). 

The co-expression Yellow module was significantly 

positively associated with days to new tumor event after 

initial treatment (i) (R=0.14, p= 2e-06) and negatively 

associated with vital status (h) (R=‒0.14, p=2e-06); the 

co-expression Turquoise module was significantly 

positively associated with vital status (h) (R=0.13, 

p=3e-06) and negatively associated with new tumor 

event after initial treatment (i) (R=‒0.093, p=0.001). 

Thus, the co-expression Brown module (Supplementary 

Table 5) was the key module for BRCA prognosis and 

was used for further analysis. 

 

As shown in Figure 3B, we constructed a PPI network 

using the STRING database and the Molecular 

Complex Detection (MCODE) plug-in in Cytoscape 

(MCODE score >10) for the 453 genes from the co-

expression Brown module. The results demonstrated 

that GRM4 and SSTR2 were potential hub genes that 

interact with other genes (Figure 3B). In addition, the 

expression levels of these two hub genes were higher in 

BRCA than in normal samples (Figure 3C). For further 

analysis, we used the KOBAS online database to 

analyze the GO and KEGG pathway enrichment of the 

453 genes in the co-expression Brown module. The 

significant enrichment function and pathways (p<0.05) 

are shown in Figure 3D, 3E. GO data revealed that the 

genes were enriched in integral components of the 

plasma membrane, extracellular region, extracellular 

vesicle, intrinsic component of membrane, receptor 

regulator activity, regulation of growth, enzyme 

binding, response to estradiol, and GTPase binding 

molecular function (Figure 3D, Supplementary Table 

6). In addition, 10 distinct KEGG signaling pathways 

possibly related to BRCA were identified (Figure 3E, 

Supplementary Table 6), such as signaling pathways 

regulating the pluripotency of stem cells, PI3K-Akt 

signaling pathway, MAPK signaling pathway, estrogen 

signaling pathway, cytokine-cytokine receptor inter-

action, and the cAMP signaling pathway, which are 

common pathways in total differential mRNAs KEGG 

pathway enrichment (Table 2). The hub genes GRM4 

and SSTR2 were enriched in the neuroactive ligand-

receptor interaction and cAMP signaling pathway, 

respectively. All the above pathways play a vital role in 

tumorigenesis. 

 

Construction of lncRNA-miRNA-mRNA ceRNA and 

lncRNA-RBP-mRNA networks 

 

To explore the molecular mechanism of BRCA-related 

lncRNA, lncRNA-miRNA-mRNA and lncRNA-RBP-

mRNA networks were constructed from the starBase 

database, according to the DElncRNAs and DEmRNAs 

from the co-expression Brown module. The lncRNA-

miRNA-mRNA ceRNA network consisted of 15 

DElncRNAs, 57 DEmiRNAs, and 11 DEmRNAs 

(Supplementary Figure 2A, Supplementary Table 7). 

The lncRNA-RBP-mRNA network consisted of 45 

DElncRNAs, 158 DEmRNAs, and 33 RBPs 

(Supplementary Figure 2B, Supplementary Table 7). 

We selected three genes (PARD6B, PRR15, and 

COX6C) that were significantly upregulated in BRCA 

(Figure 4C), as hub genes, according to the degree of 

lncRNA, miRNA, or RBP and previous studies of these 

genes in the two networks. These three genes were 

connected with 10 DElncRNAs (MALAT1, XIST, 

NEAT1, TUG1, HCG18, KCNQ1OT1, H19, GAS5, 

SNHG12, and HOTAIR), 30 DEmiRNAs in the 

lncRNA-miRNA-mRNA ceRNA network and 14 

DElncRNAs (AC009005.2, AC093642.3, AGAP1-IT1, 

AL121578.2, DSCAM-AS1, KCNH1-IT1, LINC00176, 

LINC00595, PRSS29P, RP11-150O12.3, RP11-

304L19.12, RP11-53O19.1, RP11-624L4.1, and RP3-
468B3.2), and 8 RBPs (U2AF65, UPF1, TIAL1, 
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eIF4AIII, PTB, FUS, ZC3H7B, and DGCR8) in the 

lncRNA-RBP-mRNA network (Figure 4A, 4B, 

Supplementary Table 8). Previous studies have found 

that DSCAM-AS1 is highly specific to luminal breast 

cancer and is directly regulated by estrogen receptor α 

(ERα), playing vital roles in tumor proliferation, 

invasion, and tamoxifen resistance [22–24]. Our results 

indicated that DSCAM-AS1 was highly expressed in the 

BRCA samples (Figure 4C) and bound with RBP OPF1 

and mRNA PARD6B, suggesting that DSCAM-AS1 may 

work with OPF1 and PARD6B to promote BRCA 

progression.  

