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INTRODUCTION 
 

After undergoing follicular growth, oocyte meiotic 

maturation, ovulation, and luteinization, the ovary 

ovulates mature oocytes for fertilization and forms the 

corpus luteum (CL) for implantation in female 

mammals. Additionally, the ovary produces steroid 

hormones such as estradiol and progesterone that are 

required for the development of female secondary 

sexual characteristics and the establishment of 

pregnancy [1]. These functions are regulated by the 

pituitary gonadotropins (FSH and LH) and ovarian-

derived factors [1, 2]. For example, ovulation is 

triggered by the preovulatory surge of LH, which 

activates multiple gene expression and signaling 

pathways in the granulosa cells of preovulatory 

follicles. The expression levels of an inducible form of 

PGG/H synthase (PTGS2) and epidermal growth (EGF) 

like factors (AREG, BTC, EREG) are increased in 

response to the LH surge [3]. Previous studies have 

shown that EGF like factors, and its downstream 

MAPK signaling cascade, play pivotal roles in cumulus 

cell-oocyte complex expansion, oocyte maturation, and 

follicle rupture [4–7]. After ovulation, the ovary rapidly 

initiates terminal differentiation of the ovulated follicle 

into a CL through luteinization [8]. Luteinization  

is a process of rapid remodeling, growth, and 

differentiation. There are structural and genomics 
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ABSTRACT 
 

WNT proteins are widely expressed in the murine ovaries. WNTLESS is a regulator essential for all WNTs 
secretion. However, the complexity and overlapping expression of WNT signaling cascades have prevented 
researchers from elucidating their function in the ovary. Therefore, to determine the overall effect of WNT on 
ovarian development, we depleted the Wntless gene in oocytes and granulosa cells. Our results indicated no 
apparent defect in fertility in oocyte-specific Wntless knockout mice. However, granulosa cell (GC) specific 
Wntless deletion mice were subfertile and recurred miscarriages. Further analysis found that GC-specific 
Wntless knockout mice had noticeably smaller corpus luteum (CL) in the ovaries than control mice, which is 
consistent with a significant reduction in luteal cell marker gene expression and a noticeable increase in 
apoptotic gene expression. Also, the deletion of Wntless in GCs led to a significant decrease in ovarian HCGR 
and β-Catenin protein levels. In conclusion, Wntless deficient oocytes had no discernible impact on mouse 
fertility. In contrast, the loss of Wntless in GCs caused subfertility and impaired CL formation due to reduced 
LHCGR and β-Catenin protein levels, triggering GC apoptosis. 
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changes that lead to terminal differentiation of follicular 

cells into nondividing progesterone producing luteal 

cells [9]. Lhcgr, Cyp11a1, Star, and Sfrp4 genes are 

highly expressed during this period [10]. When ovulated 

oocytes are not fertilized, the apoptotic system will 

eliminate CL, and many apoptotic genes (p53, caspase 

3, C-myc) will have higher expression levels in the 

ovary. 

 

One of the crucial factors shown to impact ovarian cell 

function is the WNT signaling pathway. The WNT 

signaling pathways, including WNT/β-Catenin; 

WNT/Ca
2+

; and WNT/Junkinase (Planar Cell Polarity) 

(WNT/ JNK(PCP)), have been shown to be vital to a 

variety of developmental processes. These processes 

include gastrulation movements, dorsoventral 

patterning, neuronal migration, maintenance of stem 

cell pluripotency, and disease states [11–14]. These 

pathways are all activated by WNT ligands, which bind 

to Frizzled (FZD) receptors and an array of co-receptors 

[15–17]. β-Catenin is an intracellular mediator of 

WNT/β-Catenin, or canonical WNT pathway, which is 

governed by the interaction of β-Catenin with other 

molecules to control diverse developmental processes 

such as cell fate specification, cell proliferation, and 

cellular differentiation [18, 19]. Gene knockout mouse 

models have provided some information about WNTs 

and WNT signaling in the ovary. For example, the 

deletion of β-Catenin in granulosa cells causes female 

infertility [20]. The WNT/β-Catenin pathway regulates 

FSH which in turn regulates steroidogenesis and LH-

mediated ovulation and luteinization [10, 20]. In 

addition, the foundational study establishing the 

requirement of WNT signaling molecules for female 

ovarian function was performed by Vainio et al. [21]. 

This study found that Wnt4 null mice have sex-reversed 

ovaries that express genes associated with testicular 

development, along with oocyte depletion [21]. Since 

then, a range of WNT ligands have been reported to be 

expressed in oocytes such as WNT2, 3, 5A, 7A or B, 

10B and 11, and some expression of WNT2, WNT5A, 

and WNT11 also present in granulosa cells [22, 23]. 

Though the presence of many WNT proteins has been 

identified in the adult ovary of rodents, many questions 

remain regarding their mechanistic role in ovarian 

follicle development. 

