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INTRODUCTION 
 

The functional basic arrangement of eukaryotic DNA is 

based on the nucleosome, which is comprised of a 

fragment of DNA that surrounds eight histone proteins. 

This forms a histone octamer that is comprised of two 

copies of H2A, H2B, H3, and H4, all of which are histone 

proteins. Chromosomes are formed by placing several  

nucleosomes into chromatin, while histones govern the 

assembly, disassembly, and reassembly of nucleosomes, 

making them extremely dynamic arrangements [1–3]. The 

first step to forming nucleosomes and chromatin during the 

replication of DNA is depositing histones onto early-

forming DNA. This nucleosome formation is an important 

phase, during which the S-phase cells contribute to the 

synthesis of DNA. This is because cycling cells must 
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ABSTRACT 
 

Atg7, a critical component of autophagy machinery, is essential for counteracting hematopoietic aging. 
However, the non-autophagic role of Atg7 on hematopoietic cells remains fundamentally unclear. In this study, 
we found that loss of Atg7, but not Atg5, another autophagy-essential gene, in the hematopoietic system 
reduces CD11b myeloid cellularity including CD11b+Ly6G+ and CD11b+Ly6G- populations in mouse bone marrow. 
Surprisingly, Atg7 deletion causes abnormally accumulated histone H3.1 to be overwhelmingly trapped in the 
cytoplasm in the CD11b+Ly6G-, but not the CD11b+Ly6G+ compartment. RNA profiling revealed extensively 
chaotic expression of the genes required in nucleosome assembly. Functional assays further indicated 
upregulated aging markers in the CD11b+Ly6G- population. Therefore, our study suggests that Atg7 is essential 
for maintaining proper nucleosome assembly and limiting aging in the bone marrow CD11b+Ly6G- population. 
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quickly insert the nascent DNA within the nucleosome, 

while simultaneously downplaying the overexpression of 

histone proteins. To meet this need, cells have evolved 

several traits related to the formation of nucleosomes and 

regulatory frameworks that increase the rate at which 

histones are generated during both normal and stressed cell 

cycles [4]. As DNA is replicated, the nucleosome is 

disassembled before the replication machinery, and is 

subsequently reassembled. H3-H4 proteins are recruited by 

the association of the replication components and the 

histone chaperone chromatin assembly factor-1 (CAF-1), 

which occurs directly on the nascent fragment of DNA [5]. 

Similarly, the nucleosome assembly protein 1 (NAP-1) 

inserts histones within the nucleus, which results in the 

formation of nucleosomes and chromatin fluidity. These 

processes regulate the transcription of genes. As such, 

NAP-1 serves an important role in the formation, 

preservation, and interactions of nucleosomes and 

chromatin in eukaryotic DNA [6].  

 

Accumulating evidence links aging to genetic and 

epigenetic alterations [7–9]. However, nucleosome 

assembly and aging have rarely been connected to each 

other. A recent study identified Pak2 as a regulator  

in the deposition of newly synthesized H3.3 onto 

chromatin, and depletion of Pak2 in mice attenuates the 

onset of aging-associated phenotypes and extends life 

span, thereby bridging aging and incorrect deposition of 

histone H3.3 via Pak2 [10]. 

 

Myeloid cells make up a major part of the innate immune 

response and CD11b
+
Ly6G

−
 myeloid cells have been 

reported to mediate mechanical inflammatory pain 

hypersensitivity [11, 12]. Autophagy has been extensively 

studied and implicated in many aspects of mediating 

mammalian stem cell aging [13–16]. However, it is 

unknown if autophagy is linked to aging in differentiated 

hematopoietic cells such as CD11b
+
Ly6G

−
 myeloid cells 

and contributes to regulate the dynamics of nucleosome/ 

chromatin assembly. Based on transcriptional profiling and 

phenotypic analysis of mouse models with autophagy-

essential genes selectively deleted in the hematopoietic 

system, we propose that Atg7 is required to maintain a 

proper nucleosome/chromatin assembly that may be 

associated with aging in the bone marrow CD11b
+
Ly6G

-
 

myeloid cells. 