 

 
 

Figure 3. Identification and analysis of key module and hub genes. (A) Analysis of module-trait relationships of BRCA based on TCGA 
data; a. age at initial pathologic diagnosis, b. pathologic_M, c. pathologic_N, d. pathologic_T, e. tumor stage I, f. additional pharmaceutical 
therapy, g. radiation therapy, h. vital status, i. days to new tumor event after initial treatment, j. days to death. TNM = tumor, node, 
metastasis (classification). (B) PPI analysis and identification of hub genes involved in the co-expression Brown module using STRING 
database and MCODE plug-in in Cytoscape. The genes in the red circle are the hub genes. (C) Expression of GRM4 and SSTR2 in BRCA from 
TCGA database. (D) GO enrichment in the co-expression Brown module. The red gene is the hub gene of PPI. (E) KEGG pathway enrichment in 
the co-expression Brown module. Red pathways are common with total DEmRNAs. 
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Table 2. The common KEGG pathways enriched in the co-expression brown module and DEmRNA. 

KEGG pathways p-value Gene list 

Signaling pathways regulating 

pluripotency of stem cells 

2.802E-02 BMPR1B; HOXB1; FGFR3 

PI3K-Akt signaling pathway 2.501E-02 CREB3L1; GNG13; GNG3; FGFR3; EIF4E1B 

Hippo signaling pathway 3.549E-02 AMH; BMPR1B; PARD6B 

MAPK signaling pathway 1.253E-02 CACNA1H; CACNG1; CACNG4; FGFR3; MAPK8IP2 

Estrogen signaling pathway  5.579E-05 KCNJ3; KRT31; KRT35; TF1; KRT37; CREB3L1 

Cytokine-cytokine receptor interaction 1.237E-02 AMH; BMPR1B; GDF15; TNFRSF18; IL20 

cAMP signaling pathway 5.524E-04 AMH; GRIA2; SSTR2; CREB3L1; TNNI3; HTR1E 

 

Validation of the expression of the selected hub genes 
 

To confirm the reliability of the five differentially 

expressed genes (GRM4, SSTR2, PARD6B, COX6C, and 

PRR15) from PPI, lncRNA-miRNA-mRNA ceRNA, and 

lncRNA-RBP-mRNA network, we verified the expression 

patterns of these genes in multiple databases. The mRNA 

expression levels of PARD6B, COX6C, and PRR15 were 

significantly higher in BRCA than in normal samples, 

according to the Gene Expression Profiling Interactive 

Analysis database. The mRNA expression levels of GRM4 

and SSTR2 was increased in BRCA, although not 

significantly (Figure 5A). All of these hub genes were 

significantly increased in BRCA, according to the 

GSCALite database (Figure 5B). In addition, the protein 

expression levels of these five genes were significantly 

higher in tumor samples than in normal samples, according 

to the Human Protein Atlas (HPA) database (Figure 5C). 

We also analyzed the methylation of these genes in the 

GSCALite database and found that GRM4, PARD6B, 

COX6C, and PRR15 were hypomethylated in BRCA 

(Figure 5D) which may be related to the high expression of 

these genes in BRCA. Finally, GRM4 and SSTR2 were 

found to be activated in the EMT pathway in BRCA, while 

PARD6B and PRR15 were inhibited. SSTR2, PARD6B, 

and PRR15 were activated in the ER pathway. COX6C and 

GRM4 were inhibited in the PI3K/AKT, RAS/MAPK, and 

RTK pathways (Figure 5E). These pathways play vital 

roles in oncogenesis, suggesting that these hub genes may 

participate in BRCA progression. Furthermore, these five 

hub mRNAs and lncRNA DSCAM-AS1 expression in 

MCF10A (normal breast epithelial cell line) and MDA-

MB-231 (TNBC cell line) were measured using qRT-PCR. 

