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INTRODUCTION 
 

Head and neck squamous cell carcinoma (HNSCC) 

ranks sixth among cancer-related deaths, with over 

300,000 deaths and 600,000 new cases annually 

worldwide [1]. The main causes of HNSCC include 

alcohol consumption, smoking, and high-risk human 

papillomavirus (HR-HPV) infection [2, 3]. Despite 

innovations in the multimodal treatment of HNSCC, 

including surgery, chemoradiotherapy, and targeted 

drugs, the 5-year survival rate has not improved 

significantly [4]. Therefore, robust and reliable 

biomarkers are necessary for efficient early diagnosis 

and individualized intervention strategies to decrease 

the mortality rates of HNSCC patients. 

 

Aging is regarded as a time-based or progressive 

decline of internal physiological function and as a 
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ABSTRACT 
 

Aging is regarded as a dominant risk factor for cancer. Additionally, inflammation and asthenic immune 
surveillance with aging may facilitate tumor formation and development. However, few studies have 
comprehensively analyzed the relationship between aging-related genes (AGs) and the prognosis, inflammation 
and tumor immunity of head and neck squamous cell carcinoma (HNSCC). Here, we initially screened 41 
differentially expressed AGs from The Cancer Genome Atlas (TCGA) database. In the training set, a prognosis 
risk model with seven AGs (APP, CDKN2A, EGFR, HSPD1, IL2RG, PLAU and VEGFA) was constructed and 
validated in the TCGA test set and the GEO set (P < 0.05). Using univariate and multivariate Cox regression 
analyses, we confirmed that risk score was an independent prognostic factor of HNSCC patients. In addition, a 
high risk score was significantly correlated with immunosuppression, and high expression of PLAU, APP and 
EGFR was the main factor. Furthermore, we confirmed that a high risk score was significantly associated with 
levels of proinflammatory factors (IL-1α, IL-1β, IL-6 and IL-8) in HNSCC samples. Thus, this risk model may serve 
as a prognostic signature and provide clues for individualized immunotherapy for HNSCC patients. 
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dominant risk factor for many chronic diseases, 

including cancer, which is now a hot field of cancer 

research [5, 6]. Cellular senescence acts as a key 

contributor to the aging progress and to the 

development of cancers [7]. The effects of senescent 

cells on tumors are extremely complex, which can be 

both profitable and deleterious. The senescent 

neoplastic cells induced by oncogenesis can cause 

cell-cycle arrest, which appears to be a puissant anti-

tumor mechanism [8]. However, the effect of 

senescent cells on neighboring cancer cells may be the 

opposite and is closely associated with the secretion 

of senescence-associated secretory phenotype (SASP) 

factors [9–11]. Furthermore, cellular senescence-

related inflammation has dual effects on tumor 

immunity [12–14]. Aging-related genes (AGs) play an 

important role in the regulation of cellular senescence, 

which can not only inhibit tumors by regulating tumor 

cell senescence but also promote the development, 

invasion, metastasis, progression and poor prognosis 

of tumor [6, 15–17]. However, few studies have 

systematically analyzed the relationship between AGs 

and the prognosis of head and neck squamous cell 

carcinoma (HNSCC). In addition, their correlations 

with inflammation and tumor immunity in HNSCC 

remain unclear.  

 

The human aging genome resource (HAGR) is a 

database identifying a robust set of aging-specific 

network characteristics that has revealed aging-related 

genes as network hubs via systemic analysis of the 

biology and genetics of the human aging process [18]. 

To evaluate the prognostic values of AGs in HNSCC, 

we downloaded gene expression profiles of HNSCC 

patients from The Cancer Genome Atlas (TCGA) 

database for risk model construction to reveal the AG 

set related with the prognosis of HNSCC and the 

potential association between the risk model and 

inflammation and tumor immunity. 

 

RESULTS 
 

Analysis of differentially expressed AGs in HNSCC 

samples 

 

A total of 307 human AGs (Supplementary Table 1) 

obtained from the HAGR were distributed on all 

chromosomes, except for sex chromosome Y 

(Supplementary Figure 1). Based on the expression of 

the AGs in the TCGA dataset (clinical characteristics 

are showed in Table 1), we identified 41 differentially 

expressed AGs (DEAGs), including 39 upregulated and 

2 downregulated DEAGs (FDR < 0.05 and |logFC| > 1). 

The DEAGs are listed in Supplementary Table 2 and 

are visualized with a hierarchical cluster heat map 

(Figure 1A) and a volcano plot (Figure 1B).  

Functional analysis of DEAGs in the TCGA data set 

 

The potential function and connection of DEAGs in 

the TCGA dataset were analyzed using GO and 

KEGG pathway analyses. The top 30 enriched 

pathways of KEGG pathway analysis are shown as an 

enriched scatter diagram (Figure 2A). These results 

revealed that the DEAGs might be associated with 

cell cycle, cellular senescence, microRNAs in cancer, 

human T-cell leukemia virus 1 infection and other 

KEGG pathways in multiple cancers. The top 10 

enriched GO terms of BP, CC and MF for the DEAGs 

are also shown as a scatter diagram (Figure 2B). The 

most significantly enriched term in the biological 

process was related to the aging process. These GO 

terms were also associated with the occurrence and 

development of cancer. The functional analysis 

revealed that the DEAGs are closely related to aging, 

cellular senescence and cancer. 

 

Identification of a prognostic risk model in the 

TCGA training set 

 

To identify prognostic DEAGs in HNSCC, the 

expression of the 41 DEAGs from the TCGA training 

set was assessed by univariate Cox regression 

analysis. Seven survival-associated DEAGs,  

including APP, CDKN2A, EGFR, HSPD1, IL2RG, 

PLAU and VEGFA, in HNSCC are shown by  

a forest plot (Figure 1C). Then, a prognostic risk 

model of 7 survival-associated DEAGs was 

constructed with LASSO regression analysis. The 

information and the coefficient values of the 7 genes 

are displayed in Table 2. The prognostic risk score of 

each patient was calculated with the following 

formula:  

 

Risk score = APP * 0.0026 + CDKN2A * (-0.0132) + 

EGFR * 0.0016 + HSPD1 * 0.0048 + IL2RG * (-

0.0113) + PLAU * 0.0017 + VEGFA * 0.0215 

 

The patients from the TCGA training set were 

classified into low-risk and high-risk groups based on 

the median cutoff value of the risk score (0.709). 