 

RESULTS 
 

Atg7 deletion diminishes the cellularity of bone 

marrow CD11b
+
 myeloid cells 

 

Deletion of Atg7, a key regulator in autophagy, leads to 

accelerated hematopoietic aging featuring myeloid-biased 

differentiation [14] and non-hematopoietic organ aging 

[14, 15]. However, the role of autophagy or autophagy-

essential genes on matured hematopoietic cells is not 

known. To explore specific effects of Atg7 deletion on 

myeloid cells, we analyzed the pool of CD11b myeloid 

cells, and their subpopulations sorted with Ly6G. Flow 

cytometric analysis demonstrated that both total bone 

marrow CD11b subpopulations of mice with the Atg7 

deletion in the hematopoietic system were significantly 

reduced to around 0.5×10
7
 from approximately 1.7×10

7
 

for CD11b
+
Ly6G

-
 and 2.1×10

7
 for CD11b

+
Ly6G

+
. The 

percentage of CD11b
+
Ly6G

-
 cells over total bone 

marrow cells increased, apparently due to a higher degree 

of total bone marrow cell reduction (Figure 1A, 1B).  

 

Deletion of Atg5, another autophagy gene in the 

hematopoietic system, did not reduce the numbers of 

either subpopulation in the bone marrow, but increased 

the percentages of the cells over total bone marrow cells 

(Figure 1C, 1D). This discrepancy suggests that the 

reduction of CD11b cellularity caused by Atg7 deletion 

may not be attributed to the disruption of the Atg7-

dependent autophagy. Instead, it suggests an autophagy-

independent role of Atg7 in the maintenance of CD11b 

myeloid cellularity in the bone marrow. Likewise, while 

the percentage of CD11b cells over total bone marrow 

cells was significantly increased in both Atg7-deleted 

mice and Atg5-deleted mice (Figure 1E, 1F), changes in 

the percentages of CD11b
+
Ly6G

-
 and CD11b

+
Ly6G

+
 

over total bone marrow CD11b cells were different 

between the Atg7 and Atg5-deleted mice. Atg5 deletion 

caused an opposite change in the percentages of two 

subpopulations over total CD11b cells as compared to 

the Atg7-deleted mice (Figure 1G, 1H). This further 

suggests that Atg7 acts in an autophagy-independent 

role in maintaining bone marrow CD11b cellularity.  

 

Atg7-deletion causes abnormal nucleosome assembly 

of the bone marrow CD11b
+
Ly6G

-
 myeloid cells 

 

To determine why CD11b
+
Ly6G

-
 myeloid cells are 

reduced from Atg7 deletion, we performed RNA 

sequencing of this cell population in wild-type and Atg7-

deleted mice. The volcano plot of differential expression 

analysis, defined with fold change >2 and P value <0.05, 

shows 321 down-regulated genes and 237 up-regulated 

genes due to Atg7 deletion (Figure 2A). Gene ontology 

(GO) enrichment analysis indicated abnormally down-

regulated genes involved in nuclear receptors; 

hematopoietic or lymphoid organ development; 

chaperone DnaJ; a protein promoting translocation of 

enzymes [17]; heat shock protein; mitogen-activated 

protein kinase (MAPK) activity, phosphatase activity; 

and regulation of cell death (Figure 2B, left). Abnormally 

upregulated genes were involved in unregulated immune 

response; antigen processing and presentation; GTPase 

activity; and lymphocyte/leukocyte/T cell differentiation 

(Figure 2B, right). 
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The pathway analysis showed that the capacity of 

nucleosome assembly or chromatin assembly was 

upregulated in the Atg7 deleted CD11b
+
Ly6G

-
  

cells (Figure 2B, right). Gene expression profiling 

further indicated that among all 237 abnormally  

up-regulated genes, 21.5% of the genes are pertinent 

to nucleosome/chromatin assembly (Figure 2C), 

suggesting that abnormality of nucleosome/chromatin 

assembly is the major consequence from loss of the 

Atg7 gene. Further expression profiling shows that an 

extensive array of histone members were abnormally 

upregulated at the transcriptional level in the  

Atg7 deleted CD11b
+
Ly6G

-
 cells (Figure 2D).  

These data suggest that Atg7 deletion causes chaotic 

expression of genes in nucleosome/chromatin 

assembly.  