Expression levels of GRM4, SSTR2, PARD6B, COX6C, 

PRR15, and DSCAM-AS1 were significantly higher in 

MDA-MB-231 than in MCF10A (Figure 5F), which were 

consistent with the expression pattern of these six genes in 

multiple databases. 

 

DISCUSSION 
 

BRCA is the most commonly diagnosed malignancy 

among women worldwide.  Although the number of 

breast cancer survivors is rising thanks to increasingly 

early diagnoses and improved therapy treatments [25]. 

However, the number of women who experience 

recurrence associated with an unexpected prognosis 

after the primary tumor is diagnosed, such as  

distant metastases and poor quality of life, is also 

increasing [26–28]. Thus, the identification of 

noninvasive biomarkers with high sensitivity and 

specificity for use in breast cancer detection at an early 

stage and in monitoring the response to therapy is vital 

to improve prognosis. LncRNA, traditionally 

considered transcriptional noise, is now known to be 

involved in genome packaging, chromatin organization, 

dosage compensation, genomic imprinting, and gene 

regulation [29]. Increasing evidence has demonstrated 

that lncRNAs are critical components during cancer 

initiation, development, and progression [30]. Specific 

lncRNAs are now likely to be translated into clinical 

applications for diagnosis, prognosis, and prediction of 

treatment response [31].  

 

WGCNA is the most widely used co-expression 

network technique and has been used in many 

applications, for example, in the genetic analysis of 

cancer, genome analysis in mice and yeast, and the 

analysis of brain MRI data [32]. WGCNA is notably 

useful for identification of the modules of co-expressed 

genes that are correlated with clinical traits and 

consequently biological tumor behavior. Huang et al. 

identified hub gene CDC45 as a putative novel 

therapeutic target in NSCLC through WGCNA analysis. 

WGCNA was also used to determine hub genes, 

lncRNAs and miRNAs correlated with BRCA 

progression and prognosis in previous studies. For 

example, Yao et al. have constructed 23 modules using 

weighted gene co-expression network analysis and 

identified 5 lncRNAs associated with BRCA 

progression from Green module and Blue module which 

were positively correlated with tumor samples [33]. Liu 

et al. have identified breast cancer-related preserved 

modules among 4 individual GSE datasets using 

weighted gene co-expression network analysis and 
selected eight lncRNAs as prognostic biomarkers using 

univariate Cox regression analysis in combination with 

LASSO analysis [34]. Moreover, WGCNA can also be 
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Figure 4. lncRNA-miRNA-mRNA ceRNA and lncRNA-RBP-mRNA networks. (A) lncRNA-miRNA-mRNA ceRNA network based on the 

co-expression Brown module. (B) lncRNA-RBP-mRNA network based on the co-expression Brown module. (C) Expression of PARD6B, PRR15, 
COX6C, and DSCAM-AS1. 



 

www.aging-us.com 2527 AGING 

used for selecting hub genes and prognostic biomarkers 

associated with different subtypes of breast cancer. For 

example, Adhami M. et al have identified 2 or 3 

miRNAs as novel biomarkers for each subtype of breast 

cancer using WGCNA co-expression analysis [35].   

 

Although many efforts have been made to identify 

prognostic biomarkers in BRCA using WGCNA, 

clinical prognostic traits haven’t been taken into 

consideration. In our studies, we first screened 

differential expressed lncRNAs and mRNAs between 

normal samples and breast cancer samples and then 

carried out WGCNA analysis using 10 clinical traits, 

including days to new tumor event after initial treatment 

and days to death. We identified 8 modules and found 

that the co-expression Brown module was the one most 

significantly correlated with days to new tumor events 

after initial treatment and days to death. We selected 

Brown module as the key module of prognosis. 

DEmRNAs and DElncRNAs in Brown module were 

used for selecting hub genes associated with breast 

cancer prognosis and construct ceRNA network and 

lncRNA-RBP-mRNA network.  

