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INTRODUCTION 
 

Renal cancer is one of the most common malignancies 

that threatens people’s health [1]. Renal clear cell 

carcinoma (usually called RCC, known as KIRC in 

databases) makes up the vast majority of kidney cancers 

and approximately one-third of patients are diagnosed 

in advanced stages [2, 3]. Furthermore, up to 40% of 

patients with local RCC ultimately develop metastasis 

after surgical resections. Antineoplastic drugs are the 

conventional strategies for cancer treatment [4, 5]. The 

current therapies for RCC are still unsatisfactory, 

particularly in those patients with advanced RCC or 

distant metastasis [6]. Although cancer vaccines have 

been developed and the preclinical trials of vaccines 

have shown potential in improving overall survival 

(OS) of RCC, their use requires extensive additional  

 

research [7, 8]. Therefore, it is of vital importance to 

identify promising biomarkers in RCC. 

 

A large number of genes, including protein-coding genes 

and noncoding RNAs, are aberrantly expressed during the 

tumorigenesis and development of carcinoma. Thus, these 

genes are potential therapeutic targets and biomarkers in 

tumor management. For instance, Sun et al. [9] showed 

that CHIP, a protein-coding gene, was markedly 

downregulated in RCC samples compared with para-

cancerous tissues, and its dysregulation was related to the 

development and prognosis of RCC patients. Therefore, 

CHIP was considered as a target for RCC treatment and 

as a biomarker for the prognostication of RCC patients. 

Similarly, Xu et al. [10] revealed that ISG20 was 

abnormally expressed in RCC samples and could function 

as a biomarker and therapeutic target. In addition, with the 
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ABSTRACT 
 

Objective: To identify novel prognostic biomarkers in renal cell carcinoma (RCC).  
Results: 12 coding genes and one miRNA were finally identified as prognostic biomarkers. All of them were 
related to a poor prognosis. Lower expression levels of the coding genes were observed in higher clinical stages. 
Prognostic signatures including 7 biomarkers were identified. Patients in the high-risk group had worse survival 
than those in the low-risk group. The areas under the curves in different years indicated that it was a valuable 
signature in prognosis. It was found that elevated WDR72 inhibited the survival and invasion of 786-O and 
769P cells in vitro. 
Conclusions: Thirteen prognostic biomarkers of RCC were identified. Among them, 7 biomarkers comprised a 
signature to evaluate the RCC prognosis. WDR72 was a cancer suppressor and a potential therapeutic target 
in RCC.   
Methods: Differentially expressed genes/miRNAs (DEGs/DEMs) and prognosis-related genes/miRNAs were 
acquired from public database. Prognostic biomarkers were identified by overlapping the significant 
DEGs/DEMs and prognosis-related genes/miRNAs. The associations between these biomarkers and the clinical 
stages were analyzed. All of these prognostic biomarkers were further investigated with multi-variable Cox 
regression. Finally, the inhibitory effect of WDR72 on the growth and invasion of RCC cells was studied.  



 

www.aging-us.com 25305 AGING 

development of detection technology, similar findings for 

lncRNA, microRNA, and pseudogenes were reported in 

numerous studies [11–13].  

 

Currently, high-throughput platforms provide an 

efficient way to acquire gene expression arrays to 

identify the differentially expressed genes (DEGs) 

between cancer and para-cancerous tissues. Researchers 

can therefore identify novel targets and biomarkers for 

the treatment of carcinoma [14–17]. The Gene 

Expression Omnibus (GEO) is a free public database 

that provides public array and sequence-based 

functional genomics data. Based on the gene expression 

arrays from the GEO database, many DEGs have been 

identified as indicators for early diagnosis and 

biomarkers for the prognosis of various tumors 

including RCC [18, 19]. Gene Expression Profiling 

Interactive Analysis (GEPIA), a novel public database, 

is a tool used to analyze the RNA-sequencing data from 

over 10 thousand tumors and normal samples via a 

standardized procedure [20]. It has been widely used 

with other databases to explore promising biomarkers 

and therapeutic targets in various cancers [21–23]. The 

overlapped genes are likely to be very promising and 

critical because they are demonstrated in all of the 

databases.  