 

 
 

Figure 1. Atg7 deletion diminishes the cellularity of bone marrow CD11b
+
 myeloid cells. (A–D) Graphical and statistical analysis of 

CD11b and Ly6G by flow cytometry in the bone marrow cells of wild-type and Atg7 or Atg5 hematopoietic-specific deleted mice. (A, C) 
Number of CD11b

+
Ly6G

-
 and CD11b

+
Ly6G

+
 myeloid cells in the bone marrow of wild-type and Atg7 or Atg5-deleted mice. (B, D) Percentage of 

CD11b
+
Ly6G

-
 and CD11b

+
Ly6G

+
 myeloid cells in the bone marrow of wild-type and Atg7 or Atg5-deleted mice. (E, F) Percentage of CD11b

+
  

and CD11b
-
 myeloid cells in the bone marrow of wild-type and Atg7 or Atg5-deleted mice. (G, H) Percentage of Ly6G

+
 and Ly6G

-
 myeloid cells 

in CD11b
+
 myeloid cells from the bone marrow of wild-type and Atg7 or Atg5-deleted mice. 
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Atg7-deletion leads to accumulated histone H3.1 

protein with incorrect cytoplasmic localization in the 

bone marrow CD11b
+ 

Ly6G
-
 myeloid cells 

 

We next examined the protein level of histones, which 

are the backbone of nucleosomes. Western blotting 

results showed that Atg7 deletion increased total 

histone H3.1 in total bone marrow cells (Figure 3A). 

Flow cytometric analysis further revealed that it was 

CD11b
+
, not the CD11b

-
 population, increased in 

protein level (Figure 3B), suggesting abnormal change 

exclusively in CD11b
+
 myeloid cells. Western blotting 

results further showed that the increase in histone H3.1 

was limited to the CD11b
+
Ly6G

-
 cells (Figure 3C), 

which was supported by flow cytometric analysis 

(Figure 3D). Atg7 deletion drove accumulation of 

H3.1 in the cytoplasm, leaving a minor portion in the 

nucleus, shown by the Western blotting analysis with 

bone marrow mononuclear cells (Figure 3E). 

Furthermore, confocal microscopy showed that Atg7 

deletion caused accumulation of H3.1 in the 

cytoplasm, and this protein was hardly visible in the 

nucleus (Figure 3F). These results thus suggest that 

Atg7 deletion resulted in accumulated H3.1 protein 

trapped in the cytoplasm and caused a failure of H3.1 

nuclear localization in the CD11b
+
Ly6G

-
 cell 

population. To examine if abnormal cytoplasmic 

localization of H3.1 is caused by changes in 

acetylation of H3.1, we measured the levels of 

acetylated H3 proteins. The cytometric results showed 

that Atg7 deletion did not change acetylation levels of 

H3 at lysine 9, 14 or 18 (Figure 3G). 

 

 
 

Figure 2. Atg7-deletion causes abnormal nucleosome assembly of bone marrow CD11b
+
Ly6G

-
 myeloid cells. (A) Volcano plot of 

differentially expressed genes (fold change >2, P-value <0.05) in atg7-deletion compared to wild type CD11b
+
Ly6G

-
 cells. A total of 237 genes 

were significantly up-regulated, while 321 genes were down-regulated in atg7-deletion CD11b
+
Ly6G

-
 cells. non-DE: non-differentially 

expressed genes. (B) GO enrichment analysis of up-regulated (right) and down-regulated (left) genes. (C) Gene expression heatmap of 
nucleosome/chromatin assembly-associated genes in atg7-deletion and wild type CD11b

+
Ly6G

-
 cells. Percentage of nucleosome/chromatin 

assembly-associated genes out of total number of up-regulated genes. (D) Gene expression heatmap of histone genes in atg7-deletion and 
wild type CD11b

+
Ly6G

-
 cells.  
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Atg7-deletion results in an aging phenotype in bone 

marrow CD11b
+
Ly6G

-
 myeloid cells 

 

Our previous studies established that Atg7-deletion 

leads to not only speedy aging of the hematopoietic 

stem and progenitor cells, but also faster aging of non-

hematopoietic organs [14, 15]. However, whether 

differentiated hematopoietic blood cells are affected 

by loss of Atg7 in terms of aging or lifespan has not 

been investigated. A functional study with flow 

cytometry showed that Atg7 deletion increased 

oxidative stress shown by increased reactive oxygen 

species (ROS) level (Figure 4A) and mitochondrial 

mass (Figure 4B) in the myeloid cells. Since 

mitochondria are a major compartment in the cell that 

produces ROS, it is likely that the increased ROS is at 

least partly attributed to the increase of mitochondrial 

mass. Increased mitochondrial mass and ROS are early 

triggers that drive cell aging. In the hematopoietic 

system, senescent cells can be killed by apoptosis [18], 

suggesting that speedy aging may accelerate 

programmed cell death. RNA sequencing data showed 

that Atg7 deletion down-regulated an array of proteins 

that inhibit the activation of programmed cell death 

(Figure 4C), and apoptosis was increased from Atg7 

deletion (Figure 4D).  