 

Our results indicated that GRM4 and SSTR2 were hub 

genes for BRCA prognosis using PPI network analysis 

in BRCA. GRM4, a member of the G protein-coupled 

receptor family, can directly couple with ion channels 

through G protein mediation to increase cell excitability 

and activate the second messenger and downstream 

signal transduction system [36]. Previous studies have 

demonstrated that GRM4 may have different functions 

in various cancers. In renal cell carcinoma, GRM4 was 

previously found to be highly expressed and correlated 

with poor prognosis compared with that in normal 

samples [37]. However, GRM4 can inhibit the 

proliferation and DNA synthesis of various medullo-

blastoma cell lines by inhibiting the cAMP and IP3K 

pathways [38]. SSTR2 is also a G-protein coupled 

plasma membrane receptor [39]. Study has shown that 

SSTR2 can inhibit cell proliferation by upregulating 

p21 and p16 or increasing caspase-3 and decreasing 

PARP expression in human pancreatic and lung cancer 

cell lines [40]. Moreover, early studies have shown that 

SSTR2 is the most widely expressed SSTR subtype in 

breast cancer [41, 42]. MCF7 cells with high levels  

of SSTR2 expression display a diminished rate of  

cell proliferation by MAPK, PI3K/AKT, and phospho-

tyrosine phosphatase pathways [43, 44]. Given that 

GRM4 and SSTR2 were significantly higher in the 

BRCA samples than in the normal samples, in addition 

to the enrichment of GTPase binding molecular 

function, cAMP, PI3K-Akt, and MAPK signaling 
pathways in the co-expression Brown module, our 

results suggested that GRM4 and SSTR2 play a vital role 

in BRCA metastasis and prognosis by regulating these 

pathways and may thus be used as therapeutic targets 

for BRCA patients. 

 

Furthermore, the lncRNA-miRNA-mRNA ceRNA and 

lncRNA-RBP-mRNA networks indicated that several 

lncRNAs may participate in BRCA progression and 

diagnosis, such as H19 and MALAT1. Several studies 

have found that H19 participates in the carcinogenic 

process [45, 46]. Moreover, the H19/let-7/Lin28 ceRNA 

network is capable of inhibiting the epithelial-

mesenchymal transition by downregulating autophagy 

in BRCA [47]. A previous study reported that H19 can 

competitively bind miR-93-5p to upregulate STAT3 and 

promote proliferation, migration, and invasion in breast 

cancer [48]. Other studies have suggested that H19 acts 

as an miR-675-5p and miR-340-3p sponge to induce 

breast cancer cell apoptosis and promote epithelial-

mesenchymal transition in paclitaxel-resistant breast 

cancer cells, respectively [49, 50]. MALAT1 is a 

metastasis-suppressing lncRNA that is highly expressed 

in breast cancer tissues and is associated with disease 

progression [51]. In addition, MALAT1 can also bind 

with multiple miRNAs, such as miR-1, miR-129-5p, and 

miR-145, to promote BRCA [52–54]. Similar to 

previous studies, our ceRNA network results indicated 

that H19 and MALAT1 may work with different 

miRNAs to promote BRCA. However, the mechanisms 

by which MALAT1 and H19 act with these miRNAs to 

promote the progression of BRCA will need to be 

analyzed further. 

 

PARD6B, PRR15, and COX6C were selected as hub 

genes in the lncRNA-miRNA-mRNA ceRNA and 

lncRNA-RBP-mRNA networks. Our results indicated 

that these three genes may work with multiple 

lncRNAs, miRNAs, and RBPs to regulate BRCA 

progression. According to previous reports, these three 

genes play an important role in different cancers. 

PARD6B is an essential component in epithelial cell 

tight junction (TJ) formation and the maintenance of 

apico-basal polarity. PARD6B overexpression promotes 

the activation of MAPK and cell proliferation in breast 

cancer [55]. PARD6B inhibition in MCF7 cells resulted 

in the loss of tight junctions [56]. COX6C, a 

mitochondrial inner membrane protein, was highly 

prevalent in the plasma of melanoma patients as well as 

in ovarian and breast cancer patients [57]. These studies 

indicated that PARD6B and COX6C may participate in 

BRCA progression. 