In this study, we combined the GEO and GEPIA2 

databases to identify more valuable prognostic 

biomarkers in RCC. As expected, we finally identified 

13 genes including 12 protein-coding genes and hsa-

miR-21-5p as prognostic biomarkers. Among them, 7 

genes were identified as new prognostic biomarkers in 

RCC. Moreover, WDR72 was found to be the most 

significant prognostic gene in RCC. Based on  further 

study of WDR72, we found that WDR72 was of vital 

importance in the development of RCC.  

 

RESULTS 
 

Identification of DEGs, DEMs and prognostic 

biomarkers in RCC 

 

We identified prognostic biomarkers by a standardized 

procedure (Figure 1A). The data in the GSE105288 

dataset showed that there were a total of 480 DEGs in 

the RCC samples, including 164 upregulated DEGs and 

316 downregulated DEGs (Figure 1B), while there were 

only 5 upregulated DEMs and 2 downregulated DEMs 

in the GSE116251 dataset (Figure 1C). Moreover, we 

obtained 1625 upregulated DEGs and 1321 

downregulated DEGs in RCC tissues by using GEPIA2 

database (Figure 1D and 1E).  

 

 
 

Figure 1. DEGs/DEMs and prognosis-related genes/miRNAs identification in different datasets and databases. (A) A 
standardized procedure for the identification of prognostic biomarkers; (B) Volcano plot of DEGs from GSE105288; (C) Volcano plot of DEMs 
from GSE116251; (D) Intersection of the upregulated genes and (E) downregulated genes from the GSE105288 dataset and the GEPIA2 
database; (F) Intersection of 49 prognostic miRNAs from the Oncolnc database and 7 DEMs from the GSE116251 dataset. 
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The top 500 genes (Supplementary Table 1) that were 

related to overall survival (OS) and disease-free 

survival (DFS) separately in GEPIA2 were then 

screened. Among them were 179 genes related to both 

OS and DFS (Figure 1D and 1E).  

 

The overlapped genes in both GSE105288 and the 

above 179 genes in GEPIA2 included 12 ones as 

follows: WDR72, ALDH6A1, CDS1, SLC25A4, 

MTURN, ERBB2, NR3C2, OGDHL, BSPRY, HADH, 

DNASE1L3 and CLDN10 (Figure 1E). 

 

Furthermore, as for the miRNAs OS profile a total of 

448 miRNAs were downloaded from the Oncolnc 

platform. There were 49 miRNAs significantly related 

to OS (Figure 1F). Hsa-miR-21-5p was the only 

overlapped miRNA in both DEMs and  among the 

above 49 miRNAs (Figure 1F).  

 

Taken together, the 12 genes and hsa-miR-21-5p were 

selected as prognostic biomarkers in RCC. 

 

Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment 

 

To understand the underlying functions of the significant 

DEGs, Metascape was used for functional enrichment. 

The outcomes of GO analysis suggested that 

“extracellular structure organization”, “endoplasmic 

reticulum lumen”, and “response to oxygen levels” were 

the most important items for the upregulated significant 

DEGs (Figure 2A), while for the downregulated 

significant DEGs they were “apical plasma membrane”, 

“kidney development”, and “monovalent inorganic  

cation homeostasis” (Figure 2C). Moreover, in DEGs 

analyzed in the KEGG pathway analysis, the DEGs were 

involved in multiple pathways, including 

“Staphylococcus aureus infection”, “PPAR signaling 

pathway”, “Phagosome”, “Aldosterone-regulated sodium 

reabsorption”, and the “Collecting duct acid secretion” 

pathways (Figure 2B and 2D). These pathways may 

provide researchers with directions of further mechanistic 

investigations of these DEGs in RCC. 

 

Hsa-miR-21-5p expression was negatively related to 

11 of the coding genes in RCC 

 

To further study the association between hsa-miR-21-5p 

and the 12 coding genes in RCC, we compared their 

levels between tumor and normal samples from UCSC 

Xena as well as the TCGA database. Consistent with the 

results of the GSE105288 and GSE116251 datasets, the 

levels of all 12 coding genes were lower in the RCC 

samples (Figure 3A), while the expression of hsa-miR-

21-5p was significantly increased (Figure 3B). To figure 

out the expression relationship between hsa-miR-21-5p 

and the 12 coding genes, we next checked the 

coexpression of hsa-miR-21-5p and the 12 genes in 

StarBase. The results indicated that hsa-miR-21-5p was 

negatively related to these coding genes except for

 

 
 

Figure 2. Results of DEGs for the GO and KEGG pathway analysis. (A) The enriched GO biological processes and (B) KEGG pathways of 
the significant upregulated DEGs; (C) The enriched GO biological processes and (D) the KEGG pathways of significant downregulated DEGs.  
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CLDN10 (Figure 3C), which was the only gene with a P 

value over 0.05.   