 

DISCUSSION 
 

The present study indicates that Atg7, previously 

believed to be solely an autophagy-essential gene, is 

required to maintain proper nucleosome assembly in an

 

 
 

Figure 3. Atg7-deletion accumulated histone H3.1 protein with incorrect cytoplasmic localization in the bone marrow 
CD11b

+
Ly6G

-
 myeloid cells. (A, C). Western blotting analysis of histone H3.1 in bone marrow cells. Gapdh or total histone H3 was used as 

a loading control. (A) Mononuclear cells; (C) CD11b
+
Ly6G

-
 and CD11b

+
Ly6G

+
 myeloid cells. (B, D) Flow cytometric analysis of protein level of 

histone H3.1 in bone marrow cells. (B) Analysis of histone H3.1 in CD11b
-
 and CD11b

+
 bone marrow cells. (D) Analysis of histone H3.1 in 

CD11b
+
Ly6G

-
 and CD11b

+
Ly6G

+
 myeloid cells. Right, scheme for analysis of histone H3.1 in bone marrow cells. Left, statistical analysis of 

histone H3.1 geometric mean fluorescence intensity (MFI) in bone marrow cells. (E) Western blotting analysis of histone H3.1 in cytoplasm 
and nucleus from mononuclear cells. (F). Confocal detection of histone H3.1 protein in CD11b

+
Ly6G

-
 myeloid cells. (G) Ratio of geometric 

mean of H3K9/14/18Ac compared to H3. 
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autophagy-independent manner in mouse bone marrow 

CD11b
+
Ly6G

-
 myeloid cells. The abnormality in 

nucleosome assembly is associated with an increase in 

the hallmarks for aging and a decrease in cellularity of 

the Atg7-deleted myeloid cell population (Figure 5).  

 

Recent studies have shown that chromatin organization 

and remodeling affect aging [7, 19, 20]. Nucleosome 

positioning regulates chromatin accessibility and is 

associated with aging [21–23]. RNA sequencing results 

in this study demonstrated that Atg7 deletion causes 

chaotic change in the expression of genes involved in 

nucleosome/chromatin assembly. Among a total of  

237 genes that were upregulated in transcription 

following Atg7 deletion, 21.5% are pertinent to the 

function of nucleosome assembly (Figure 2), suggesting 

that dysfunctional nucleosome assembly is a major 

consequence of Atg7 deletion. Atg7 appears to play a 

major role in maintaining proper nucleosome assembly 

in CD11b
+
Ly6G

-
 myeloid cells. 

 

To examine the possible mechanism by which Atg7 

supports nucleosome assembly, we measured several 

major components of nucleosomes. The most 

significant changes identified were the accumulation of 

histone H3.1 protein, incorrect localization of the 

protein in the cytoplasm (Figure 3) and increased 

oxidative stress (Figure 4). RNA sequencing indicated 

no change in mRNA level for histone H3.1 in the Atg7-

deleted myeloid cells. These findings suggest that loss 

of Atg7 causes an uncontrolled translation of histone 

H3.1 or an impaired degradation of histone H3.1 in the 

cytoplasm. The abnormal accumulation and aberrant 

localization of histone H3.1 appears not to be caused by 

epigenetic modification since acetylation levels of H3 

were not changed when Atg7 was deleted (Figure 3G). 

 

 
 

Figure 4. Atg7 deletion accelerates the aging of CD11b
+
Ly6G

-
 myeloid cells. (A) Flow cytometric analysis of ROS levels of 

CD11b
+
Ly6G

-
 cells with fluorescent DCFH-DA. Left, histogram for flow cytometric assessment of CD11b

+
Ly6G

-
 cells; right, geometric mean 

fluorescence intensity (MFI) of DCFH-DA in CD11b
+
Ly6G

-
 cells of wild-type mice and atg7-deleted mice. (B) Flow cytometric analysis of 

mitochondrial mass levels of CD11b
+
Ly6G

-
 cells with florescent MitoTracker Deep Red. Left, histogram for the flow cytometric assessment of 

CD11b
+
Ly6G

-
 cells; right, geometric MFI of MitoTracker Deep Red in CD11b

+
Ly6G

-
 cells of wild-type and atg7-deleted mice. (C) Gene 

expression heatmap of cell death negative regulators. (D) Analysis of apoptosis in CD11b
+
Ly6G

-
 cells of wild-type mice and Atg7-deleted mice 

by Annexin V and PI double staining. Left, representative flow cytometric measurement; right, statistical results from cytometric analysis. 
Early apoptosis, Annexin V

+
PI

-
; late apoptosis, Annexin V

+
PI

+ 
(right)  
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Aging is driven by excessive oxidative stress [24]. In 

mitochondria, ROS are tightly regulated by cytochrome 

c phosphorylation and respirasome factors [25]. 

