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INTRODUCTION 
 

The public health burden of age-related diseases is 

increasing rapidly as the number of older adults continues 

to grow around the world. Hip fractures are a major cause 

of morbidity and mortality among the elderly, and 

approximately 40% of those who experience a hip 

fracture will end up in a nursing home, and 20% will 

never walk again. The 1-year mortality rate after hip 

fractures at 70 years of age is approximately 30%. Muscle 

weakness and postural instability are major contributors to 

the incidence of falls among the elderly, and falls are the 

primary etiological factor in 90% of hip fractures. Loss of 

muscle mass in the form of sarcopenia is estimated to 

affect approximately 30% of individuals over the age of 

60 and more than half of individuals over the age of 80 

[1]. Loss of muscle and bone mass with age is therefore a 

major limiting factor for life spans, and the morbidity that 

accompanies fractures in the elderly is costly both in 

terms of financial burden and quality of life. Moreover, 
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ABSTRACT 
 

Despite the accumulating evidence from in vitro and animal experiments supporting the role of kynurenine (a 
tryptophan metabolite) in a number of degenerative age-related changes, the relationship between kynurenine 
and frailty in older adults is not well understood. We collected blood samples from 73 participants who 
underwent a comprehensive geriatric assessment, measuring kynurenine levels using liquid chromatography-
tandem mass spectrometry. We assessed the phenotypic frailty and the deficit accumulation frailty index using 
widely validated approaches proposed by Fried et al. and Rockwood et al., respectively. After adjusting for sex, 
age, and body mass index, the frail participants presented 52.9% and 34.3% higher serum kynurenine levels 
than those with robustness and prefrailty, respectively (P = 0.005 and 0.014, respectively). Serum kynurenine 
levels were positively associated with the frailty index, time to complete 5 chair stands, and patient health 
questionnaire-2 score and inversely associated with grip strength and gait speed (P = 0.042 to <0.001). 
Furthermore, the odds ratio per increase in serum kynurenine level for phenotypic frailty was approximately 
2.62 (95% confidence interval = 1.22–5.65, P = 0.014). These data provide clinical evidence that circulating 
kynurenine might be a potential biomarker for assessing the risk of frailty in humans. 
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reductions in lean mass and muscle strength also appear to 

precede cognitive decline, dementia, and Alzheimer’s 

disease [2–7]. The overall decline in muscle, bone and 

cognitive function that occurs with aging directly 

contributes to frailty, which is characterized by reduced 

physical performance, balance, muscle strength and 

endurance, and neuromuscular function. 

 

Aging is associated with an overall increase in the 

inflammatory burden, driven at least in part by elevated 

local and circulating levels of inflammatory cytokines 

such as interleukin (IL)-6, IL-1β and interferon-γ. These 

inflammatory cytokines are known to stimulate the 

enzyme indoleamine 2,3-dioxygenase (IDO), which 

degrades the amino acid tryptophan along the kynurenine 

pathway (KP) [8, 9]. An increase in IDO activity has 

been associated with increased mortality in humans [10], 

and inhibition of tryptophan degradation, thereby 

reducing kynurenine accumulation, has been observed to 

increase longevity in animal model systems such as 

worms [11] and fruit flies [12]. Kynurenine has recently 

been shown to induce both muscle and bone loss in mice 

[13, 14], and kynurenine levels are elevated in patients 

with fragility hip fractures [15]. Importantly, inhibiting 

tryptophan degradation and IDO activity with the 

tryptophan mimetic 1-MT can improve muscle function 

in aged mice [14], suggesting that modulating kynurenine 

accumulation with aging might be a potential pathway for 

improving musculoskeletal function. Yet, despite several 

recent studies linking kynurenine levels to bone loss and 

fracture, there is a paucity of clinical data on the 

relationship between kynurenine and frailty in older 

adults. To determine whether circulating kynurenine 

could be a potential biomarker of frailty, we examined 

the kynurenine levels in a cohort of older adults whose 

frailty status differed significantly. 