Survival analysis indicated that the overall survival 

(OS) of the high-risk group was significantly worse 

than that of the low-risk group (P < 0.001,  

Figure 3A). The receiver operating characteristic 

(ROC) curves analysis demonstrated acceptable 

discrimination with the area under the ROC (AUC) of 

0.664, which was higher than the AUC of other 

clinical parameters (Figure 3B). The risk plot with the 

distribution of patients based on risk scores, the 

survival status of individual HNSCC patients and the 

heat maps of the expression profiles of the risk genes 

are displayed in Figure 4A. 
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Verification of the prognostic risk model in the 

validation data sets 
 

To validate the robustness of the prognostic risk model 

of the risk genes, we tested the model with independent 

validation data sets. With the prognostic risk model 

from the TCGA training data set, all patients in the 

TCGA test data set were also classified into high-risk (n 

= 123) and low-risk (n = 126) groups. Kaplan-Meier 

survival curve analysis demonstrated patient OS in the 

low-risk group was better than that in the high-risk 

group (P < 0.01, Figure 3C). ROC curves analysis for 

the TCGA test set achieved an AUC of 0.608, which 

was higher than the AUC for the other clinical 

parameters (Figure 3D).  

 

Further validation of the risk model for prognostic 

prediction was performed using an external independent 

GEO data set (GSE65858) with 270 HNSCC patients 

(clinical characteristics are showed in Table 1). With the 

same risk model, the patients in the GEO test set were 

segregated into high-risk (n = 157) and low-risk (n = 113) 

groups, and the model could distinguish patient survival 

between the high-risk and low-risk groups (P < 0.01, 

Figure 3E). The ROC curves analysis for the GEO test 

set achieved an AUC of 0.606, which was higher than the 

 

 
 

Figure 1. Differential expression of aging-related genes (AGs) and 7 AGs of prognostic risk models in HNSCC samples. (A) 
Hierarchical cluster heat map visualizing 41 differentially expressed AGs (DEAGs). (B) Volcano plot showing 39 upregulated and 2 
downregulated DEAGs (FDR < 0.05 and |logFC| > 1). (C) Forest plot showing the characteristics of 7 risk DEAGs in the prognostic risk models. 
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AUC of the other clinical parameters, except for T 

stage (Figure 3F). 

 

A similar analysis was also exploited in the TCGA all 

data set. The patients in the TCGA all set were divided 

into high-risk (n = 248) and low-risk (n = 250) groups 

with significantly different survival (P < 0.001, Figure 

3G). ROC curves analysis for the TCGA all data set 

achieved an AUC of 0.632, which was higher than the 

AUC of the other clinical parameters (Figure 3H). 

 

The risk plot distribution, survival status, and 

expression of risk genes of the patients in the TCGA 

and GEO (GSE65858) test sets and TCGA all data set 

are shown in Figure 4B–4D. 

 

Independent prognostic predictive value of the risk 

score in HNSCC patients 

 

To investigate the independence of the risk model in 

clinicopathological factors, we performed univariate 

and multivariate Cox regression analysis of the 

clinicopathological parameters of the patients in the 

TCGA training set, TCGA test set, GEO test set and 

TCGA all data set, including risk score, age, gender, 

grade, clinical stage, and TNM stage. Among the 

training set and multiple test sets, univariate and 

multivariate Cox regression analyses showed that only 

the risk score was consistently significantly associated 

with prognosis, such as the TCGA training set (HR = 

3.111, 95% CI = 2.042-4.741, P < 0.001; HR = 3.600, 

95% CI = 2.293-5.652, P < 0.001, respectively, Figure 

5A, 5B), the TCGA test set (HR = 1.573, 95% CI = 

1.068-2.316, P < 0.05; HR = 1.520, 95% CI = 1.027-

2.251, P < 0.05, respectively, Supplementary Figure 

2A, 2B), the GEO data set (HR = 1.239, 95% CI 

=1.052-1.459, P < 0.05; HR = 1.238, 95% CI = 1.045-

1.466, P < 0.05, respectively, Supplementary Figure 2C, 

2D) and the TCGA all data set (HR = 2.148, 95% CI = 

1.619-2.850, P < 0.05; HR = 2.202, 95% CI = 1.650-

2.939, P < 0.05, respectively, Supplementary Figure 2E, 

2F). The results revealed that the risk model is a robust 

 

 
 

Figure 2. Functional enrichment analysis of DEAGs of the TCGA data set. (A) The top 30 enriched pathways from KEGG pathway 
analysis are displayed using an enriched scatter diagram. (B) The top 10 enrichment GO terms of BP, CC and MF for DEAGs are also displayed 
with a scatter diagram. KEGG, Kyoto Encyclopedia of Genes and Genomes. GO, Gene Ontology; BP, biological process; CC, cell component; 
MF, molecular function.  
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Table 1. Clinical characteristics of HNSCC patients in the TCGA and GEO data sets. 

Clinical characteristics 
TCGA GEO (GSE65858) 

n=500 % n=270 % 

Age 
    

< 60 220 44.0  153 56.7 

≥ 60 280 56.0  117 43.3 

Gender 
    

Female 133 26.6  47 17.4 

Male 367 73.4  223 82.6 

Histologic grade 
    

G1-2 360 72.0  
  

G3-4 121 24.2  
  

Gx 16 3.2  
  

NA 3 0.6  
  

Stage 
    

I-II 114 22.8  55 20.4 

III-IV 372 74.4  215 79.6 

NA 14 2.8  
  

T classification 
    

T1-2 176 35.2  115 42.6 

T3-4 309 61.8  155 57.4 

Tx 11 2.2  
  

NA 4 0.8  
  

N classification 
    

N0 239 47.8  94 34.8 

N+ 239 47.8  176 65.2 

Nx 18 3.6  
  

NA 4 0.8  
  

M classification 
    

M0 470 94.0  263 97.4 

M1 5 1.0  7 2.6 

Mx 20 4.0  
  

NA 5 1.0  
  

Vital status 
    

Deceased 218 43.6  94 34.8 

Living 282 56.4  176 65.2 

 

prognostic index independent of other 

clinicopathological parameters. 