 

WNTLESS (also known as GPR177, or Evi), a 

regulator essential for intracellular WNT trafficking, is 

responsible for the secretion of WNT proteins from 

signaling cells [24, 25]. Loss of WNTLESS function 

impedes all WNT signals but has no effect on other 

signaling pathways [24, 25]. Wntless null mice die in 

the embryonic stage resulting from body axis 

establishment failure [26]. Subsequently, many Wntless 

conditional knockout mice were generated to study 

WNTLESS function in different tissue types. For 

example, Carpenter et al. showed that WNTLESS is not 

required for brain and pancreas development using Cre 

to remove exon1; Fu et al. deleted Wntless in WNT1 

expressing cells, giving rise to mid/hindbrain and 

craniofacial defects; Zhu et al. found that WNTLESS 

controlled epithelial initiation of the fungiform placode 

by means of Shh
Cre

 -mediated oral epithelial deletion of 

Wntless [27–29]. Further, the phenotype of Wntless 

deletion in WNT1-expressing cells resembles the 

double knockout of WNT1 and WNT3A as well as β-

Catenin deletion [28]. It has been suggested that 

WNTLESS controls epithelial initiation of the 

fungiform placode through signaling via epithelial 

WNT ligands [29]. However, the complexity and 

overlapping expression of WNT signaling cascades 

have, to date, prevented researchers from elucidating 

their function in the ovary. To address this problem, we 

used Wntless conditional knockout (cKO) mice to 

investigate the role of total WNT proteins and WNT 

signaling in the ovary. Specifically, we generated 

Wntless cKO mice in which Wntless was explicitly 

disrupted in oocytes (Wntless 
Flox/Flox

, Gdf9-Cre  

and Wntless 
Flox/—

, Ddx4-Cre) and granulosa cells 

(Wntless 
Flox/Flox

, Amhr2-Cre). Given that many WNT 

proteins have been identified in the adult ovary of 

rodents, Wntless knockout mice are an optimal model to 

study the role of WNT signal pathways and proteins. 

 

RESULTS 
 

WNTLESS expression in the mouse ovary 

 

Our earlier studies suggest that WNTLESS is expressed 

ubiquitously in mouse tissues [30, 31]. In this study, we 

found that WNTLESS was highly expressed in follicles, 

including oocytes, granulosa cells, and primordial cells 

(Figure 1A). This result was confirmed by western blot, 

which showed the levels of WNTLESS protein in GV 

oocytes and granulosa cells (Figure 1B). 

 

Efficient and specific disruption of Wntless 

 

To assess the cell-type-specific function of WNTLESS 

during oogenesis, we generated mice in which the 

Wntless gene was disrupted explicitly in oocytes using 

Gdf9-Cre (Figure 2A) and Ddx4-Cre (Figure 2B) and in 

granulosa cells using Amhr2-Cre (Figure 2C). Wntless 

deletion efficiency in oocytes and granulosa cells was 

assessed by detecting the Wntless mRNA levels in the 

whole ovary, oocytes, and granulosa cells, respectively. 
As expected, we observed a significant reduction in 

Wntless mRNA levels in the entire ovary and isolated 

oocytes from Wntless
Flox/Flox

, Gdf9-Cre (Figure 2D), and 

Wntless
Flox/-

, Ddx4-Cre mice (Figure 2E). Similarly, the 

Wntless mRNA levels were markedly decreased in both 
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whole ovary and isolated granulosa cells from 

Wntless
Flox/Flox

, Amhr2-Cre (Figure 2F). 

 

Wntless
Flox/Flox

, Amhr2-Cre mice are subfertile 

despite apparently normal ovarian function and 

embryo development 

 

To study the effect of oocyte-specific and GC-specific 

deletion of Wntless on fertility, we conducted an animal 

breeding assay. Wildtype males were mated with 6-wk-

old mutant and control females. The results indicated 

that oocyte-specific removal of Wntless had no 

significant impact on female mouse reproductive 

capacity (Figure 3A). However, the Wntless
Flox/Flox

, 
Amhr2-Cre females were significantly subfertile (Figure 

3A), generating on average 1.2 offspring per female 

compared with 10.7 offspring in Wntless
Flox/Flox

 females 

(Supplementary Figure 1). The subfertility may be due 

to either ovarian dysfunction, oocyte meiotic defect, or 

abnormal embryo development. Thus, to explore the 

reason for subfertility we investigated ovarian 

morphology, the rates of GVBD and PB1, the 

percentages of 2-cell and blastocyst in Wntless
Flox/Flox

 

(control) and Wntless
Flox/Flox

, Amhr2-Cre (mutant) 

females. Unfortunately, as shown in Figure 3B, 3C, and 

3D, these parameters had no significant difference 

between the control and mutant females. In short, the 

subfertility initiated by the deletion of Wntless in GCs is 

not a consequence of ovarian dysfunction, aberrant 

oocytes, or embryo development. 