 

RESULTS 
 

Clinical characteristics of the study participants 

according to phenotypic frailty status 

 

Table 1 lists the baseline characteristics of the 73 study 

participants. Among 17 (23.3%) robust (i.e., non-frail), 

44 (60.3%) prefrail, and 12 (16.4%) frail older adults 

based on Fried’s criteria [16], 8 (47.1%), 26 (59.1%), and 

7 (58.3%) were women, respectively. The mean ages of 

the robust, prefrail, and frail groups were 67.6 ± 6.8, 69.8 

± 5.9, and 70.8 ± 5.0 years, respectively. There were no 

significant differences in terms of weight, height, body 

mass index (BMI), serum albumin level, time to 

complete 5 chair stands, and prevalence of polypharmacy 

and multimorbidity between the three groups. Compared 

with the robust and/or prefrail groups, the frail group had 

lower grip strength, gait speed, short physical 

performance battery (SPPB) score and mini-cognition 

score and higher frailty index, social frailty score and 

patient health questionnaire-2 (PHQ-2) score. The frail 

group was more likely to experience deficiencies in 

activities of daily living (ADL) and instrumental 

activities of daily living (IADL), as well as cognitive 

dysfunction and depression. 

 

Difference in serum kynurenine and tryptophan 

levels and their ratio according to phenotypic 

fragility status 
 

Before their levels were adjusted for sex, age, and BMI, 

the frail group had 61.6% and 35.5% higher serum 

kynurenine levels than the robust and prefrail groups, 

respectively (Figure 1A), and the statistical significance 

persisted after adjusting for these factors (Figure 1B). 

However, there were no significant differences in serum 

tryptophan levels and kynurenine/tryptophan ratio 

between the three groups, regardless of the adjustment 

models. 

 

Association between frailty-related parameters and 

serum kynurenine and tryptophan levels and their 

ratio 

 

Univariate linear regression analyses showed that serum 

kynurenine levels and the kynurenine/tryptophan ratio 

were positively associated with the Rockwood frailty 

index [17, 18], time to complete 5 chair stands, and PHQ-

2 score, and inversely associated with grip strength and 

gait speed (Table 2). After adjusting for sex, age, and 

BMI, these correlations were still statistically significant, 

except for the association of serum kynurenine/ 

|tryptophan ratio with grip strength and PHQ2-score, 

which showed marginal significance (P = 0.061 and 

0.062, respectively). However, serum tryptophan levels 

were not associated with any frailty-related parameters 

before and after adjusting for potential confounders. 

 

Risk of phenotypic frailty according to the increase 

in serum kynurenine and tryptophan levels and their 

ratio 

 

Before and after adjusting for sex, age, and BMI, the 

odds ratios (ORs) per serum kynurenine increment for 

phenotypic frailty were approximately 2.6 (Table 3). In 

contrast, the risk of frailty did not differ according to 

serum tryptophan concentration and kynurenine/ 

tryptophan ratio in any adjustment model. 

 

Differences in frailty-related parameters according 

to serum kynurenine tertiles 

 

Among the serum kynurenine and tryptophan levels and 

their ratio, we specifically focused on serum kynurenine, 

because this factor was most strongly and consistently 
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Table 1. Baseline characteristics of the study participants according to phenotypic frailty status. 

Variables Robust (n = 17) Prefrail (n = 44) Frail (n = 12) P 

Sex, n (%)    0.688 

Female 8 (47.1) 26 (59.1) 7 (58.3)  

Male 9 (52.9) 18 (40.9) 5 (41.7)  