 

Decreased level of the 12 coding genes and increased 

level of hsa-miR-21-5p showed poorer prognosis of 

RCC 

 

To determine the exact prognostic significance of the 

identified genes, we evaluated the OS and DFS of the 

12 coding genes as well as the OS of hsa-miR-21-5p in 

GEPIA2 and Oncolnc, respectively. The results showed 

that high expression of hsa-miR-21-5p was associated 

with poor OS and DFS (Supplementary Figure 1), and a 

decreased level of all 12 coding genes indicated a poor 

OS and DFS (Figure 4A and 4B), which suggested that 

these genes and hsa-miR-21-5p could indeed act as 

biomarkers in the prognostication of RCC.  

 

The prognostic biomarkers were related to the 

clinical stages of RCC 
 

To investigate the association between the prognostic 

biomarkers and the clinical stages, the levels of the 

biomarkers at different stages were evaluated. As shown 

in Figure 5, the levels of the 12 coding genes were 

lower in higher stages, and some genes, for instance, 

WDR72, ALDH6A1, OGDHL, and DNASE1L3, were 

gradually decreased as stage increased. However, 

increased expression of hsa-miR-21-5p was positively 

related to increased stage. 

 

Gene signatures predicted the OS and DFS of RCC   
 

Multivariate Cox regression analysis was used to further 

explore the signature of the multiple genes regarding the 

survival of RCC. A group of seven genes (WDR72, 

ALDH6A1, CDS1, HADH, DNASE1L3, CLDN10, 

hsa-miR-21-5p) were finally exported into the model as 

a molecular signature to predict OS (Supplementary 

Table 2). Five genes (WDR72, ALDH6A1, OGDHL, 

HADH, and DNASE1L3) exported were found to be a 

molecular signature to predict DFS (Supplementary 

Table 3).  

 

Based on the levels of the above seven biomarkers in 

the risk model, all patients were divided into two 

groups: low- and high-risk groups (Figures 6A, 7A). 

The patients in the low-risk group had a more favorable 

OS and DFS than those in the high-risk group (Figure 

6B, 7B). The accuracy of this OS model (the area under 

 

 
 

Figure 3. Expressionss of the prognostic biomarkers and their coexpression in RCC. (A) The 12 coding genes were downregulated 

and (B) hsa-miR-21-5p was upregulated in tumor samples compared with normal samples; (C) Showing the coexpression of prognostic coding 
genes and hsa-miR-21-5p in RCC, among which 11 coding genes (WDR72, ALDH6A1, CDS1, SLC25A4, MTURN, ERBB2, NR3C2, OGDHL, BSPRY, 
HADH, DNASE1L3) were negatively related to the expression of hsa-miR-21-5p. CLDN10 was the only gene with a P value over 0.05. 
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the ROC curve) was 76.6%, 71.6% and 72.9% at 1, 3 

and 5 years, respectively (P<0.001) (Figure 6C). 

Similarly, the accuracy of this DFS model (the area 

under the ROC curve) was 74.3%, 74.7% and 77.4% at 

1, 3 and 5 years, respectively (P<0.001) (Figure 7C). 

These data suggested that the signature was quite 

valuable in predicting OS and DFS of RCC, and it was 

more convincing in predicting OS than DFS.  

Increased WDR72 expression inhibited the survival 

and invasion of RCC cell lines in vitro 
 

WDR72 was found to be the most significant 

prognostic gene among the identified coding genes in 

RCC. To further investigate its role in cell 

proliferation and invasion, WDR72 was successfully 

overexpressed in RCC 769P (clone #1 and #2) and

 

 
 

Figure 4. Kaplan-Meier curves of OS and DFS of 12 prognostic coding genes. Lower expression of all 12 coding genes was relevant to 
both unfavorable  OS (A) and worse DFS (B) in patients with RCC. 
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786-O (clone #1 and #2) cells by a lentivirus system 

(Figure 8A). CCK-8 assay displayed overexpression of 

WDR72 significantly inhibited cell proliferation 

(Figure 8B). Then, by cell invasion assay, we found 

that overexpression of WDR72 decreased the 

invasiveness of RCC cells (Figure 8C). These data 

suggested that increased expression of WDR72 

inhibited the survival and invasion of RCC cell lines. 