 

GC-specific Wntless knockout results in smaller CL 

and abortion in mice 

 

Considering that the oocyte and embryonic 

development was normal in GC-specific Wntless 

knockout mice, we speculated that a problem might 

occur during pregnancy. 

 

 
 

Figure 1. WNTLESS expression in the ovary. (A) The immunofluorescent staining of WNTLESS in the normal ovary. Green, WNTLESS; 
Blue, DNA. Scale bar, 100 μm. (B) The levels of WNTLESS protein in oocytes and granulosa cells are displayed by the western blot method. 
200 oocytes and 106 granulosa cells were used. 
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To further evaluate the cause of subfertility in mutant 

females, uteri and ovaries in the control and mutant 

mice were collected at 13 days after the identification of 

a plug. Surprisingly, we found a high frequency of 

miscarriages in female mutants with few or no embryos 

in the uterus (Figure 4A). Further, some ovaries from 

mutant females had no apparent CL and appeared 

hemorrhagic (Figure 4B). Although some ovaries of 

knockout mice had a similar number of CLs with the 

control group, their CL size was smaller (Figure 4B and 

4C) (P<0.01). Additionally, the luteal cells in the 

mutant mice exhibited more condensed nuclei, less 

cytoplasm, and gaps between cells (Figure 4B). CL is a 

temporary endocrine gland derived from the ovulated 

follicle and produces progesterone [32]. Progesterone is 

essential for the maintenance of pregnancy [32]. Thus, 

blood serum progesterone and estradiol levels were 

analyzed in the mutant and control mice at 13.5 dpc. As 

Figure 4E shows, estradiol levels had no apparent 

difference between the mutant and control mice. 

However, mutant mice had significantly lower levels of 

progesterone, reaching 28.3 ng/ml compared with 135.6 

ng/ml in the control group (Figure 4D) (P<0.01). 

Amhr2-Cre is also present in the muscular layer of the 

uterus [33]. To rule out that the subfertility of mutant 

mice was caused by abnormal uterine morphology, 

histological analysis of uterus in mice at 8 and 24 h 

post-hCG treatment was conducted. As Supplementary 

Figure 2A, 2B show, no significant difference in uterine 

morphology was observed between mutant and control 

mice based on their appearance and HE staining. 

Additionally, mutant and control mice had a similar 

uterine and ovarian weight at 8 h post-hCG treatment 

(Supplementary Figure 2A). 

 

 
 

Figure 2. Targeted disruption of the Wntless gene. (A–C) The hybrid scheme used to develop Wntless knockout mice. Mice carrying a 
targeted Wntless allele (LoxP sites flank Exon 3 of the Wntless allele) were crossed with Gdf9-Cre or Ddx4-Cre or Amhr2-Cre transgenic mice 
to delete Wntless selectively. The gene knockout was confirmed by PCR genotyping. The isolated genomic DNA from mouse tails was 
amplified with primer pairs specific for the wildtype (+) (~100 bp) and flox alleles (~200 bp) or different Cre bands (Gdf9-Cre: 326 bp, Ddx4-
Cre: 240 bp and Amhr2-Cre: 156 bp). (D–F) qRT-PCR analysis showing the conditional loss of Wntless mRNA in total ovary, oocytes, and 
granulosa cells extracts of three Wntless knockout mice. Gapdh served as the internal control gene. The data are expressed as the mean ± 
SEM. *P<0.05, **P<0.01. 
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Taken together, a lower level of progesterone caused by 

impaired CL may be the primary reason for abortion, 

which may cause subfertility in GC-specific Wntless 
knockout mice. 

 

Impaired CL formation and increased apoptotic 

genes in GC-specific Wntless deletion mice at 48 h 

post-hCG treatment 
 

CL starts to form after ovulation triggered by the 

preovulatory surge of LH [34]. To understand the cause 

of smaller CL in mutant mouse ovaries at 13.5 dpc, we 

assessed CL size in the mutant and control mice ovaries 

at 48 h post-hCG treatment. Histological analysis of the 

ovaries indicated few CL formations in the mutant 

ovaries, although CL's cell morphology had no apparent 

difference between the two groups (Figure 5A). 

Additionally, mutant ovaries appeared hemorrhagic 

(Figure 5A). Similar to ovaries at 13.5 dpc, the area 

occupied by CL in whole mutant ovaries at 48 h after 

hCG injection also had a significant decrease compared 

to control mice (P<0.01) (Figure 5B). In the control 

mice, blood serum progesterone levels reached 43.5±1.7 

ng/ml at 48 h after hCG injection due to CL formation 

(Figure 5C). 