 

In conclusion, our study used RNA-seq expression data 

from the TCGA database and compared DElncRNAs 

and DEmRNAs between normal and BRCA samples. 
WGCNA was used to construct the free-scale network, 

which was combined with phenotype information to 

further identify the co-expression Brown module. This  
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Figure 5. Expression pattern validation of hub genes and signaling pathways in BRCA. (A) Expression pattern of GRM4, SSTR2, 
PARD6B, COX6C, and PRR15 in BRCA and normal samples from the GEPIA database. (B) Expression of GRM4, SSTR2, PARD6B, COX6C, and 
PRR15 in BRCA and normal samples from the GSCALite database. (C) IHC of the GRM4 (GRM4 normal sample from 2104; GRM4 BRCA sample 
from 2160), SSTR2 (SSTR2 normal sample from 3286; SSTR2 BRCA sample from 2091), PARD6B (PARD6B normal sample from 2042; PARD6B 
BRCA sample from 1874), COX6C (COX6C normal sample from 2773; COX6C BRCA sample from 1775), and PRR15 (PRR15 normal sample from 
2773; PRR15 BRCA sample from 2428) in BRCA and normal samples from the HPA database. (D) Difference in the methylation of GRM4, 



 

www.aging-us.com 2529 AGING 

SSTR2, PARD6B, COX6C, and PRR15 between BRCA and normal samples from the GSCALite database. (E) Difference in the signaling of 
pathways associated with GRM4, SSTR2, PARD6B, COX6C, and PRR15 between BRCA and normal samples from the GSCALite database. (F) 
Expression of GRM4, SSTR2, PARD6B, COX6C, PRR15, and lncRNA DSCAM-AS1 in MCF10A (normal breast epithelial cell line) and MDA-MB-231 
(breast cancer cell line) using qRT-PCR. 
 

module was found to be significantly associated with 

BRCA prognosis. PPI network analysis and gene 

function enrichment were performed to identify the hub 

genes (GRM4 and SSTR2) and key pathways in the co-

expression Brown module. Furthermore, lncRNA-

miRNA-mRNA ceRNA and lncRNA-RBP-mRNA 

networks were established to demonstrate that 

PARD6B, PRR15, COX6C, and DSCAM-AS1 were 

activated in BRCA. Meanwhile, these genes were 

verified in multiple databases and using qRT-PCR, 

which were significantly highly expressed in BRCA. 

However, in this work, we constructed a synthetic 

network based on multiple genes, with the impact of 

single genes on the BRCA mechanism being unclear. 

Thus, further experimental data will be needed to 

support this investigation and confirm the detailed 

molecular mechanisms in BRCA progression. 

 

MATERIALS AND METHODS 
 

TCGA data of BRCA patients and data preprocessing 

 

The workflow of data analysis is shown in Figure 6. 

BRCA-related RNA-seq data (1217 samples, including 

1104 tumors and 113 normal controls), prognostic data 

(1104 samples), and related clinical trait data (1266 

samples) were downloaded from the TCGA database 

(https://portal.gdc.cancer.gov/projects/TCGA-BRCA), 

as shown in Table 3. Gene expression levels of TCGA-

A7-A0DB-01, TCGA-A7-A13E-01, TCGA-A7-A13D-

01, TCGA-A7-A0DC-01, TCGA-A7-A26J-0, and 

TCGA-A7-A26E-01 were set as replicated sample 

means because of their replication. Ultimately, 1098 

tumor samples were used for further analysis. A total of 

3301 differential genes were identified between the 

 

 
 

Figure 6. Flow chart of analysis. 

https://portal.gdc.cancer.gov/projects/TCGA-BRCA
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Table 3. Information of BRCA patients clinical traits. 