Therefore, WDR72 might serve as a cancer suppressor 

in RCC.  

 

 
 

Figure 5. The association of the prognostic biomarkers and clinical stages. Lower levels of the 12 coding genes were observed in 

higher clinical stages. However, the level of hsa-miR-21-5p was elevated in higher clinical stages.   
 

 
 

Figure 6. OS of the signature with multiple genes in RCC. (A) Patients were classified by risk score and their survival status; (B) OS of 
the signature of multiple genes in this model, which indicated that patients in the low-risk group had a more favorable OS than those in the 
high-risk group. (C) ROC curves suggested that the accuracy of this model was 76.6%, 71.6% and 72.9% at 1, 3 and 5 years, respectively.    
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DISCUSSION AND CONCLUSION 
 

Recently, the development of high-throughput gene 

detection technology uncovered big biological data from 

tumors and provided resources for the identification of 

promising therapeutic targets, diagnostic and prognostic 

biomarkers in cancers [16]. In addition, the development 

of databases that integrate RNA-seq data and clinical 

information of various tumor types offers an available 

approach to explore biomarkers in cancers. Several 

databases for tumors have been developed [24–26].  

In the present study, we used the GSE105288 

 

 
 

Figure 7. DFS of the signature with multiple genes in RCC. (A) Patients were classified by risk score and their survival status; (B) DFS of 

the signature of multiple genes in this model, which indicated that patients in the low-risk group had a better DFS than those in the high-risk 
group. (C) ROC curves suggested that the accuracy of this model was 74.3%, 74.7% and 77.4% at 1, 3 and 5 years, respectively.    

 

 
 

Figure 8. Role of WDR72 overexpression in cell survival and invasion of RCC. (A) The results of western blot showed that WDR72 

was successfully overexpressed in 769-P and 786-O cells; overexpression of WDR72 remarkably decreased the survival (B) and invasiveness 
(C) of 769-P and 786-O cells.  
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dataset and the GEPIA2 database to acquire 432 

significant DEGs. Functional enrichment analysis 

revealed that these DEGs were involved in “apical 

plasma membrane”, “kidney development”, 

“monovalent inorganic cation homeostasis”, 

“Staphylococcus aureus infection”, “PPAR signaling 

pathway”, “Phagosome”, etc. Among these functions 

and pathways, “apical plasma membrane” is important 

for renal function regulation [27], while 

“Staphylococcus aureus infection, PPAR signaling 

pathway, and phagosome” are key pathways in RCC 

development [28–30].  

 

By overlapping the significant DEGs and the prognostic 

genes, 12 prognostic coding genes, including WDR72, 

ALDH6A1, CDS1, SLC25A4, MTURN, ERBB2, 

NR3C2, OGDHL, BSPRY, HADH, DNASE1L3, and 

CLDN10 were finally identified. Similarly, a prognostic 

miRNA gene was identified by using the GSE116251 

dataset and the Oncolnc database. These 13 genes were 

considered as prognostic biomarkers for RCC. Among 

them, 3 coding genes have been previously reported to 

be involved in the biological process of RCC. Lu et al. 

[31] detected the expression of ALDH6A1 in 50 pairs 

of clinical samples. ALDH6A1 was expressed at lower 

levels in the vast majority of tumor samples compared 

with the corresponding normal tissues. In addition, 

lower expression of ALDH6A1was related to a worse 

prognosis of RCC. In vitro results demonstrated that 

ALDH6A1 overexpression could decrease cell 

proliferation and migration, but its regulatory 

mechanism was not uncovered.  

 

Some other examples are NR3C2 [32] and HADH [33]. 

It was shown that lower expression of NR3C2 was 

related to a worse OS and progression-free survival of 

RCC. NR3C2 functions as a tumor suppressor both in 

vitro and in vivo. Consistent with these studies, we also 

found that the expression levels of ALDH6A1, NR3C2, 

and HADH were downregulated. Moreover, we found 

another 9 coding genes that were also down-regulated 

and associated with worse OS and DFS of RCC 

patients. These genes could be novel candidates for 

prognostic biomarkers in RCC.  

 

We further explored the association between these 

candidate biomarkers and the clinical stages of patients 

with RCC. It was found that some biomarkers showed a 

significant correlation with the stages, suggesting these 

biomarkers may also be valuable in staging of RCC 

patients.  