 

However, serum progesterone levels were much lower 

in the hCG-treated mutant mice (Figure 5C) (23.5±1.6 

 

 
 

Figure 3. Wntless
Flox/Flox

, Amhr2-Cre females displayed subfertility with normal oocyte and embryonic development. (A) 
Comparison of the accumulative number of pups per WntlessFlox/Flox, WntlessFlox/-, Ddx4-Cre, WntlessFlox/Flox, Gdf9-Cre, and WntlessFlox/Flox, 
Amhr2-Cre females (n = 6 for each group). (B) Histological ovarian images of WntlessFlox/Flox and WntlessFlox/Flox, Amhr2-Cre females. Scale bar = 
100 μm. The ovaries were collected from 6-wk-old mice with a random cycle. (C) 345 and 400 GV oocytes from WntlessFlox/Flox and 
WntlessFlox/Flox, Amhr2-Cre females were matured in M16 medium, respectively. After maturing for 3 and 16 h, oocytes were counted, and the 
rates for GVBD and PB1 were calculated, respectively. Representative images of mouse oocytes at GVBD and PB1 stages are shown above the 
bar graph. (D) Zygotes collected from Wntless Flox/Flox (n=160) and WntlessFlox/Flox, Amhr2-Cre (n=193) females with an obvious vaginal plug 
after mating with wildtype male mice were cultured in KSOM medium for 1 and 3 days to calculate the rates of 2-cell and blastocyst, 
respectively. Representative images of mouse 2-cell and blastocyst are shown above the bar graph. Experiments were repeated a minimum 
of three times; the data are presented as mean ± SEM. 
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ng/ml, P<0.01). Not surprisingly, serum estradiol levels 

had no significant difference between the mutant and 

control mice (Figure 5D). These findings suggest that 

GC-specific Wntless deletion causes fewer and smaller 

CL after ovulation. To explore the molecular changes 

underpinning impaired luteinization, qRT-PCR analysis 

of specific luteal cell markers and apoptotic genes was 

performed in ovaries from mutant and control mice at 

48 h post-hCG treatment (Figure 5E, 5F). Result 

revealed that ovaries of GC-specific Wntless knockout 

mice had a significant decrease in mRNA expression of 

luteal cell marker genes (Lhcgr, Sfrp4, Cyp11a1, and 

Star) (Figure 5E) (P<0.01) and a visible increase in 

apoptotic mRNA expression (p53, Caspase 3, C-myc 

and Bax/Bcl-2) (Figure 5F) (P<0.01). In short, CL 

could not be efficiently formed after ovulation when 

Wntless was deleted in the granulosa cells of female 

mice. 

 

 
 

Figure 4. Subfertility results from miscarriage and smaller CL in GC-specific Wntless knockout mice. (A) Uteri collected from 13.5 
dpc Wntless Flox/Flox and Wntless Flox/Flox, Amhr2-Cre mice. Red arrows indicate miscarriage locations. (B) Top row, representative images of one 
plane in ovaries, scale bar = 500 μm. The magnified images of a part of CL and hemorrhagic response are displayed in the second row, scale 
bar = 150 μm. (C) The area ratio of CL to the ovary for Wntless Flox/Flox (n=5) and Wntless Flox/Flox, Amhr2-Cre (n=6) mice at 13.5 dpc. (D) Serum 
progesterone levels in Wntless 

Flox/Flox
 (n=5) and Wntless

 Flox/Flox
, Amhr2-Cre (n=6) mice at 13.5 dpc. (E) Serum estradiol levels in Wntless 

Flox/Flox
 

(n=5) and Wntless Flox/Flox/Amhr2-Cre (n=6) mice at 13.5 dpc. In (C, D), **P<0.01. 
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GC-specific deletion of Wntless has no impact on 

ovulation but leads to reduced β-Catenin protein 

level in the mouse ovary 
 

Previous studies have shown that ovulation failure may 

also impair CL formation [1, 9]. To explore whether 

ovulation failure is a contributing factor in the 

decreased number of CLs, we assessed the number of 

ovulated oocytes in vivo in mutant and control mice 

after superovulation. As shown in Figure 6A, a similar 

number of oocytes were recovered from mutant and 

control mice. Consistent with this finding, the mRNA 

levels of ovulation controlling genes (Areg, Btc, Ereg, 
and Cyp19a1) in the ovaries of mutant and control mice 

had no significant difference at 8 h post-hCG treatment 

(Figure 6B). One exception was Ptgs2, where the 

mRNA levels were dramatically reduced in granulosa 

cells of Wntless deletion mice (P<0.01, Figure 6B). 

These results suggest that the reduced number of CL in 

Wntless mutant mice is not caused by ovulation failure. 