 

Association between the risk score and the 

clinicopathological characteristics of HNSCC patients 

in the TCGA data set 

 

Next, the association between the risk score and 

clinicopathological parameters was investigated 

(Figure 5C–5G, Table 3). The level of risk score was 

significantly related to histological grade (P < 0.05), 

clinical stage (P < 0.05), and T stage (P < 0.001). 

However, it was not correlated with other 

clinicopathological parameters, including N stage  

(P = 0.891) or M stage (P = 0.833). These  

results demonstrate that the risk score is closely 

associated with the progression of HNSCC. Next, a 

nomogram containing the risk score and 

clinicopathological parameters was constructed 

(Figure 5H). 
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Table 2. The seven genes associated with the risk model in HNSCC. 

ENSG ID Symbol Location Expression status Coefficient 

ENSG00000142192 APP Chromosome 21 Upregulated 0.0026  

ENSG00000147889 CDKN2A Chromosome 9 Upregulated -0.0132  

ENSG00000146648 EGFR Chromosome 7 Upregulated 0.0016  

ENSG00000144381 HSPD1 Chromosome 2 Upregulated 0.0048  

ENSG00000147168 IL2RG Chromosome X Upregulated -0.0113  

ENSG00000122861 PLAU Chromosome 10 Upregulated 0.0017  

ENSG00000112715 VEGFA Chromosome 6 Upregulated 0.0215  

 

GSEA of risk score-related signaling pathways 

 

GSEA was performed to identify significantly enriched 

pathways in the high-risk and low-risk groups in the 

TCGA data set. Thirty enriched pathways in the high-

risk and low-risk groups were evaluated 

(Supplementary Table 5). Enriched pathways with 

significant differences (FDR < 0.25, NOM p < 0.05) 

were selected (Table 4). The results demonstrated that 

galactose metabolism, nitrogen metabolism, ERBB 

signaling pathway and pathways in cancer were 

significantly enriched in the high-risk group (Figure 6A, 

6B) and that arachidonic acid metabolism, fatty acid 

metabolism, linoleic acid metabolism, B cell receptor 

signaling pathway, T cell receptor signaling pathway, 

intestinal immune network for IgA production and 

cytokine_cytokine receptor interaction were 

significantly enriched in the low-risk group (Figure 6C, 

6D). Interestingly, the B cell receptor signaling pathway 

and T cell receptor signaling pathway were enriched in 

the low-risk group (Figure 6E, 6F), which indicated that 

a high risk score may be associated with 

immunosuppression. Other individual GSEA diagrams 

are shown in Supplementary Figure 3. 

 

Association between the risk score and tumor 

immunity 

 

To investigate the association between the risk score 

and immune/stromal score, we used the ESTIMATE 

algorithm to evaluate the immune/stromal score of the 

TCGA data set. The low-risk group had higher 

immune scores in tumor samples than the high-risk 

group (P < 0.0001, Figure 7A). In addition, 

Spearman’s rank test revealed that there was a 

significant negative correlation between the risk score 

and immune score in HNSCC samples (R = -0.39, P < 

0.0001, Figure 7B). However, there was no significant 

correlation between the risk score and stromal score in 

HNSCC samples (R = 0.031, P = 0.031, Figure 7C). 

The correlation between the risk score and 

ESTIMATE score in HNSCC samples was also tested 

(R = -0.21, P < 0.0001, Figure 7D). 

We estimated the composition fraction of tumor‐
infiltrating immune cell types of patients in the TCGA 

data set utilizing the CIBERSORT algorithm to 

compare the relationship between the risk score and 

immune cells (Figure 7E). The results showed that 

HNSCC samples in the high-risk group contained a 

lower fraction of naïve B cells (P < 0.05), CD8 T cells 

(P < 0.001), CD4 memory activated T cells (P < 0.001) 

and follicular helper T cells (P < 0.001) compared to 

those in the low-risk group. However, CD4 memory 

resting T cells exhibited the opposite result (P < 0.001). 

These results are consistent with those of the GSEA in 

Figure 6E, 6F, which showed that a high risk score was 

associated with immunosuppression. 

 

Correlation of the five immune cells with genes in 

the risk model 
 

Based on the association between the risk model and 

the above five immune cell types (Figure 8A), we 

analyzed the correlation of the five immune cells with 

the 7 genes of the risk model. HNSCC samples with 

high PLAU expression contained a lower fraction of 

naïve B cells, CD8 T cells, CD4 memory activated T 

cells and follicular helper T cells compared to those 

with low expression, and CD4 memory resting T cells 

exhibited the opposite result (all P < 0.05, Figure 8B), 

which was consistent with the risk score. HNSCC 

samples with high APP expression compared to those 

with low expression showed that except for naïve B 

cells (P = 0.247), the results were consistent with the 

result of the risk score (all P < 0.01, Figure 8C). 

Similarly, the results of EGFR, except naïve B cells 

(P = 0.254) and CD4 memory activated T cells  

(P = 0.254), were consistent with the result of the  

risk score (all P < 0.01, Figure 8D). However, the 

results of IL2RG, as a protective factor, were  

not consistent with the results of the risk score  

(Figure 8E). Furthermore, the results of CDKN2A, 

HSPD1 and VEGFA showed that there was no 

significant difference in the five immune cells 

between the patients with high and low expression (all 

P > 0.05, Figure 8F–8H). Hence, the aging-related 
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Figure 3. Identification and verification of the prognostic risk model in HNSCC. (A) Kaplan-Meier survival curve analysis of OS in the 
high-risk and low-risk groups of HNSCC patients in the TCGA training set. (B) ROC curve analysis and AUC for the risk score of AGs in the TCGA 
training set. (C, E, G) Kaplan-Meier survival curve analysis of OS in the high-risk and low-risk groups of HNSCC patients in the TCGA test set, 
GEO data set and TCGA all data set, respectively. (D, F, H) ROC curve analysis and AUC for the risk score of AGs in the TCGA test set, GEO data 
set and TCGA all data set, respectively. 
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genes PLAU, APP and EGFR play a key role in 

immunosuppression of HNSCC. 