 

The combinatorial effect of these prognostic indicators 

was investigated in our study. A signature of seven 

genes was obtained and a risk model was constructed 

based on the signature for predicting the survival of 

patients with RCC. The signature could accurately 

classify the patients into low-risk and high-risk groups, 

which had different OS and DFS outcomes.     

 

Among these biomarkers, WDR72 was the most 

significant one for the prognosis of RCC. The previous 

literature revealed that WDR72 has mainly been 

investigated in amelogenesis imperfecta, and has rarely 

been reported in malignancies [34–36]. The previous 

studies of WDR72 were in bladder and esophageal 

cancer. WDR72 was suggested to be a candidate 

biomarker for identifying the risk of recurrence. In 

addition, WDR72 could also be used as an indicator in 

the diagnosis of esophageal cancer  

[37, 38]. In the present study, we first demonstrated that 

WDR72, as a novel gene, was involved in the 

development of RCC. The outcomes in vitro showed 

that overexpression of WDR72 decreased the survival 

and invasiveness of RCC cells, which was in 

accordance with the results from the database.  

 

There were also nonoverlapping genes. For instance, the 

expression level of ABCC4, a nonoverlapped gene, is 

elevated in RCC and it is required in the regulation of 

cell survival [39]. ABCC4 induces cell arrest and 

apoptosis. However, it is unknown whether ABCC4 is 

valuable in the prognosis of RCC. In contrast, WDR72 

is one of the most significant prognostic genes in RCC. 

Low expression of WDR72 indicates a worse OS and 

DFS. The data obtained about WDR72 in vitro also 

provides additional evidence that WDR72 is a potential 

tumor suppressor and therapeutic target in RCC.  

 

As for the standard approach to RCC's prognosis, we 

believe that it is much stricter when using WDR72. 

WDR72 was screened from a database including 9,736 

tumors and 8,587 normal samples. The P values of OS 

and DFS were 1.31E-10 and 2.25E-13 respectively. 

These data suggest that WDR72 is likely to be a cancer 

suppressor and a novel target for RCC treatment.  

 

Furthermore, we found that hsa-miR-21-5p was 

overexpressed and correlated with an unfavorable 

prognosis of RCC, which is another candidate 

biomarker consistent with previous studies [40, 41]. In 

addition, we found that the expression of hsa-miR-21-

5p was inversely related to the investigated coding 

genes (except for CLDN10), which indicated that hsa-

miR-21-5p might target these 11 genes involved in the 

development of RCC. Hence, the regulatory mechanism 

of these prognostic biomarkers may be via a ceRNA 

modulating pattern, which has been well known in 

miRNA-mRNA regulation [42, 43]. 

 

In conclusion, we identified 13 genes as prognostic 

biomarkers in renal cell carcinoma and revealed their 
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probable regulatory mechanism in the progression of 

RCC. Among them, WDR72 may also be a novel 

therapeutic target for RCC. The molecular mechanism 

of this biomarker in RCC deserves further validation 

and other candidate biomarkers should be further 

investigated in the future.   

 

MATERIALS AND METHODS 
 

Differential gene expression analysis 

 

The gene expression profile of GSE105288 [44] and the 

miRNA expression profile of GSE116251 [45] were 

downloaded from the GEO database (https://www.ncbi. 

nlm.nih.gov/geo). The GSE105288 dataset includes 35 

RCC samples and 9 normal renal samples. GSE116251 

is comprised of 18 RCC tissues and 18 normal renal 

tissues. The comparison was performed in GEO2R to 

identify DEGs and differentially expressed miRNAs 

(DEMs). Since the adj. P-value could amend the false 

positive rate, we selected the adj. P-value< 0.05 and 

|log2FC|>1 as cut-off criteria. In addition, with q-value 

< 0.01 and |log2FC|>1, the DEGs of RCC in the Gene 

Expression Profiling Interactive Analysis (GEPIA2) 

database were also downloaded using the ANOVA 

method. The DEGs from the GSE105288 dataset and 

the GEPIA2 database were considered as the significant 

DEGs, while the DEMs from GSE116251 were defined 

as significant DEMs. GEPIA2 is an open web version 

for visual analysis based on the RNA sequencing 

expression data of 9,736 tumors and 8,587 normal 

samples from the Cancer Genome Atlas (TCGA) and 

the GTEx projects [46]. GEO2R (https://www.ncbi. 

nlm.nih.gov/geo/geo2r), is an interactive web tool to 

identify DEGs through comparing grouped samples 

based on the GEO query and R-packages. 