Age, years 67.6 ± 6.8 69.8 ± 5.9 70.8 ± 5.0 0.315 

Weight, kg 71.3 ± 12.5 67.7 ± 10.4 63.3 ± 8.6 0.141 

Height, cm 161.0 ± 11.0 158.8 ± 8.9 157.2 ± 5.6 0.522 

Body mass index, kg/m
2
 27.5 ± 3.5 26.7 ± 3.0 25.7 ± 3.8 0.332 

Serum albumin, g/dL 3.78 ± 0.38 3.85 ± 0.28 3.73 ± 0.25 0.418 

Frailty index (range: 0–1) 0.076 ± 0.035 0.125 ± 0.061
*
 0.230 ± 0.083

*,†
 <0.001 

Grip strength, kg 31.7 ± 8.3 27.8 ± 9.1 20.9 ± 6.6
*
 0.007 

Gait speed, m/s 1.20 ± 0.18 1.05 ± 0.33 0.75 ± 0.28
*,†

 0.001 

Chair stand, s 9.7 ± 4.6 11.0 ± 8.3 14.5 ± 7.2 0.243 

SPPB score (range: 0–12) 11.4 ± 1.1 10.7 ± 2.2 9.5 ± 2.2
*
 0.044 

Use of ≥5 prescription drugs, n (%) 7 (41.2%) 21 (47.7) 8 (66.7) 0.379 

Multimorbidity, n (%) 13 (76.5) 33 (75.0) 11 (91.7) 0.457 

ADL disability, n (%) 0 (0.0) 3 (6.8) 3 (25.0) 0.047 

IADL disability, n (%) 1 (5.9) 14 (31.8) 9 (75.0) <0.001 

Social frailty score (range: 0–5) 1.00 ± 0.61 1.45 ± 1.11 2.08 ± 1.00
*
 0.020 

Mini-cognition score (range: 0–5) 4.41 ± 0.71 3.61 ± 1.22
*
 3.27 ± 1.27

*
 0.019 

Cognitive dysfunction, n (%) 0 (0.0) 3 (6.8) 3 (25.0) 0.047 

PHQ-2 score (range: 0–6) 0.94 ± 0.83 1.48 ± 1.99 3.82 ± 1.72
*,†

 <0.001 

Depression, n (%) 0 (0.0) 5 (11.4) 8 (66.7) <0.001 

Phenotypic frailty is defined based on the Fried’s criteria. Values are presented as the mean ± standard deviation unless 
otherwise specified. Bold indicates statistically significant values. The comparisons between the three groups were 
investigated using the analysis of variance with posthoc analysis via Tukey’s honest significance test for continuous variables 
and Fisher’s exact tests for categorical variables. 

*
 and 

†
 indicate statistically significant differences from robust and prefrail 

groups, respectively. 
Abbreviations: ADL, activities of daily living; IADL, instrumental activities of daily living; PHQ-2, patient health questionnaire-2; 
SPPB, short physical performance battery. 
 

related to frailty, as shown above. To investigate whether 

the association between serum kynurenine levels and 

frailty-related parameters involved a threshold effect, we 

divided all the participants into three groups according to 

their serum kynurenine levels (Figure 2). Compared with 

those in the lowest kynurenine tertile (T1, 0.78–1.52 

μM), the participants with the highest tertile (T3, 2.02–

4.44 μM) had a higher frailty index, social frailty score, 

and PHQ-2 score and lower grip strength, gait speed, and 

mini-cognition score, before and after adjusting for sex, 

age, and BMI. In contrast, there were no significant 

differences in the time to complete 5 chair stands and 

SPPB score according to serum kynurenine tertiles, 

regardless of the adjustment models. 

Risk of phenotypic frailty according to serum 

kynurenine tertiles 

 

Logistic regression analyses revealed that the ORs for 

phenotypic frailty were 5.75-fold and 5.71-fold higher 

for the participants in the highest kynurenine tertile (T3) 

than those in the lowest tertile (T1), before and after 

adjusting for sex, age, and BMI, respectively (Figure 3). 

 

DISCUSSION 
 

Previous studies have demonstrated a positive 

association of circulating kynurenine levels with age, 

fragility hip fracture, and overall mortality. Our new 
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findings here indicate that serum kynurenine levels and 

the kynurenine/tryptophan ratio were positively 

associated with the frailty index and inversely associated 

with grip strength and gait speed. Likewise, the risk of 

phenotypic frailty was significantly associated with 

kynurenine levels, before and after adjusting for sex, 

age, and BMI, but did not differ according to serum 

tryptophan levels and the kynurenine/tryptophan ratio. 

These data suggest that kynurenine itself, more so than 

either tryptophan levels or the kynurenine/tryptophan 

ratio, is a significant predictor of frailty and overall 

functional performance. This interpretation is consistent 

with a previous study that demonstrated that kynurenine 

treatment decreases muscle contractile strength and 

muscle fiber size in younger animals, whereas blocking 

kynurenine production with a tryptophan mimetic can 

preserve muscle function in older animals [14]. 