 

Correlation of proinflammatory factors with the risk 

score and genes of the risk model 

 

Currently, accumulating studies have demonstrated that 

chronic inflammation related to cellular senescence 

plays a key role in tumor immunosuppression and major 

proinflammatory factors, including IL-1α, IL-1β, IL-6 

and IL-8 [12–14]. Therefore, we investigated the 

correlation of major proinflammatory factors with the 

risk score and genes in the risk model. The results 

showed that mRNA expression levels of IL-1α, IL-1β, 

IL-6 and IL-8 in high-risk HNSCC samples were 

significantly higher than those in low-risk samples (all 
P < 0.001, Figure 9A). Consistent with the result of the 

risk score, the results of PLAU, APP and VEGFA also 

showed that the mRNA expression levels of IL-1α, IL-

1β, IL-6 and IL-8 in HNSCC samples with high 

expression of PLAU, APP and VEGFA were 

significantly higher than those with low expression (all 

P < 0.05, Figure 9B–9D). Similarly, the results of 

EGFR, except for IL-6 (P = 0.063), were consistent 

 

 
 

Figure 4. Prognosis and expression of risk genes in the high-risk and low-risk groups of HNSCC patients. (A) Risk plot 
distribution, survival status, and expression of risk genes of HNSCC patients in the TCGA training set. (B) Risk plot distribution, survival status, 
and expression of risk genes of HNSCC patients in the TCGA test set. (C) Risk plot distribution, survival status, and expression of risk genes of 
HNSCC patients in the GEO test set. (D) Risk plot distribution, survival status, and expression of risk genes of HNSCC patients in the TCGA all 
data set. 
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Figure 5. Correlation between the risk score and the clinicopathological characteristics of HNSCC patients. (A) Univariate Cox 
regression analysis of clinicopathological parameters of the patients in the TCGA training set. (B) Multivariate Cox regression analysis of the 
clinicopathological parameters of the patients in the TCGA training set. (C) Subgroup analysis of pathology grade (Grades 1+2 vs. Grades 3+4). 
(D) Subgroup analysis of clinical stage (Stages I+II vs. Stages III+IV). (E) Subgroup analysis of T classification (T 1+2 vs. T 3+4). (F) Subgroup 
analysis of N classification (N0 vs. N+). (G) Subgroup analysis of M classification (M 0 vs. M 1). (H) Nomogram for OS of HNSCC patients. 
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Table 3. Correlation between the clinicopathologic characteristics and the risk score (logistic regression) in HNSCC 
patients in the TCGA data set. 

Clinical characteristics Total (N) Odds ratio in the risk score p-value 

Age (≥60 vs. <60) 498 1.016(0.713-1.448) 0.928  

Gender 498 1.085 (0.729-1.619) 0.685  

Grade (G1-2 vs. G3-4) 479 0.630 (0.413-0.953) 0.030  

Stage (I-II vs. III-IV) 484 1.484 (0.972-2.278) 0.039  

Local invasion (T1-2 vs. 3-4) 483 2.173 (1.490-3.188) 0.000  

Lymph nodes (N0 vs. N+) 476 1.070 (0.747-1.533) 0.714  

Distant metastasis (M0 vs. M1) 473 1.513 (0.248-11.564) 0.652  

 

Table 4. Gene sets enriched in high and low risk scores. 

MSigDB collection Name NES ES NOM p-value FDR q-value 

c2.cp.kegg.v7.1.sym

bols.gmt 

KEGG_ERBB_SIGNALING_PATHWAY 1.658  0.460  0.024  0.197  

KEGG_PATHWAYS_IN_CANCER 1.619  0.406  0.022  0.193  

KEGG_GALACTOSE_METABOLISM 1.520  0.477  0.042  0.247  

KEGG_NITROGEN_METABOLISM 1.511  0.526  0.044  0.233  

 

KEGG_INTESTINAL_IMMUNE_NETWOR

K_FOR_IGA_PRODUCTION 
-2.047  -0.761  0.000  0.016  

 

KEGG_ARACHIDONIC_ACID_METABOL

ISM 
-1.916  -0.542  0.002  0.040  

 
KEGG_FATTY_ACID_METABOLISM -1.668  -0.531  0.024  0.135  

 

KEGG_CYTOKINE_CYTOKINE_RECEPT

OR_INTERACTION 
-1.655  -0.446  0.033  0.139  

 

KEGG_T_CELL_RECEPTOR_SIGNALING

_PATHWAY 
-1.633  -0.494  0.042  0.126  

 

KEGG_B_CELL_RECEPTOR_SIGNALING

_PATHWAY 
-1.594  -0.491  0.048  0.128  

 
KEGG_LINOLEIC_ACID_METABOLISM -1.593  -0.533  0.045  0.124  

 

with the results of the risk score (all P < 0.05,  

Figure 9E). However, the results of IL2RG, HSPD1 

and CDKN2A were either opposite of the results of the 

risk score, or there was no significant difference 

(Figure 9F–9H). 

 

DISCUSSION 
 

One key hallmark of cancer is the ability of cancer cells 

to evade immune destruction [26]. In the 1960s, studies 

showed that the aging process was associated with 

decreased immunological function [27–29]. 

Subsequently, accumulating studies have demonstrated 

that a chronic inflammatory microenvironment is 

involved in the aging process [30, 31]. Inflammation 

and asthenic immune surveillance with aging may 

facilitate tumor formation and development [9]. 

Currently, the role of the aging process in HNSCC is 

still ambiguous. Therefore, exploring the expression 

patterns of aging-related genes (AGs) is crucial for 

understanding the role of the aging process in HNSCC. 

Few studies have analyzed the correlation of AGs with 

HNSCC. Furthermore, the correlation of the expression 

of AGs with the prognosis of HNSCC patients has not 

been systematically investigated. 