 

 
 

Figure 5. Impaired CL formation in GC-specific Wntless knockout mice. (A) Top row, representative images of control and mutant 
ovarian morphology at 48 h post-hCG treatment, scale bar = 500 μm. Second row, magnified images of CL, scale bar = 250 μm (B). The area 
ratio of CL to ovary for Wntless Flox/Flox (n=6) and Wntless Flox/Flox, Amhr2-Cre (n=6) mice at 48 h post-hCG treatment. Blood serum 
progesterone (C) and estradiol (D) levels in Wntless Flox/Flox (n=6) and Wntless Flox/Flox, Amhr2-Cre (n=6) mice at 48 h post-hCG treatment. 
Expression levels of luteal cell marker (E) and apoptotic genes (F), analyzed by qRT-PCR, in ovaries from 48 h post-hCG treated control and 
mutant mice. Gapdh served as the internal control gene. In B-F, **P<0.01, mean ± SEM. Experiments were replicated a minimum of 4 times. 
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WNTLESS is required for the secretion of various 

WNTs [24]. WNT/β-Catenin signaling plays a pivotal 

role in determining the fate of granulosa cells [35]. 

Thus, we hypothesized that Wntless knockout in 

granulosa cells might hamper the luteinization of 

granulosa cells by WNT/β-Catenin signaling. To 

confirm our hypothesis, the level of β-Catenin in the 

ovary was measured at 8 h post-hCG treatment by 

immunofluorescent staining and at 48 h post-hCG 

treatment by western blot. The result showed that 

β-Catenin levels were significantly compromised in the 

ovaries of mutant mice compared to control mice 

(P<0.05) (Figure 6C, 6D). In addition, LHCGR levels 

were markedly decreased in the mutant ovaries at 48 h 

post-hCG treatment (Figure 6C) (P<0.05). 

 

Collectively, these results suggest that decreased β-

Catenin levels may cause luteinization failure of 

granulosa cells in the ovaries of GC-specific Wntless 

knockout mice. 

 

 
 

Figure 6. The effects of Wntless deletion in granulosa cells on ovulation and the expression of β-Catenin and LHCGR. (A) 
The number of ovulated oocytes in control (n=7) and mutant mice (n=6) after superovulation. (B) Relative mRNA levels of ovulation 
related genes in ovaries at 8 h post-hCG treatment. (C) The levels of β-Catenin and LHCGR in ovaries at 48 h post-hCG treatment 
measured by western blot. The β-Catenin and LHCGR levels were normalized to GAPDH. (D) Immunostaining of β-Catenin in the ovary at 
8 h post-hCG treatment. Scale bar =100 μm. DNA, blue; β-Catenin, yellow. In (A–C), data are shown as the mean ± SEM. Experiments 
were replicated a minimum of 4 times. 
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DISCUSSION 
 

WNTs are highly conserved signaling molecules that 

act through β-Catenin dependent and β-Catenin 

independent pathways to regulate essential processes of 

cellular growth and differentiation [36, 37]. In the adult 

ovary, specific WNTs are required for normal ovarian 

function and fertility. However, the broader 

physiological involvement of WNT signaling in the 

ovary remains largely unknown. Fortunately, recent 

studies have identified a novel WNT pathway 

component, WNTLESS, that promotes WNTs secretion 

from WNT-producing cells into extracellular milieu 

[24, 25]. WNTLESS, a seven-pass membrane protein, is 

evolutionarily and functionally conserved, and 

intriguingly, acts exclusively in WNT signal-sending 

cells [24, 25]. In this study we show, for the first time, 

the role of WNT signaling (both canonical and non-

canonical) and all WNT proteins in the ovary through 

Wntless conditional knockout mice. 

 

Previous studies have shown that WNT ligands are 

expressed in oocytes and granulosa cells [22, 23]. 

Wnt7a and Wnt2 mutant mice do not appear to exhibit 

ovarian defects [6, 38] because WNTs may have 

distinct and overlapping roles during follicle growth, 

ovulation, and luteinization [39]. The deletion of 

Wntless in oocytes has little or no impact on female 

fertility (Figure 3A), which may also be masked by 

compensatory responses from granulosa cells in 

follicles where many WNT proteins are expressed [18, 

40]. Wnt4
flox/−

, Amhr2
cre /+

 females are subfertile, and 

some have tiny ovaries devoid of antral follicles [41]. 

Dysregulated WNT signaling may cause granulosa cell 

tumor development [18]. RNAi-mediated knockdown of 

Wnt2 inhibits granulosa cell proliferation [42]. These 

studies indicate that WNT signaling is indispensable for 

granulosa cell proliferation and differentiation. In the 

present study, Wntless
Flox/Flox

, Amhr2-Cre mice were 

subfertile but had normal ovarian and uterine histology 

(Figure 3B and Supplemental Figure 2). In contrast to 

infertile phenotypes, healthy oocyte and embryonic 

development were observed in GC-specific Wntless 
knockout mice, similar to wildtype mice (Figure 3C, 

3D). Therefore, we speculate that WNT signaling in 

granulosa cells may play a vital role that may not be 

compensated by signaling from the oocytes. 

 

Granulosa cells of the follicle wall undergo a terminal 

differentiation process known as luteinization after 

ovulation. CL is one of the few endocrine glands whose 

function and survival are limited in scope and time [9]. 