 

There are several potential mechanisms underlying the 

observations in our study. Kynurenine is thought to 

increase oxidative stress [14, 19, 20], and oxidative 

stress is in turn believed to contribute directly to 

neuromuscular junction degradation [21]. In addition, 

kynurenine can cross the blood-brain barrier and has 

been implicated in cognitive decline and Alzheimer’s 

disease [22–24]. Recently, it has been proposed that 

grip strength is an important measure of neurological 

function [25]. Thus, the association we documented 

between serum kynurenine levels and grip strength 

could emanate from the peripheral effects of kynurenine 

on oxidative stress at the neuromuscular junction and, 

perhaps centrally, through kynurenine’s effects on the 

brain. 

 

Frailty is a common clinical syndrome in older adults 

characterized by a reduced physiological reserve and 

resistance vulnerable to external stressors [26]. 

Importantly, a recent longitudinal study demonstrated 

that frailty is the most promising indicator for biological 

age among nine different approaches over a 20-year 

period [27, 28], and this condition is known to lead to 

poor health outcomes including greater disability, 

hospitalization, and even death [29]. There is therefore 

growing interest in potential biomarkers that can detect

 

 
 

Figure 1. Differences in serum kynurenine and tryptophan levels and their ratio according to the phenotypic frailty status (A) before and (B) 

after adjusting for sex, age, and BMI. Phenotypic frailty is defined based on the Fried’s criteria. The estimated means with 95% confidence 
intervals were generated and compared using an analysis of covariance. Delta (Δ) indicates a change in the value of a variable between 
groups. Abbreviations: BMI, body mass index; Kyn, kynurenine; Tryp, tryptophan. 
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Table 2. Linear regression analysis to determine the association of frailty-related factors with serum kynurenine and 
tryptophan levels and their ratio. 

Unadjusted 
Serum kynurenine level  Serum tryptophan level  Serum KTR 

β SE β P   β SE β P   β SE β P 

Frailty index 0.055 0.010 0.546 <0.001  0.001 0.001 0.068 0.565  0.036 0.007 0.519 <0.001 

Grip strength –3.646 1.239 –0.332 0.004  –0.048 0.056 –0.103 0.387  –1.985 0.870 –0.263 0.026 

Gait speed  –0.139 0.043 –0.361 0.002  –0.002 0.002 –0.101 0.404  –0.077 0.030 –0.291 0.014 

Chair stand 2.695 1.037 0.299 0.011  –0.059 0.046 –0.152 0.206  2.649 0.674 0.428 <0.001 

PHQ-2 score 0.833 0.266 0.350 0.003  0.008 0.012 0.081 0.497  0.434 0.188 0.266 0.024 

 

Sex, age, and BMI adjusted 
Serum kynurenine level  Serum tryptophan level  Serum KTR 

β SE β P   β SE β P   β SE β P 

Frailty index 0.050 0.010 0.495 <0.001  0.001 0.001 0.077 0.500  0.032 0.007 0.464 <0.001 

Grip strength –2.264 0.818 –0.206 0.007  –0.064 0.034 –0.137 0.065  –1.092 0.574 –0.145 0.061 

Gait speed –0.119 0.043 –0.310 0.008  –0.002 0.002 –0.115 0.311  –0.061 0.030 –0.232 0.045 

Chair stand 2.250 1.086 0.249 0.042  –0.057 0.045 –0.148 0.210  2.417 0.698 0.390 0.001 

PHQ-2 score 0.730 0.272 0.307 0.009  0.010 0.012 0.097 0.401  0.362 0.190 0.222 0.062 

Frailty index is calculated based on the Rockwood’s proposal. The Enter method was applied to this model. Bold indicates are 
statistically significant values. Abbreviations: β, unstandardized regression coefficient; SE, standard error; β, standardized 
regression coefficient; BMI, body mass index; KTR, kynurenine/tryptophan ratio; PHQ-2, patient health questionnaire-2. 
 