 

In this study, we initially performed a comprehensive 

investigation of the associations between 41 

differentially expressed AGs (DEAGs, Figure 1A, 1B) 

and HNSCC prognosis and constructed a prognosis 

risk model with seven AGs, including APP, 

CDKN2A, EGFR, HSPD1, IL2RG, PLAU and 

VEGFA (Figure 1C) that revealed a robust 

performance signature for predicting prognosis 
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Figure 6. Enriched pathways of the high-risk and low-risk groups via GSEA. (A) Multiple GSEA for metabolism of the high-risk group: 
galactose metabolism and nitrogen metabolism. (B) Multiple GSEA for cancer pathways of the high-risk group: the ERBB signaling pathway 
and pathway in cancer. (C) Multiple GSEA for metabolism of the low-risk group: arachidonic acid metabolism, fatty acid metabolism and 
linoleic acid metabolism. (D) Multiple GSEA for inflammation and immunity of the low-risk group: the B cell receptor signaling pathway, T cell 
receptor signaling pathway, intestinal immune network for IgA production and cytokine_cytokine receptor interaction. (E) Single GSEA 
showing the B cell receptor signaling pathway. (F) Single GSEA showing the T cell receptor signaling pathway. 
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Figure 7. Association of the risk score with tumor immunity in the TCGA data set. (A) Distribution of immune scores according to 
the risk score of HNSCC patients. (B) Correlation of the risk score with the immune score in HNSCC samples. (C) Correlation of the risk score 
with the stromal score in HNSCC samples. (D) Correlation of the risk score with the ESTIMATE score in HNSCC samples. (E) Comparisons of 
immune cells between the high-risk and low-risk groups. 
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Figure 8. Correlation of the five immune cells with genes of the risk model in the TCGA data set. (A) Comparison of the five 
immune cells (naïve B cells, CD8 T cells, CD4 memory activated T cells and follicular helper T cells) between the high-risk and low-risk 
groups. (B–H) Distribution of the five immune cells based on the high expression and low expression of PLAU, APP, EGFR, IL2RG, CDKN2A, 
HSPD1 and VEGFA. 
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compared to clinicopathological factors in training 

and multiple validation sets (Figure 3).  

 

In the prognostic risk model, CDKN2A and IL2RG 

acted as protective factors, while APP, PLAU, VEGFA, 

EGFR and HSPD1 were risk factors (Figure 4). 

CDKN2A, upregulated by Lupeol, had been shown to 

cause cell cycle arrest at G1 phase, mediating antitumor 

effects in HNSCC [32]. Low CDKN2A expression 

predicted poor survival independently of other clinical 

 

 
 

Figure 9. Correlation of proinflammatory factors with the risk score and genes of the risk model in the TCGA data set. (A) 

Comparison of the main proinflammatory factors (IL-1α, IL-1β, IL-6 and IL-8) between the high-risk and low-risk groups. (B–H) Distribution of 
the main proinflammatory factors based on high and low expression of PLAU, APP, VEGFA, EGFR, IL2RG, HSPD1 and CDKN2A.  
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factors in HPV-negative HNSCC [33]. IL2RG knockout 

mice showed immunodeficiency [34] and high 

tumorigenic engraftment efficiency of human cancer 

cells and tissues [35]. These studies are consistent with 

our results, suggesting that CDKN2A and IL2RG are 

anticancer genes. Previous studies showed that APP, a 

protein that originates β-amyloid that constitutes 

amyloid plaques, acts as one of the main pathological 

features of AD, one of the major aging-related diseases 

[36]. Interestingly, APP depletion causes cell cycle 

arrest in breast cancer cells and non-small cell lung 

cancer [37, 38]. PLAU has been identified as a 

biomarker of HNSCC [39], but its relationship to 

inflammation and immunity has not been explored. 

VEGFA was demonstrated to be involved in age-related 

macular degeneration (AMD), a leading cause of visual 

impairment in aging populations [40]. Indeed, VEGFA 

is a key molecule in various signaling pathways 

promoting the progression of multiple cancers [41–43]. 

EGFR is a biomarker in HNSCC [44] and enhances the 

progression of HNSCC by mediating a variety of 

signaling pathways [45–47]. HSPD1 was closely related 

to prognosis in both oral squamous cell carcinoma and 

breast cancer [48, 49]. Our study was the first to suggest 

that these factors represent a prognostic risk model  

of HNSCC. 

 

Interestingly, our GSEA results revealed that B cell 

receptor (BCR) signaling and T cell receptor (TCR) 

signaling pathways were enriched in the low-risk group 

(Figure 6E, 6F), indicating that they may be inhibited in 

the high-risk group. BCR and TCR signaling is crucial 

for B cell and T cell proliferation and for development 

of adaptive immunity, and their abnormalities could 

lead to immunodeficiency [50–53]. For these reasons, 

we investigated correlation of the risk score with the 

immune score and the composition fraction of tumor‐
infiltrating immune cell types in HNSCC samples of 

TCGA data set. As we confirm here, there was a 

negative correlation between the risk score, and the 

immune and high-risk group contained lower fractions 

of naïve B cells, CD8 T cells, CD4 memory activated T 

cells and follicular helper T and a higher fraction of 

CD4 memory resting T cells compared to the low-risk 

group (Figure 7). Hence, our study revealed a 

significant correlation between a high risk score and 

immunosuppression and its association with the growth 

and differentiation of B and T cells, and high expression 

of PLAU, APP and EGFR were the main factors of 

tumor immunosuppression (Figure 8). Previous work 

unveiled that PLAU is particularly important for 

memory regulatory T cells (Tregs) [54]; however, there 

was no investigation of other immune cells. Based on an 

Alzheimer's transgenic mouse, PLAU was demonstrated 

as an impact factor of adaptive immunity, involved in 

lacking functional B and T cells [55]. The EGFR 

monoclonal antibody, Cetuximab, triggered 

immunogenic cell death [56], suggesting that EGFR 

plays an important role in immune cells survival. The 

proinflammatory factors of the senescence associated 

secretory phenotype (SASP) facilitate tumor 

immunosuppression [30, 31]. We confirmed that a high 

risk score was significantly associated with mRNA 

expression levels of IL-1α, IL-1β, IL-6 and IL-8 in 

HNSCC samples, and the results of PLAU, APP, 

VEGFA and EGFR were consistent with the results of 

the risk score (Figure 9).  