Studies indicate that WNT 4 expression increases after 

hCG treatment and remains elevated in the CL during 

pregnancy [39]. Some Wnt4
flox/−

, Amhr2
cre /+

 females are 

devoid of CL at 8 weeks of age [41]. In addition, WNTs 

act through binding FZD receptors [9]. Fzd4 null 
ovaries exhibit impaired luteinization and reduced 

expression of genes known to be associated with 

luteinization [43]. As a result, it has been suggested that 

WNT4/FZD4 signaling is crucial for the regulation of 

luteal cell formation and function [9]. In the present 

study, the ovary of GC-specific Wntless knockout mice 

had a smaller size in CL despite normal follicular 

development and ovulation of fertilizable oocytes. 

Because the Wntless
Flox/Flox

, Amhr2-Cre phenotype is 

similar to that of Fzd4 null mice, we speculate that 

WNT4/FZD4 signaling might be defective in CL of 

GC-specific Wntless knockout mice due to a lack of 

WNTs secretion. 

 

The primary function of CL is to produce progesterone, 

which is required for the establishment and maintenance 

of pregnancy. Blood serum progesterone levels are 

much lower when luteinization of granulosa cells is 

inhibited in mice after hCG treatment [10]. Consistent 

with this finding, the progesterone levels were reduced 

in GC-specific Wntless knockout mice in this study 

(Figures 4D and 5C). Considering that most luteal cells 

originate from granulosa cells [9, 44], we speculate that 

the transformation of granulosa cells into luteal cells is 

impaired when all of the WNTs secretions are impeded 

in granulosa cells due to the deletion of Wntless. In 

brief, WNT signaling may play an essential role in the 

transformation of granulosa cells into luteal cells. 

 

A key effector of the canonical WNT signaling pathway 

is β-Catenin, a protein that not only mediates cell-cell 

adhesion but also acts as a transcription factor. WNT/β-

Catenin pathway components are expressed in ovarian 

granulosa cells [10]. In the presence of the WNT signal, 

β-Catenin dissociates from this complex and 

translocates to the nucleus, where it acts to modulate the 

transcriptional activity of a wide range of target genes 

[45]. Therefore, it is not surprising that β-Catenin can 

exert profound effects on granulosa cell proliferation, 

differentiation, and survival [18]. In the present study, 

we found that β-Catenin levels in the ovary are 

dramatically decreased when blocking all WNTs 

secretion from granulosa cells via Wntless deletion 

(Figure 6C, 6D). Given that misregulated WNT/β-

Catenin signaling has a negative influence on cell fate 

determination [46, 47], the deletion of Wntless in mouse 

granulosa cells may affect the differentiation of 

granulosa cells into luteal cells through alterations of β-

Catenin expression and distribution. It has been 

suggested that reduction in β-Catenin may affect the 

proliferation of granulosa cells via adjustment of Cyclin 

D2 as well as disrupt cell-cell communication critical 

for cell survival [20]. However, how β-Catenin affects 

the differentiation of granulosa cells that requires 

further study. 
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PTGS2 (also called COX-2) expression can be triggered 

by an LH surge in granulosa cells prior to ovulation. 

However, timing is species-specific [48]. It has been 

reported that PTGS2 can be induced by cytokines in 

inflammatory cells and is the target for the development 

of selective anti-inflammatory drugs [49, 50]. Early 

luteal development can be considered a kind of 

physiological injury with an inflammatory response 

[51]. PTGS2 may be one of the critical mediators of 

early CL formation [52, 53]. Consistent with this point, 

there was a dramatic decrease in Ptgs2 mRNA in the 

ovary of GC-specific Wnltess deletion mice with 

impaired CL formation. During the transition from the 

ovary to the CL, a multitude of immune cells and 

cytokines infiltrate the preovulatory follicle and play a 

role in the regulation of early luteal development [54]. 

Immune cells also serve to abate an inflammatory 

response generated by the demise of luteal cells [55]. 

The luteolytic cascade appears similar to that of general 

acute inflammation. Because both show time-dependent 

infiltration by immune cells and drastic changes in 

vascular tonus and blood flow [56]. Thus, the 

hemorrhagic response observed in some GC-specific 

Wntless knockout mice ovaries at 24 h after hCG 

treatment and at 13.5 dpc may be related to an 

inflammatory response caused by dead and dying luteal 

cells. CL formation, maintenance, and luteolysis are 

related to many factors, multiple signaling pathways, 

and complicated cell processes [9, 44]. Microarray or 

RNA-seq analyses may be beneficial to expand the 

molecular landscape further and to understand how GC-

specific Wntless deletion impacts the formation of CL 

and its maintenance. 