Clinical traits of BRCA patients Case, n (%) 

Total 1266 

Age at initial pathologic diagnosis 58.22+13.38 

Days to new tumor event after initial treatment 977.6531+780.17 

Pathologic T 
T1 

 
323 (25.5) 

T2 736 (58.1) 

T3 155 (12.2) 

T4 49 (3.9) 

TX 3 (0.2) 

Pathologic N 
N0 

 
585 (46.2) 

N1 434 (34.3) 

N2 135 (10.7) 

N3 89 (7.0) 

NX 23 (1.8) 

Pathologic M 
M0 

 
1061 (83.8) 

M1 24 (1.9) 

MX 181 (14.3) 

Radiation therapy  

Yes 615 (48.6) 

No w484 (38.2) 

Unknown 167 (13.2) 

Additional pharmaceutical therapy 
Yes 

 
26 (2.0) 

No 20 (1.6) 

Unknown 1220 (96.4) 

Days to death 1568.91+ 1228.10 

Vital status 
Alive 

 
1054 (83.3) 

Dead 212 (16.7) 

Tumor stage 
Stage I 

 
212 (16.7) 

Stage II 720 (56.8) 

Stage III 287 (22.7) 

Stage IV 22 (1.7) 

Stage X 13 (1.0) 

Unknown 12 (1.0) 

 

tumor and normal samples using the DESeq2 R 

package, at thresholds of |log2FC| > 2 and adj-p < 1e-3. 

Differentially expressed lncRNAs (DElncRNAs) and 

mRNAs (DEmRNAs) were used for further analysis. 

 

Gene function enrichment of DElncRNA target 

genes and mRNAs 

 

Target genes of DElncRNA were obtained using the 

RAID 2.0 database (https://www.rna-society.org/raid/) 

and overlapped with DEmRNAs. Functional and 

pathway enrichment of DEmRNAs was performed 

using the KOBAS online database (http://kobas.cbi. 

pku.edu.cn/kobas3). Significantly enriched functions 

and pathways were visualized by R package ggplot2 

with RStudio (Version 3.6.3). 

WGCNA of DElncRNAs and DEmRNAs 

 

WGCNA is a systematic biological method used to 

construct a scale-free network based on gene 

expression profiles. To construct this system, a 

similarity matrix that calculates the absolute value of 

the Pearson’s correlation coefficient between two 

genes was constructed using expression data. Then, the 

similarity matrix was converted into adjacency matrix 

aij, where the β value was the soft-threshold (power 

value) to enhance strong connections and disregard 

weak correlations between genes in the adjacency 

matrix. Next, the adjacency matrix was converted into 

a TOM to describe the association strength between 

the genes. TOM was used as an input for the 

hierarchical clustering analysis of genes, and the 

https://www.rna-society.org/raid/
http://kobas.cbi.pku.edu.cn/kobas3
http://kobas.cbi.pku.edu.cn/kobas3
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DynamicTreeCut algorithm was applied to identify 

network modules. The most representative genes, 

module eigengenes (MEs), were the first principal 

components, representing the overall level of gene 

expression in individual modules. Module membership 

(MM) was measured using Pearson’s correlation 

coefficient of the expression profile of one gene in all 

samples and one ME. Lastly, the gene significance 

(GS) was used to evaluate the gene with other 

biological information. The higher the value of GS, the 

more prognostic value it holds for the patient. Thus, 

the expression profile of DElncRNAs and DEmRNAs 

was used to construct a free-scale network and identify 

significant modules related to clinical traits to analyze 

differential genes in these modules. 

 

 
Construction of the PPI, lncRNA-miRNA-mRNA 

ceRNA, and lncRNA-RBP-mRNA network of the 

Brown module 

 

The online STRING database (https://string-db.org/) 

was used to build the PPI network. The network graph 

was visualized and analyzed using Cytoscape v3.6.0. 

Then, the hub mRNAs were selected with a cutoff score 

of 10 using the MCODE plug-in. The lncRNA-miRNA-

mRNA ceRNA and lncRNA-RBP-mRNA networks in 

the co-expression Brown module were constructed 

based on starBase (http://starbase.sysu.edu.cn/) and 

visualized in Cytoscape. 

 

Verification of the expression pattern and 

identification of pathway signaling of hub genes 

 

The mRNA expression patterns of the hub genes in 

BRCA and normal samples were verified using the 

GEPIA (http://gepia.cancer-pku.cn/) and GSCA 

Lite database (http://bioinfo.life.hust.edu.cn/web/GSCA 

Lite/), a Web server for Gene Set Cancer Analysis. 

Protein expression of the hub genes between BRCA and 

normal tissues was determined using immuno-

histochemistry (IHC) from the HPA (https:// 

www.proteinatlas.org/). HPA is a valuable database that 

provides a large amount of transcriptomics and 

proteomics data for specific human tissues and cells. 