 

Although we identified a prognostic risk model with 

seven AGs and confirmed that the risk model was 

significantly associated with inflammation and 

immunosuppression, this work has limitations. The 

study conducted with bioinformatics analysis was not 

robust enough and needs to be confirmed via 

experimental verification. Hence, further laboratory 

experiments, including a multicenter study with larger 

sample sizes, are needed. 

 

In summary, in this study, we developed a robust 

prognostic risk model with 7 AGs. Compared to other 

clinical parameters, the risk score is an independent 

prognostic index. Furthermore, a high risk score 

indicates the chronic inflammatory and 

immunosuppressive state of HNSCC patients. 

Therefore, this risk model may serve as a prognostic 

signature and provide clues for individualized 

immunotherapy for HNSCC patients. 

 

CONCLUSIONS 
 

In conclusion, in our study, we developed a prognostic 

risk model with 7 differentially expressed AGs, which 

has great potential as an immunosuppressive and 

inflammatory state biomarker in HNSCC patients and 

provides insight into individualized immunotherapy for 

HNSCC patients. 

 

MATERIALS AND METHODS 
 

Data sets 
 

We obtained 307 human AGs from the human aging 

genome resource (HAGR, http://genomics. 

senescence.info/genes/, Supplementary Table 1). The 

RNA sequencing (RNA-Seq) expression profile data set 

was downloaded from the TCGA database 

(https://portal.gdc.cancer.gov/) of 500 HNSCC patients 

(2 duplicate patients were removed) with 44 

paracarcinoma samples, and clinical information was 

downloaded from the cBioPortal database (https://www. 

cbioportal.org/). For TCGA data, 498 HNSCC patients 

with follow-up data were selected and randomly divided 

http://genomics.senescence.info/genes/
http://genomics.senescence.info/genes/
https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
https://www.cbioportal.org/
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into two groups: the TCGA training set (n=298, 

Supplementary Table 3) and the TCGA test set (n=298, 

Supplementary Table 4). The GSE65858 data set as an 

independent verification set was obtained from the 

Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/) and included 

RNA-Seq data and clinical information. We performed 

data analysis utilizing R software (version 3.6.3, 

https://www.r-project.org/).  

 

Differentially expressed gene (DEG) analysis 

 

We evaluated differentially expressed aging-related 

genes (DEAGs) between HNSCC and normal samples 

using the Wilcoxon test in the limma package. Cut-off 

values were adjusted with the false discovery rate 

(FDR) [19]. FDR < 0.05, and |log FC| value > 1 was 

defined as significant. Then, we constructed a 

hierarchical cluster heat map via the “pheatmap” 

package and a volcano plot to visualize the results of the 

DEAGs. The distribution of the DEAGs on 

chromosomes was visualized via the “OmicCircos” R 

package [20]. 

 

GO and KEGG pathway analyses 
 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses 

were implemented with the “enrichplot” R package [21] 

to analyze the function of the DEAGs. GO terms 

contained biological process (BP), cellular component 

(CC) and molecular function (MF). For the analysis 

results, both P-value and false discovery rate (FDR) 

values < 0.05 were defined as statistically significant. 

 

Construction of a prognostic gene signature 
 

To identify survival-associated DEAGs, we conducted 

univariate Cox regression analysis. Candidate 

prognostic genes were selected with a threshold value of 

P < 0.05. Then, Lasso regression analysis in the TCGA 

training set was executed, and a multigene prognostic 

signature was constructed. The individualized risk score 

was calculated with the regression coefficients of each 

gene using the following computational formula: 

 

            ∑                        

 

   

 

 

where n is the number of the candidate prognostic 

genes, genek is the kth candidate genes, coefficient is the 

estimated regression coefficient of genes from the 

multivariate Cox regression analysis, and Expk is the 

expression value of the kth candidate genes. Based on 

the median the risk score of the TCGA training set, the 

HNSCC patients were divided into high-risk and low-

risk groups. The association between the candidate 

genes and risk scores were shown by a hierarchical 

cluster heat map, and a nomogram containing the risk 

score of prognostic AGs and clinicopathological 

parameters was constructed via the “rms” R package.  

 

Gene Set Enrichment Analysis 

 

GSEA is a powerful analytical method used for 

estimating significant differences between two 

biological conditions to determine specific functional 

gene sets [22]. In the current study, GSEA was 

performed using GSEA software (v4.0.3) 

(https://www.gsea-msigdb.org/gsea/downloads.jsp) with 

the Molecular Signatures Database (MSigDB) [23] C2 

curated gene sets, which generated a list of significantly 

different gene sets between the high-risk and low-risk 

groups. Each gene set was permutated 1000 times for 

each analysis. Gene sets with p-value < 0.05 and FDR < 

0.25 were considered significantly enriched. 

 

Evaluation of immune scores and immune cell 

infiltration  
 

The ESTIMATE (Estimation of Stromal and Immune 

cells in Malignant Tumor tissues using Expression data) 

algorithm is a tool developed to evaluate immune and 

stromal scores in tumor samples. We calculated the 

immune and stromal ESTIMATE scores based on 

TCGA gene expression data using the “estimate” R 

package [24].  

 

CIBERSORT is an analytical method used for 

characterizing the cellular composition of complex 

tissues based on gene expression profiles [25]. We 

conducted an estimation of the composition fraction  

of tumor‐ infiltrating immune cell types of each  

patient using the CIBERSORT algorithm 

(http://cibersort.stanford.edu/).  

 

Statistical analysis 

 

All statistical analyses were performed using R-3.6.3. 

The distribution differences among the variables were 

analyzed by chi-square test or Fisher’s exact test. The 

Kaplan-Meier curve with the log-rank test was used to 

estimate survival analysis. Univariate and multivariate 

Cox regression analyses were performed to analyze the 

relationship between given factors and survival in 

HNSCC patients. ROC curve analysis was used to 

evaluate the diagnostic value of the risk model. 