 

In summary, WNTLESS in the ovary of GC- and 

oocyte- cKO mice has no apparent influence on 

oogenesis. Whereas, the ovaries of GC-specific Wntless 

deletion mice exhibit impaired luteinization, leading to 

miscarriage and low fecundity. Given that WNTLESS 

acts exclusively in WNT signal-sending cells [24, 25], 

the weak WNT/β-Catenin signal pathway may be the 

main factor contributing to the inefficient 

transformation of granulosa cells into luteal cells in GC-

specific Wntless deletion mice. 

 

MATERIALS AND METHODS 
 

Mice  

 

All animal studies were carried out in accordance with 

the protocols approved by the Institutional Animal Care 

and Use Committee at the Institute of Zoology (IOZ), 

Chinese Academy of Sciences (CAS). All mice were 

maintained in a C57BL/6;129 /SvEv mixed background 

and were housed in a controlled environment (12 h 

light/dark cycle, 22 ± 1° C, 60%–70% humidity) and 

fed ad libitum with standard chow. Wntless 
Flox/—

, Ddx4-
Cre, Wntless 

Flox/Flox
, Gdf9-Cre, and Wntless 

Flox/Flox
, 

Amhr2-Cre mice were respectively generated by 

crossing Wntless 
Flox/Flox

 with Ddx4-Cre, Gdf9-Cre, and 

Amhr2-Cre mice. Genotyping was performed on DNA 

samples prepared from 1 mm tail clippings obtained 

from 3-wk-old mice, as previously reported [30, 31]. 

 

Fertility rate and embryonic implantation 

 

For fertility testing, 6- to 8-wk-old Wntless 
Flox/Flox

 (n = 

7), Wntless 
Flox/—

, Ddx4-Cre (n = 7), Wntless 
Flox/Flox

, 

Gdf9-Cre (n = 7) and Wntless 
Flox/Flox

, Amhr2-Cre  (n = 

7) mice were separately mated with wildtype C57BL/6 

males for 6 months in a 1:2 ratio. Litter sizes were 

assessed after birth. For implantation studies, female 

mice were placed with male mice and checked for a 

vaginal plug the following morning. Uteri and ovaries 

were collected at13 days after the identification of a 

plug (13.5 dpc). 

 

Superovulation, oocyte and embryo collection and 

culture 
 

Superovulation was performed in mutant and control 

female mice. Mice received a single intraperitoneal 

injection of 10 IU of eCG per mouse (Ningbo Hormone 

Product Co. Ningbo) followed 48 h later by 10 IU hCG 

(Ningbo Hormone Product Co.). The number of oocytes 

at the Metaphase II stage (MII) was recorded in mice 

after 16 h hCG treatment. After 48 h eCG treatment, 

oocytes at the germinal vesicle (GV) stage were 

liberated from the ovary using 26-gauge needles and 

then collected in M2 medium. Subsequently, these GV 

oocytes were matured in an M16 medium for 2-2.5 and 

16-17 h to calculate GVBD and first polar body (PB1) 

rates, respectively. The culture process took place in an 

incubator at 37° C with 5% ambient CO2. 

 

To collect preimplantation embryos, superovulated 

Wntless 
Flox/Flox 

and Wntless 
Flox/Flox

, Amhr2-Cre females 

were caged with 24-wk-old C57BL/6J wildtype males. 

Zygotes were collected from the ampullar region of the 

oviduct when a vaginal plug was found. The rates of 2-

cell and blastocyst were calculated after these zygotes 

were cultured in vitro for 1 and 3 days in KSOM medium 

in a humidified 5% CO2 incubator at 37° C, respectively. 

 

Hematoxylin and eosin (H&E) and immuno-

fluorescence staining 
 

Uteri and ovaries were fixed overnight at 4-8° C in 4% 

PBS-buffered paraformaldehyde, and then stored in 

70% ethanol and embedded in paraffin. Tissue sections 

(5 μm thick) were cut and mounted on glass slides. 

Sections were deparaffinized, rehydrated, and then 
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stained with H&E. Areas of CL and whole ovary were 

calculated using Image J software. For immuno-

fluorescence staining, experiments were conducted as 

previously reported [31]. Briefly, tissue sections were 

dewaxed, rehydrated, and treated with antigen retrieval. 

They then were blocked with 5% BSA for 1 h and 

incubated with primary antibodies against WNTLESS 

(1:100; Santa Cruz Biotechnology, CA, USA, mouse, 

sc-133635) or β-Catenin (1:50; Abcam, rabbit, 1247-1) 

overnight at 4° C. Sections were incubated with FITC 

conjugated secondary antibodies (1:200; Jackson 

ImmunoResearch, West Grove, PA, USA) for 1 h after 

washing three times with PBS. Following DNA staining 

with DAPI, slides were mounted on the cover glass and 

examined via immunofluorescence microscopy (Zeiss 

LSM 780). 