Table 3. Logistic regression analyses to determine the odds ratios for phenotypic frailty according to the increase in 
serum kynurenine and tryptophan levels and their ratio. 

Adjustment 

OR (95% CIs) per 

serum kynurenine 

increment 

P 

OR (95% CIs) per 

serum tryptophan 

increment 

P 

OR (95% CIs) 

per serum KTR 

increment  

P 

Unadjusted 2.67 (1.29–5.52) 0.008 1.02 (0.98–1.06) 0.145 1.52 (0.95–2.42) 0.081 

Sex, age, and BMI 

adjusted 
2.62 (1.22–5.65) 0.014 1.03 (0.99–1.06) 0.119 1.52 (0.93–2.50) 0.098 

Phenotypic frailty is defined based on the Fried’s criteria. Bold indicates statistically significant values. Abbreviations: BMI; 
body mass index; CI, confidence interval; KTR, kynurenine/tryptophan ratio; OR, odds ratio. 
 

high-risk individuals early before frailty fully develops 

[30, 31]. KP metabolites in the blood have been 

suggested as candidate biomarkers for this purpose by 

clinical studies that have demonstrated the significant 

role of tryptophan derivatives on various age-associated 

degenerative diseases [31]. In fact, two recent human 

studies have found a correlation between circulating 

kynurenine/tryptophan ratio and frailty in older 

Europeans [32, 33]. These studies were meaningful as 

they were among the first to implicate KP to frailty. 

However, these studies adopted only the concept 

proposed by Fried et al. [16], i.e., “phenotypic or 

physical frailty,” but not “frailty index” proposed by 

Rockwood and colleagues [17, 18]. The frailty index 

approach views frailty as a spectrum of aging [34, 35] 

and is known to be a better predictor of death than 

physical frailty [36, 37]; therefore, the two studies, 

though important, may not be enough to fully 

understand the effects of KP on age-associated frailty. 

In contrast, we used both operational definitions of 

frailty, which have been well validated and are widely 

accepted in aging research [26]; additionally, we 

included diverse related parameters (such as grip 

strength, gait speed, time to complete 5 chair stands, 

SPPB score, social frailty score, mini-cognitive score, 

and PHQ-2 score), which helped improve the reliability 

of our results. Furthermore, this was the first clinical 

study on this topic to be conducted among Asians. We 

believe that the studies discussed above, including ours, 

provide an important background for future prospective 

studies to confirm the role of circulating KP metabolites 

as a clinical biomarker of frailty. 
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Figure 2. Differences in frailty-related factors according to serum kynurenine tertiles (A) before and (B) after adjusting for sex, age, and BMI. 
Frailty index is calculated based on the Rockwood’s proposal. The estimated means with 95% confidence intervals were generated and 
compared using analysis of covariance. Serum kynurenine tertiles: T1 = 0.78–1.52 μM, T2 = 1.53–2.01 μM, and T3 = 2.02–4.44 μM. 

*
 and † 

indicate statistically significant differences from T1 and T2 tertiles, respectively. Abbreviations: PHQ-2, patient health questionnaire-2; SPPB, 
short physical performance battery. 

 

 
 

Figure 3. Logistic regression analyses to determine the odds ratios for phenotypic frailty according to serum kynurenine tertiles (A) before 

and (B) after adjusting for sex, age, and BMI. Phenotypic frailty is defined based on the Fried’s criteria. 
*
Statistically significant difference 

from the lowest tertile (T1). Abbreviations: BMI, body mass index; OR, odds ratio; CI, confidence interval. 
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Several issues and alternatives should be considered 

when interpreting our data. The first is that kynurenine 

might be a by-product of inflammation and that although 

we observed strong associations between kynurenine and 

measures such as gait speed and grip strength, ultimately 

these associations might be driven by increased 

inflammatory cytokine levels. This is certainly possible 

since previous work has shown that kynurenine levels are 

significantly correlated with IL-6 levels in older adults 

[38]. It is also possible that the increase in inflammation, 

and subsequent rise in kynurenine, is associated with 

declines in serotonin and melatonin. Presumably, a shift 

in tryptophan degradation toward the KP will decrease 

bioavailable serotonin and melatonin, which is likely 

given the well-established finding that melatonin levels 

decline with age. The potential decrease in melatonin is 

particularly relevant for understanding the etiology of 

frailty, given that melatonin has recently been shown to 

suppress factors involved in sarcopenia [39] and to 

inhibit bone loss [40, 41]. Historically, research on 

kynurenine synthesis has employed the kynurenine/ 

tryptophan ratio as an important measure of kynurenine 

bioavailability. Future studies could examine the 

melatonin/kynurenine ratio, given the many important 

biological functions of melatonin. 