Spearman’s rank correlation test was estimated to assess 

the correlation between variables. P < 0.05 was 

identified as statistically significant. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org/
https://www.gsea-msigdb.org/gsea/downloads.jsp
http://cibersort.stanford.edu/
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Data Availability Statement 

 

Expression profile datasets for this study can be 

accessed from The Cancer Genome Atlas (TCGA) 

(https://portal.gdc.cancer.gov/) and Gene Expression 

Omnibus (GEO) database (https://www.ncbi. 

nlm.nih.gov/geo/), and aging-related genes (AGs) can 

be retrieved from the Human Aging Genome Resources 

(HAGR, http://genomics.senescence.info/genes/). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Distribution of the DEAGs on chromosomes. A total of 307 human AGs obtained from HAGR were 

distributing on all chromosomes, except sex chromosome Y. 
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Supplementary Figure 2. Univariate and multivariate cox regression analyses of OS in HNSCC patients with other data sets. 
(A, B) Clinicopathological parameters of the patients in the TCGA test set using univariate and multivariate Cox regression analyses, 
respectively. (C, D) Clinicopathological parameters of the patients in the GEO (GSE65858) data set using univariate and multivariate Cox 
regression analyses, respectively. (E, F) Clinicopathological parameters of the patients in the TCGA all data set using univariate and 
multivariate Cox regression analyses. 
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Supplementary Figure 3. Other single GSEA figures in the high-risk and low-risk groups. Single GSEA showing galactose 

metabolism (A), nitrogen metabolism (B), the ERBB signaling pathway (C), pathway in cancer (D), cytokine_cytokine receptor interaction (E), 
intestinal immune network for IgA production (F), arachidonic acid metabolism (G), fatty acid metabolism (H) and linoleic acid metabolism (I). 
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Supplementary Tables  

 

 

Please browse Full Text version to see the data of Supplementary Tables 1, 3, 4. 

 

Supplementary Table 1. Three hundred seven genes related to aging. 

 

Supplementary Table 2. Forty-one differentially expressed genes in the aging-related gene set. 

Gene ConMean TreatMean logFC pValue FDR 

APP 39.247603 103.3061 1.3962495 4.95E-13 9.04E-13 

BAK1 10.175959 23.5007 1.2075388 1.44E-13 3.18E-13 

BUB1B 3.1727858 6.922003 1.1254394 2.82E-18 1.48E-17 

C1QA 27.634554 61.46906 1.1533872 0.00116444 0.001223 

CCNA2 5.3256053 13.96796 1.391104 3.40E-17 1.10E-16 

CDKN2A 1.3581066 10.93876 3.0097805 0.00022727 0.000258 

DDIT3 5.1889558 11.92465 1.2004307 2.80E-10 3.66E-10 

E2F1 2.4063142 10.09535 2.0687939 6.24E-24 2.62E-22 

EGFR 9.4966372 29.37689 1.6291928 3.37E-07 3.93E-07 

EGR1 177.67804 76.10728 -1.223159 3.95E-09 4.88E-09 

FEN1 6.047823 19.74638 1.7071004 1.23E-22 1.73E-21 

FOS 258.19873 106.0324 -1.283977 2.88E-10 3.66E-10 

FOXM1 3.1564422 14.86446 2.2354956 3.97E-23 8.34E-22 

H2AFX 12.914618 29.94685 1.2133993 4.93E-11 6.90E-11 

HIF1A 20.036985 49.84471 1.314775 1.95E-12 3.41E-12 

HMGB2 12.80035 33.52158 1.3889068 3.52E-12 5.68E-12 

HOXB7 1.9075584 6.730141 1.8189094 9.78E-17 2.74E-16 

HSPD1 29.136663 59.11269 1.0206322 2.16E-13 4.54E-13 

IGFBP3 14.93991 52.80921 1.821618 4.89E-09 5.87E-09 

IL2RG 5.2557188 10.9742 1.0621562 0.00531744 0.005447 

IL7R 3.425877 8.258084 1.2693337 1.29E-11 1.86E-11 

LMNB1 6.6300363 15.59522 1.234015 1.14E-11 1.71E-11 

MIF 17.602226 43.2198 1.2959346 4.06E-13 8.12E-13 

NRG1 2.3744663 5.626124 1.244538 7.89E-12 1.23E-11 

NUDT1 5.2909544 13.01608 1.2986956 4.57E-18 2.02E-17 

PCNA 24.006157 72.29586 1.5905086 4.81E-18 2.02E-17 

PDGFRB 5.6199417 14.75284 1.3923654 6.67E-11 9.04E-11 

PLAU 5.8109266 82.76741 3.8322227 3.61E-21 3.03E-20 

PML 5.9293315 13.05956 1.139165 1.58E-14 3.89E-14 

POLD1 4.3692004 9.422398 1.108725 4.68E-20 2.81E-19 

PRKDC 8.5063936 19.21432 1.1755628 4.48E-13 8.56E-13 

PTGS2 3.8293036 10.52787 1.4590596 0.00116031 0.001223 

RAD51 2.9088248 6.234649 1.0998719 5.46E-22 5.73E-21 
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RECQL4 3.5042193 8.516179 1.2811132 3.91E-17 1.17E-16 

SERPINE1 5.2360086 90.50704 4.1114907 3.95E-15 1.04E-14 

SHC1 13.929559 33.40669 1.2619875 1.14E-17 4.33E-17 

TCF3 6.2120472 14.51215 1.2241211 4.46E-21 3.12E-20 

TOP2A 6.0594999 22.28673 1.8789141 2.72E-17 9.52E-17 

TP63 18.548258 54.84206 1.563999 6.12E-14 1.43E-13 

UCHL1 2.391086 13.05015 2.4483281 0.00077289 0.000854 

VEGFA 4.337274 9.386313 1.1137699 2.10E-12 3.53E-12 

 

Supplementary Table 3. Information for the TCGA training set. 

 

Supplementary Table 4. Information for the TCGA test set. 
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Supplementary Table 5. The top thirty enriched pathways of the high and low risk scores. 