The pathway signaling of hub genes was analyzed in the 

GSCALite database. 

 

Cell culture 

 

The MCF10A and MDA-MB-231 cells here were all 

originally purchased from American Type Culture 

Collection (Manassas, VA, USA) and were used to 

verify the expression of hub genes in this study. 

MCF10A cells were cultured in the base medium for 

this cell line (MEBM) supplemented with 100 ng/ml 

cholera toxin. were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% fetal 

bovine serum and 1% antibiotics. Cells were maintained 

in a humidified incubator equilibrated with 5% CO2 at  

37° C. 

 

Verification of the hub genes using qRT-PCR 

 

Total cellular RNAs were extracted from MCF10A 

and MDA-MB-231 by using TRIzol (Invitrogen). 

cDNA was prepared using MMLV Reverse 

Transcriptase (Roche) and amplificated using 2 × PCR 

SYBR Green Mix buffer in a 15-μL reaction. The PCR 

process run 40 cycles of 95° C for 15s and 60° C for 1 

min in ABI PRISM 7500 sequence-detection system 

(Applied Biosystems, Foster City, CA, USA). The 

results were shown by using the comparative Ct 

method (2-ΔΔCt) with β-actin as an internal control. 

The primers used were supplied in Supplementary 

Table 9. 

 

Statistical analysis 

 

RStudio software 3.4.3 and SPSS were used to analyze 

BRCA sample data and qRT-PCR results, respectively. 

For comparisons between two groups, Student’s t test of 

variance was performed. P< 0.05 was used as 

statistically significant. All data were visualized using 

the GraphPad Prism 8 and RStudio (Version 3.6.3) 

software. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Sample cluster analysis. (A) Sample clustering to detect outliers based on RNA data (the red line (cut height = 
200 cm) was used as the filter to remove outlier samples from the sample tree). (B) Sample dendrogram and clinical trait heatmap based on 
gene expression and clinical data. TNM = tumor, node, metastasis (classification). 
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Supplementary Figure 2. lncRNA-miRNA-mRNA ceRNA and lncRNA-RBP-mRNA networks. (A) lncRNA-miRNA-mRNA ceRNA 
network based on the co-expression Brown module. (B) lncRNA-RBP-mRNA network based on the co-expression Brown module. 
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Supplementary Tables 

 
Please browse Full Text version to see the data of Supplementary Tables 1–8. 

 

Supplementary Table 1. Total differential genes. 

Supplementary Table 2. Differential lncRNA and its target genes. 

Supplementary Table 3. KEGG pathway and GO enrichment analysis of total differential genes. 

Supplementary Table 4. Clinical trait data. 

Supplementary Table 5. The differential genes in the co-expression Brown module. 

Supplementary Table 6. KEGG pathway and GO enrichment analysis of differential genes in the co-expression Brown 
module. 

Supplementary Table 7. Genes in LncRNA-miRNA-mRNA ceRNA and lncRNA-RBP-mRNA networks. 

Supplementary Table 8. Genes in LncRNA-miRNA-mRNA ceRNA and lncRNA-RBP-mRNA networks related hub genes. 

 

Supplementary Table 9. The primers of hub genes measured using qRT-PCR. 

Gene Forward primer (5’ → 3’) Reverse primer(5’ → 3’) 

GRM4 GTGTCATCGGTGCTTCAGGG CGCGGGAGAAGAAGTCGTAG 

SSTR2 GCTGTGCCAACCCTATCCTA CTTACTGTCACTCCGCTCCC 

PARD6B ATGGAGGTGAAGAGCAAGTT ATGCGTTTCTGGGAGAATAT 

COX6C TATGGCTGTAGCATTCGTGC GCGTATGCCTTCTTTCTTTG 

PRR15 AAAGCAAGGAAGCCGCAGTG AGATTGGGGTGCTGGTTCTC 

DSCAM-AS TCCTGGAAGAGGTGGGTTAT TGTTGTGGTTTTGAGATGGG 

β-actin CTCGCCTTTGCCGATCC TCTCCATGTCGTCCCAGTTG 

 