 

There are several potential limitations of this study. 

Most importantly, the cross-sectional study design 

precludes any causal inferences about the relationship 

between serum kynurenine level and frailty. Second, 

based on previous animal studies that have contributed 

to muscle health [14, 42], a key phenotype of frailty, 

we mainly focused on the kynurenine levels; however, 

other tryptophan derivatives, such as kynurenic acid  

or quinolinic acid, may also be biologically active  

and thus implicated in the aging process. Third,  

the average age of the participants in this study  

(69.4 years) was considered relatively young for  

aging research. Therefore, our results may not be 

entirely applicable to a super-aged population aged 

>80 years. Lastly, we cannot exclude the possibility 

that any biased information or uncontrolled factors that 

affect kynurenine and frailty would interfere the 

conclusion.  

 

In conclusion, we have demonstrated that serum 

kynurenine levels were markedly higher in participants 

with phenotypic frailty than in those without this 

condition and were positively correlated with the frailty 

index in older adults. These data are consistent with  

the results from in vitro and animal experiments 

showing the musculoskeletal weakness and progressive 

neurodegeneration resulting from kynurenine treatment 

[9, 13, 14] and provide clinical evidence that circulating 

kynurenine might be one of attractive biomarkers for 

assessing frailty risk in humans. 

MATERIALS AND METHODS 
 

Study participants 
 

The study population consisted of South Koreans who 

visited the Division of Geriatrics of the Department of 

Internal Medicine of the Asan Medical Center (Seoul, 

South Korea) to undergo a comprehensive geriatric 

assessment between July 2019 and February 2020. We 

excluded patients with a life expectancy of less than one 

year due to malignancy, symptomatic heart failure, or 

end-stage renal failure. We then collected blood 

samples from the 73 participants who granted their 

written informed consent for inclusion in this study, 

which was approved by the Asan Medical Center 

review board (no. 2020-0259). 

 

Comprehensive geriatric assessment 

 

Experienced nurses administered a comprehensive 

geriatric assessment of all participants. Information on 

demographic characteristics and medical or surgical 

histories was collected through detailed interviews and 

reviews of medical records. The protocol for the 

comprehensive geriatric assessment encompassed 

comorbidities, functional status, nutritional status, and 

common geriatric syndromes such as cognitive 

dysfunction, depression, and polypharmacy. 

 

Multimorbidity was defined as having two or more of 

the 18 physician-diagnosed conditions including 

angina, atrial fibrillation/flutter, coronary artery 

disease, diabetes, heart failure, hypertension, 

myocardial infarction, peripheral vascular disease, 

stroke, anxiety disorder, arthritis, asthma, cancer 

within 5 years, chronic kidney disease (estimated 

glomerular filtration rate < 60), chronic obstructive 

lung disease, degenerative spine disease, depression, 

and sensory impairment. Disability was defined as 

requiring assistance from another person to perform 

any of 7 ADLs (feeding, dressing, grooming, walking, 

getting in and out of bed, toileting, and bathing or 

showering) or 7 IADLs (making telephone calls, using 

transportation, shopping, cooking, performing 

housework, taking medications, and managing 

money). To assess the participants’ social frailty, we 

administered the 5-item social frailty questionnaire: 1) 

going out less frequently; 2) rarely visiting the homes 

of friends; 3) feeling unhelpful to friends and family; 

4) being alone; and 5) not talking with someone every 

day [43]. Cognitive dysfunction was defined as a score 

of <24 points on the mini-mental status examination 

by selected participants identified as positive in the 

mini-cognition screening test [44]. The selected 

participants identified as positive in the PHQ-2 

screening test were considered to have depression 
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when they scored 10 or more on the 15-item Korean 

version of the short form of the Geriatric Depression 

Scale (SGDS-K) [45]. 