Cytochrome c can be shuttled between the mitochondria 

and the nucleus. Too much cytochrome c impairs DNA 

remodeling in the nucleus, and thus inhibits nucleosome 

assembly activity of histone chaperones, such as 

SET/template-activating factor Iβ and NAP1-related 

protein during DNA damage in humans [26]. In 

addition, molecular chaperones have been implicated in 

the folding of nascent polypeptides, translocation across 

membranes, and the assembly of oligomeric complexes 

[27, 28]. Inhibiting the activities of histone chaperones 

may result in upregulation of genes required in 

nucleosome assembly to compensate for inhibition of 

histone chaperones because Atg7 deletion led to 

enhanced expression of a long array of genes (Figure 2C, 

2D), along with enhanced production of oxidative stress, 

in particular mitochondrial mass (Figure 4A, 4B), which 

is a major driver for aging progression. Our previous 

studies also showed that Atg7 deletion increases the 

membrane potential of the mitochondria [29, 30]. 

Therefore, more cytochrome c may be released out of the 

mitochondria and enter the nucleus. That may block  

 

 
 

Figure 5. A cartoon illustrating the role of Atg7 in 
maintaining proper nucleosome assembly in bone 
marrow CD11b

+
Ly6G

-
 myeloid cells. Deletion of Atg7 results 

in an increased percentage of the CD11b
+
Ly6G

-
 cell population in 

the bone marrow of mice, accumulation of histone H3.1, 
cytoplasmic rather than nuclear localization, upregulation of 
genes related to nucleosome assembly, as well as upregulated 
aging markers in the CD11b

+
Ly6G

-
 population, thereby suggesting 

a pivotal role of Atg7 in maintaining proper nucleosome assembly 
and limiting aging progression in the bone marrow CD11b

+
Ly6G

-
 

population. 

DNA remodeling, and ultimately disrupt proper assembly 

of nuclear DNA and histones into nucleosomes. 

 

Nucleosome assembly proteins (NAPs) directly influence 

chromatin compaction and modification, including  

the ability of recruiting nucleosomes to naked DNA 

templates in chromatin assembly [31, 32]. An earlier 

study suggested a potential role for MAPK in chromatin 

reprogramming by histone deacetylase and in chromatin 

assembly via rapid modification of nucleosome assembly 

protein 2 (NAP-2/NAP1L4), a homolog of the NAP-1 

nucleosome assembly complex subunit [33]. Results 

showed that MAPK was downregulated in the Atg7-

deleted myeloid cells. In order to determine if Atg7 

maintains proper nucleosome assembly via MAPK, it 

would be necessary to examine if nucleosome assembly 

proteins are influenced by Atg7 deletion in the future. 

 

RNA sequencing data in this study showed that Atg7 

deletion leads to down-regulation of heat-shock 

protein/chaperone DnaJ (Figure 2B). The molecular 

chaperones of the Hsp70/DnaK family and the cofactors 

of the DnaJ families play an essential role in protein 

degradation [34]. DnaJ stimulates the ATPase activity 

of DnaK [35]. Both components can thus possibly 

facilitate the recognition of substrate conformations or 

act as cofactors in the degradative process. It is likely 

that downregulation of heat-shock protein/chaperone 

DnaJ may suppress normal degradation of histone H3.1, 

leading to its accumulation in the cytoplasm. 

 

In summary, our study proposes a role of Atg7 in 

maintaining nucleosome/chromatin assembly and 

downregulating aging in myeloid cells. Our future 

efforts will focus on understanding the mechanism that 

underlies the link between Atg7 and nucleosome 

assembly.  