 

qRT-PCR analysis 

 

Experiments were conducted as previously reported 

[31]. Briefly, RNA was isolated from testes using Trizol 

(TIANGEN, Beijing, China) according to 

manufacturer’s protocol. A PrimeScript RT Reagent Kit 

(Takara, Dalian, China) was used for reverse 

transcription of RNA samples and real-time quantitative 

PCR was performed with GoTaq qPCR Master Mix 

(A6001/2; Promega, Madison, WI, USA) according to] 

manufacturer’s protocols. The samples' CT values were 

normalized to corresponding Gapdh CT values, and 

relative expression levels were calculated using the 2
-

ΔΔCT
 method. All primers for qRT-PCR are described in 

Supplementary Table 1. 

 

Serum analysis 
 

Mice were anesthetized, and their blood samples were 

collected from their intraorbital venous plexus. 

Progesterone and estradiol levels were measured and 

analyzed using radioimmunity (Beijing North Institute 

of Biotechnology). 

 

Western blotting 
 

Western blotting experiments were conducted as 

previously reported [31]. Briefly, 200 oocytes and 

granulosa cells were lysed in radioimmunoprecipitation 

assay lysis buffer containing protease inhibitor cocktail 

tablets (Roche, Basel, Switzerland). Protein 

concentrations were measured using the Bradford assay 

(Bio-Rad, Richmond, CA, USA). The proteins were 

electrophoresed under reducing conditions in 10% SDS-

PAGE gels and transferred to polyvinylidene fluoride 

(PVDF) membranes. The blots were blocked in 5% 

BSA and incubated overnight at 4° C with anti-

WNTLESS (1:800; Santa Cruz Biotechnology, mouse, 

sc-133635), anti-beta-catenin (1:500; Abcam, rabbit, 

1247-1), anti-LHCGR (1:500, Abcam, mouse, 

ab204950) antibodies or anti-GAPDH (1:5000, 

Bioworld, mouse, MB001), followed by incubation with 

a secondary antibody (anti-mouse or rabbit horseradish 

peroxidase-coupled antibody, Jackson Immuno-

Research) for 1 h at room temperature. The membranes 

were scanned using an enhanced chemiluminescent 

detection system. The protein level was normalized to 

GAPDH abundance. 

 

Data analysis 
 

All experiments were conducted with at least three 

replicates. The data were analyzed using Student’s t-test 
in Statistical Package for the Social Sciences (SPSS) 

19.0 software (SPSS, Inc., Chicago, IL, USA). *P < 
0.05 and **P < 0.01 values were considered statistically 

significant. The results are presented as the mean ± 

standard error (SEM). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Average litter size in the Wntless Flox/Flox and Wntless Flox/Flox, Amhr2-Cre mice. **P<0.01. 
 

 
 

Supplementary Figure 2. The depletion of Wntless in mouse granulosa cells do not influence their uterine morphology and 
weight, and their ovarian appearance and weight. (A) HE staining of uterine morphology at 8 and 24 h post-hCG treatment. (B) 
Ovarian appearance (top) and weight (bottom) at 8 h post-hCG treatment. 
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Supplementary Table 
 

Supplementary Table 1. Primer sequence. 

Gene name Forward primers Reverse primers 

Gapdh AGGTCGGTGTGAACGGAT TGTAGACCATGTAGTTGA 

Wntless TGGGAAGCAGTCTAGCCTCC GCAGCAAGCCAAGGTGATA 

p53 CTCTGAGTATACCACCATCC CACGAACCTCAAAGCTGTCC 

Bax TGCTGACGTGGACACGGACT AGCAAAGTAGAAGAGGGCAACCA 

Bcl-2 CGAGAAGAAGGGAGAATCACAGGA AATCCGTAGGAATCCCAACCAGAG 

C-myc CTTCTCTCCGTCCTCGGATTCT GAAGGTGATCCAGACTCTGACCTT 

Caspase 3 CATACATGGGAGCAAGTCAG CCATGAATGTCTCTCTGAGG 

Star ACCCTTGAGCACCTCAGCACT CCCATCCACCCGGGACTGGAA 

Sfrp4 CATCAAGCCCTGCAAGTCTG TAAGGGTGGCTCCATCACAG 
Cyp11a1 CAGACGCATCAAGCAGCAA CTGGAGGCAGGTTGAGCAT 
Areg GGTCTTAGGCTCAGGCCATTA CGCTTATGGTGGAAACCTCTC 

Btc AATTCTCCACTGTGTGGTAGCA GGTTTTCACTTTCTGTCTAGGGG 

Ereg CTGCCTCTTGGGTCTTGACG GCGGTACAGTTATCCTCGGATTC 

Ptgs2 TTCAACACACTCTATCACTGGC AGAAGCGTTTGCGGTACTCAT 

Cyp19a1 TGTGTTGACCCTCATGAGACA CTTGACGGATCGTTCATACTTTC 

Lhcgr ACTGGTGTGGTTTCAGGAATT CCTAAGGAAGGCATAGCCCAT 

 