 

Functional status assessment 

 

Handgrip strength of the dominant side was measured 

using a Jamar hydraulic hand dynamometer (Patterson 

Medical, Warrenville, IL, USA) [46]. Participants were 

instructed to sit comfortably, bend the elbow at 90 

degrees, and grip the dynamometer as strong as 

possible. The maximum value was selected after all 

tests were conducted twice at intervals of 1 min or 

more. We measured the participants’ typical gait speed 

(m/s) for a 4-m walk and the time to complete 5 chair 

stands (s) [47]. The SPPB consists of repeated chair 

stands, standing balance, and gait speed [48]. In the 

standing balance test, including the side-by-side stance, 

semi-tandem stance, and tandem stance, the participants 

were instructed to stand for up to 10 seconds. The score 

ranged from 0 to 12 points, with a higher SPPB score 

indicating better leg function. 

 

Frailty assessment 

 

1) Phenotypic frailty: We evaluated frailty according 

to the Cardiovascular Health Study frailty criteria, a 

widely validated definition for frailty, proposed by 

Fried et al. [16]. The frailty phenotype scale is 

calculated by assigning a point to the following five 

components that are relevant to a given individual: 

self-reported exhaustion, low physical activity, 

weakness, slowness, and unintentional weight loss. 

The method employed in our study for conducting 

these assessments has been previously described [49]. 

Based on the total score, the participants were 

classified as robust (0 points), prefrail (1–2 points), or 

frail (3–5 points). 

 

2) Deficit-accumulation frailty index: The frailty index, 

proposed by Rockwood et al., is known as the most 

sensitive predictor of adverse health outcomes and is 

based on the cumulative effect of medical, functional, 

and psychosocial age-related deficits [17, 18]. In this 

study, we calculated a frailty index that has been 

validated in other studies (see the complete list of 

assessed items in the Supplementary Material) [26, 50]. 

The ratio between the number of identified deficits and 

50 evaluable items is calculated from 0 to 1, with higher 

frailty index values indicating a higher frailty status. 

 

Measurement of kynurenine and tryptophan in 

human serum 

 

Blood samples were collected from the antecubital vein 

of each participant when they were at rest in the morning 

after having fasted overnight for at least 8 hours. After 

centrifuging the samples at 3000 rpm for 5 min at 4° C, 

we carefully collected the supernatants to exclude cell 

components and discarded all samples with hemolysis or 

clotting. We mixed 50-μL human serum with 200-μL 

chloroform/methanol (1/2, v/v) and then added an 

internal standard solution containing 0.6-μM tryptophan-

d5 (Sigma-Aldrich, St. Louis, MO, USA). The sample 

was centrifuged at 14,000 rpm for 15 min. We then 

collected the supernatant, added 100 μL each of H2O and 

chloroform, vigorously mixed the sample and 

centrifuged it at 4000 rpm for 20 min. We employed the 

aqueous phase for chemical derivatization using phenyl 

isothiocyanate. After the reaction, we extracted the 

derivatization products with 5-mM ammonium acetate in 

methanol, which were ready for liquid chromatography-

tandem mass spectrometry (LC-MS/MS) analysis. 

 

We measured the kynurenine and tryptophan levels by 

LC-MS/MS using a 1290 high performance liquid 

chromatography system (Agilent, Waldbronn, Germany), 

QTRAP 5500 system (AB Sciex, Toronto, Canada), and 

a reverse phase column (Zorbax Eclipse XDB-C18, 

100×2.0 mm). We injected 3 μL into the LC-MS/MS 

system and ionized it with a turbo spray ionization 

source. We employed 0.2% formic acid in H2O and 0.2% 

formic acid in acetonitrile as mobile phases A and B, 

respectively. The separation gradient was as follows: 

hold at 0% B for 0.5 min, 0 to 95% B for 5 min, 95% B 

for 1 min, and 95 to 0% B for 0.5 min, then hold at 0% B 

for 2.5 min. The LC flow was 500 μL/min, and the 

column temperature was kept at 50° C. We employed 

multiple reaction monitoring in the positive ion mode and 

used the extracted ion chromatogram corresponding to 

the specific transition for each amino acid for 

quantitation. The calibration range was generally from 1 

nM to 600 μM with R
2
 > 0.98. Data analysis was 

performed using Analyst 1.5.2 software. 