 

MATERIALS AND METHODS 
 

Mice 

 

The generation of genetically modified mice Atg7
floxp/floxp

, 

Atg5
floxp/floxp 

and Vav-iCre have been previously described 

[30, 36, 37]. Vav-iCre mice were purchased from the 

Jackson laboratory. Breeding and genotyping of mice 

were also previously described [14]. Atg7
floxp/floxp

 or 

Atg5
floxp/floxp

 serves as the control mouse Atg7
+/+

or Atg5
+/+ 

in this study. All experimental procedures with animals 

were approved by Soochow University Institutional 

Animal Care and Use Committee. 

 

Flow cytometry 
 

Peripheral blood was collected from the orbit of 

anesthetized mice. Bone marrow cells are collected 
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Table 1. Information of the reagents used in this study. 

Name Company Catalog 

CD11b Monoclonal Antibody (M1/70), PE eBioscience™ 12-0112-82 

Ly-6G Monoclonal Antibody (1A8-Ly6g), APC eBioscience™ 7-9668-82 

Anti-Histone H3.1 antibody Abcam ab174712 

Recombinant Anti-ATG7 antibody Abcam ab133528 

GAPDH Antibody Proteintech 60004-1-Ig  

Goat anti-rat IgG (H+L), HRP conjugate Proteintech SA00001-15 

Goat anti-mouse IgG (H+L), HRP conjugate Proteintech SA00001-1 

DyLight488 goat anti-mouse IgG [H+L] Multi Sciences 70-GAM4882 

DyLight549 goat anti-mouse IgG [H+L] Multi Sciences 70-GAM5492 

DAPI Beyotime C1005 

FITC Annexin V Apoptosis Detection Kit BD Biosciences 556547 

Ly-6G Monoclonal Antibody (1A8-Ly6g), PerCP-eFluor 710 eBioscience™ 46-9668-82 

CM-H2DCFDA (General Oxidative Stress Indicator) Thermo Fisher Scientific C6827 

MitoTracker™ Deep Red FM Thermo Fisher Scientific M22426 

 

from femurs and tibia. Flow cytometry cell sorting and 

analysis were performed using BD FACSAria
TM

 III and 

Beckman coulter (gallios). Cell staining procedures 

were according to the manufacturer’s instruction. The 

information of all reagents used in this study are given 

in Table 1. 

 

Western blotting 
 

Cells were sorted from mice bone marrow cells and 

were lysed in 1 X cell lysis buffer (cell signaling 

technology) with protease inhibitor and phosphatase 

inhibitor (roche). Protocols of gel electrophoresis, 

blotting, blocking and treatment with antibodies were 

previously described [38]. 

 

Immunofluorescence 

 

Cells were sorted by flow cytometry with CD11b 

positive and Ly6G negative label. CD11b
+
Ly6G

-
 cells 

were fixed in 4% paraformaldehyde for 15 minutes and 

permeabilized in 0.5% Triton X-100 for 5 minutes. 

Then cells were incubated with histone H3.1 antibody 

overnight at 4° C after blocked with 4% bovine serum 

albumin for 60 minutes. Cells were treated with 

secondary antibody and DAPI before photographed on a 

fluorescence microscope (FV1000MPE-share). 

 

RNA-Seq 

 
CD11b

+
Ly6G

-
 cells were sorted from 8-week-old 

Atg7
+/+

 and 8-week-old Atg7
-/-

 mice. Sequencing library 

were prepared by Novogene. Library preparations were 

sequencing on an Illumina Hiseq platform and 125 

bp/150 bp paired-end reads were generated. HTSeq 

v0.6.0 [39] was used to count the reads numbers 

mapped to each gene. Differential expression analysis 

of two groups was performed using the cuffdiff after 

removing the batch effect. Genes with an adjusted P-

value <0.05 and |log2(fold change)|>1 found by 

DESeq2 were assigned as differentially expressed. Up-

regulated or down-regulated genes were processed 

using biological process GO enrichment. A two-tailed 

Fisher’s exact test was employed to test the enrichment 

of the differentially expressed protein against all 

identified proteins. The GO with a corrected P-value < 

0.05 is considered significant. In addition, the 

differentially expressed pattern of genes was analyzed 

by using R language (v3.4.3). The RNA sequencing 

data has been deposited in GEO database with an 

accession number PRJNA634333. 

 

Statistical analysis 
 

Statistical analyses were performed using SPSS version 

22.0. The statistical significance of the observed 

differences was determined by unpaired t tests. Data 

were expressed as mean ± standard error of the mean 

(SEM). P<0.05 was considered to indicate a statistically 

significant difference. 
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