NAME SIZE NES ES NOM p-val FDR q-val 

KEGG_FOCAL_ADHESION 199 1.791  0.540501  0.010  0.621  

KEGG_WNT_SIGNALING_PATHWAY 150 1.787  0.467608  0.008  0.325  

KEGG_PROTEIN_EXPORT 24 1.715  0.626685  0.023  0.391  

KEGG_BASAL_TRANSCRIPTION_FACTORS 35 1.677  0.565968  0.028  0.391  

KEGG_ADHERENS_JUNCTION 73 1.677  0.500147  0.036  0.313  

KEGG_TGF_BETA_SIGNALING_PATHWAY 85 1.674  0.492573  0.020  0.267  

KEGG_SMALL_CELL_LUNG_CANCER 84 1.661  0.488079  0.022  0.250  

KEGG_ECM_RECEPTOR_INTERACTION 84 1.659  0.584678  0.047  0.221  

KEGG_ERBB_SIGNALING_PATHWAY 87 1.658  0.460301  0.024  0.197  

KEGG_RENAL_CELL_CARCINOMA 70 1.650  0.456580  0.028  0.189  

KEGG_REGULATION_OF_ACTIN_CYTOSKELE

TON 
213 1.625  0.422086  0.030  0.204  

KEGG_PATHWAYS_IN_CANCER 325 1.619  0.406490  0.022  0.193  

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHE

SIS_CHONDROITIN_SULFATE 
22 1.618  0.620100  0.051  0.180  

KEGG_EPITHELIAL_CELL_SIGNALING_IN_HE

LICOBACTER_PYLORI_INFECTION 
68 1.588  0.432624  0.028  0.201  

KEGG_O_GLYCAN_BIOSYNTHESIS 30 1.566  0.518195  0.047  0.214  

KEGG_GAP_JUNCTION 90 1.534  0.413798  0.063  0.242  

KEGG_GALACTOSE_METABOLISM 26 1.520  0.476869  0.042  0.247  

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 134 1.512  0.414400  0.065  0.245  

KEGG_NITROGEN_METABOLISM 23 1.511  0.525666  0.044  0.233  

KEGG_RNA_DEGRADATION 59 1.506  0.465151  0.102  0.228  

KEGG_BASAL_CELL_CARCINOMA 55 1.464  0.458399  0.079  0.272  

KEGG_HEDGEHOG_SIGNALING_PATHWAY 56 1.445  0.434513  0.076  0.288  

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_P

ATHWAY 
62 1.441  0.427602  0.099  0.282  

KEGG_VIBRIO_CHOLERAE_INFECTION 54 1.420  0.391865  0.074  0.298  

KEGG_GLIOMA 65 1.411  0.397358  0.088  0.298  

KEGG_PANCREATIC_CANCER 70 1.401  0.404685  0.111  0.303  

KEGG_AXON_GUIDANCE 129 1.391  0.379621  0.094  0.305  

KEGG_INOSITOL_PHOSPHATE_METABOLISM 54 1.385  0.430061  0.128  0.302  

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 22 1.378  0.517645  0.162  0.300  

KEGG_N_GLYCAN_BIOSYNTHESIS 46 1.367  0.444909  0.128  0.305  

KEGG_PRIMARY_IMMUNODEFICIENCY 35 -2.102  -0.805314  0.000  0.015  

KEGG_INTESTINAL_IMMUNE_NETWORK_FO

R_IGA_PRODUCTION 
46 -2.047  -0.760872  0.000  0.016  

KEGG_AUTOIMMUNE_THYROID_DISEASE 50 -2.021  -0.720466  0.002  0.018  

KEGG_ASTHMA 28 -1.964  -0.792507  0.002  0.028  

KEGG_ARACHIDONIC_ACID_METABOLISM 58 -1.916  -0.542208  0.002  0.040  

KEGG_ALLOGRAFT_REJECTION 35 -1.885  -0.807991  0.004  0.046  
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KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 55 -1.813  -0.671447  0.026  0.080  

KEGG_CELL_ADHESION_MOLECULES_CAMS 131 -1.797  -0.547984  0.012  0.080  

KEGG_TYPE_I_DIABETES_MELLITUS 41 -1.783  -0.693100  0.028  0.081  

KEGG_HEMATOPOIETIC_CELL_LINEAGE 85 -1.761  -0.568026  0.024  0.088  

KEGG_NATURAL_KILLER_CELL_MEDIATED_

CYTOTOXICITY 
132 -1.733  -0.512719  0.016  0.103  

KEGG_GRAFT_VERSUS_HOST_DISEASE 37 -1.708  -0.731792  0.047  0.115  

KEGG_LEISHMANIA_INFECTION 70 -1.676  -0.553619  0.054  0.138  

KEGG_FATTY_ACID_METABOLISM 42 -1.668  -0.531167  0.024  0.135  

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_IN

TERACTION 
264 -1.655  -0.446398  0.033  0.139  

KEGG_PARKINSONS_DISEASE 127 -1.650  -0.547933  0.053  0.134  

KEGG_ANTIGEN_PROCESSING_AND_PRESEN

TATION 
81 -1.648  -0.565163  0.064  0.127  

KEGG_ALZHEIMERS_DISEASE 165 -1.641  -0.458914  0.043  0.126  

KEGG_T_CELL_RECEPTOR_SIGNALING_PAT

HWAY 
108 -1.633  -0.493802  0.042  0.126  

KEGG_PEROXISOME 78 -1.621  -0.446708  0.030  0.129  

KEGG_TRYPTOPHAN_METABOLISM 39 -1.612  -0.505357  0.029  0.130  

KEGG_CARDIAC_MUSCLE_CONTRACTION 78 -1.610  -0.502809  0.028  0.125  

KEGG_OXIDATIVE_PHOSPHORYLATION 131 -1.607  -0.542387  0.070  0.123  

KEGG_B_CELL_RECEPTOR_SIGNALING_PAT

HWAY 
75 -1.594  -0.491494  0.048  0.128  

KEGG_LINOLEIC_ACID_METABOLISM 29 -1.593  -0.533346  0.045  0.124  

KEGG_BUTANOATE_METABOLISM 34 -1.590  -0.503871  0.038  0.120  

KEGG_ALDOSTERONE_REGULATED_SODIU

M_REABSORPTION 
42 -1.586  -0.471743  0.050  0.119  

KEGG_CHEMOKINE_SIGNALING_PATHWAY 188 -1.564  -0.442850  0.051  0.131  

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_

DEGRADATION 
43 -1.555  -0.524273  0.056  0.134  

KEGG_FC_EPSILON_RI_SIGNALING_PATHWAY 79 -1.553  -0.432609  0.036  0.132  

 