 

Statistical analysis 

 

All data are presented as means ± standard deviation or 

as numbers and percentages unless otherwise specified. 

The baseline characteristics of the study participants 

according to phenotypic frailty status were compared 

using an analysis of variance with posthoc analysis via 

Tukey’s honest significance test for continuous variables 

and Fisher’s exact tests for categorical variables. Using 

an analysis of covariance, we generated and compared 

the estimated means with 95% confidence intervals for 

the serum kynurenine and tryptophan levels and their 

ratio according to the phenotypic frailty status and for the 

frailty-related factors according to serum kynurenine 

tertiles, before and after adjusting for sex, age, and BMI. 

We investigated the association between the frailty-

related factors and the serum kynurenine and tryptophan 
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levels and their ratio using a linear regression analysis. 

To generate the ORs for phenotypic frailty according to 

the increase in serum kynurenine and tryptophan levels 

and their ratio and according to serum kynurenine tertiles, 

we performed a logistic regression analysis. All statistical 

analyses were performed using SPSS, version 18.0 (SPSS 

Inc., Chicago, IL, USA). We considered P < 0.05 to 

indicate statistical significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. Items for comprehensive geriatric assessment-frailty index. 

Medical History (21 items) 

• Angina 

• Anxiety disorder 

• Arthritis  

• Asthma 

• Atrial fibrillation/flutter 

• Cancer within 5 years 

• Chronic kidney disease (eGFR < 60) 

• COPD 

• Coronary artery disease 

• Degenerative spine disease 

• Dementia 

• Depression 

• Diabetes 

• Fall within the past year 

• Heart failure 

• Hypertension 

• Myocardial infarction 

• Peripheral vascular disease 

• Sensory impairment 

• Stroke/TIA 

• Use of ≥ 5 prescription drugs 

Functional Status (22 items) 

Activities of Daily Living 

• Feeding 

• Dressing/undressing 

• Grooming 

• Walking (or use of a walker) 

• Getting in and out of bed 

• Toileting 

• Bathing or shower 

Activities of Daily Living 

• Using telephone 

• Using transportation 

• Shopping 

• Preparing own meals 

• Housework 

• Taking own medications 

• Managing money 

Nagi and Rosow-Breslau Activities  

• Pulling or pushing a large object 

• Stooping, crouching or kneeling 

• Lifting or carrying 10 lbs 

• Reaching arms above shoulder 

• Writing or handling small objects 

• Walking up/down a flight of stairs 

• Heavy work around house 

Performance Tests (4 items) 

Mini-Mental Status Examination 

27–30 points (0 points) 

24–26 points (0.3 points) 

21–23 points (0.7 points) 

<21 points (1 point) 

5 Repeated Chair Stands 

<11.20 s (0 points) 

11.20–13.69 s (0.25 points) 

13.70–16.69 s (0.5 points) 

16.70–60.9 s (0.75 points) 

≥ 61.0 s (1 point) 

Gait Speed 

≥ 1 m/sec (0 points) 

0.80–0.99 m/s (0.3 points) 

0.60–0.79 m/sec (0.7 points) 

<0.60 m/s (1 point) 

Dominant Handgrip Strength 

M, ≥ 32 kg; F, ≥ 20 kg (0 points) 

M, ≥ 26–31 kg; F, 16–19 kg (0.5 points) 

M, <26 kg; F, <16 kg (1 point) 

Nutritional Status (3 items)  

• Weight loss > 4.5 kg in past year • Body mass index < 21 kg/m
2
 • Serum albumin < 3.5 g/dL 

Abbreviations: COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular filtration rate; F, female; M, male; 
TIA, transient ischemic attack. 