 

Functional and pathway enrichment analysis 

 

Metascape is an efficient platform for gene function 

annotation analysis [47]. It is composed of functional 

enrichment, interactome investigation, genomic 

annotation and packages approximately 50 independent 

knowledge-bases into a single platform. Significant 

DEGs were input into the Metascape program to carry 

out GO and KEGG pathway analysis. Homo sapiens 

was selected and the P-value <0.05 was considered 

statistically significant. 

 

Prognosis-related genes and miRNAs screening 
 

Both the most significant OS-related genes and DFS-

related genes in RCC were screened in the GEPIA2 

database and the top 500 genes with P-value<0.05 were 

downloaded. Oncolnc (http://www.oncolnc.org) is an 

online program containing survival data for 8647 

patients of 21 cancer types from the TCGA database. 

The clinical and expression data of the mRNAs, 

microRNAs, and long non-coding RNAs can be directly 

downloaded from Oncolnc. Thus, we downloaded the 

miRNAs OS profile of RCC and the BH-adjusted  

p-value <0.05 was thought to indicate prognosis-related 

miRNAs.  

 

Prognostic biomarkers identification  
 

The significant DEGs and significant prognosis-related 

overlapped genes were used to construct prognostic 

biomarkers in RCC. Similarly, the significant DEMs 

and prognosis-related miRNAs were also used to 

establish prognostic biomarkers in RCC. OS was 

defined as the time from treatment of RCC to death. 

Death could be either cancer-related or cancer-

unrelated. DFS was defined as time from treatment of 

RCC to recurrence. A recurrence was considered as the 

development of RCC confirmed by pathological or 

radiological diagnosis at the operative site, in the 

regional lymph nodes, or a distant metastasis. 

 

Verification of expression and prognostic 

significance of the prognostic biomarkers 
 

UCSC Xena (https://xena.ucsc.edu/) is a visual 

exploration resource for both data downloading and 

online analysis based on Xena Browser. It also allows 

biologists to figure out the relationships between 

genomic and clinical data. StarBase (http://starbase.sysu. 

edu.cn/index.php) is a tool for exploring noncoding 

RNA functions and regulatory mechanisms. StarBase 

identifies millions of interactions among miRNA, 

ncRNA and mRNA using multiple dimensional data. 

The mRNA expression data of prognostic genes and 

prognostic miRNAs were downloaded from the UCSC 

Xena database and the TCGA database (https://www. 

cancer.gov/tcga), respectively. The prognostic 

significance of prognostic genes and miRNA were 

evaluated in the GEPIA2 and Oncolnc platforms 

separately. Furthermore, we analyzed the coexpression 

of the prognostic genes and prognostic miRNA in RCC 

with the StarBase version 3 database. 

 

Association between prognostic biomarkers and 

clinical stage 

 

We further analyzed the association between the 

expression of these prognostic biomarkers and the 

clinical stage of RCC patients. The expression levels of 

all the 13 biomarkers were compared in different stages 

(I, II, III, and IV). Differences between every two stages 

were analyzed by t-test. The ggplot2 package of R 

software (4.0.2) was used for result visualization. P 

value <0.05 was considered statistically significant.  

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r
https://www.ncbi.nlm.nih.gov/geo/geo2r
https://xena.ucsc.edu/
http://starbase.sysu.edu.cn/index.php
http://starbase.sysu.edu.cn/index.php
https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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Multivariate Cox regression analysis 

 

To understand the combinatorial effect of the identified 

biomarkers, multivariate Cox regression analysis was 

performed and a risk model was established. Patients 

were divided into high-risk and low-risk groups by the 

cut-off value (1.0) of the risk score. Then, the survival 

of the two groups was evaluated by Kaplan-Meier 

survival curves with log-rank test. Time-dependent 

ROC curves were performed to assess the performance 

of the signature classifier at 1, 3 and 5 years.  

 

Cell culture 

 

The HEK293T, 786-O and 769P cell lines were 

purchased from the American Type Culture Collection 

(ATCC). The HEK293T, 786-O and 769-P cells were 

respectively cultured in RPM1-DMEM medium (with 

L-glutamine) and RPM1-1640 medium (with L-

glutamine) (Fcmacs Biotech, Nanjing, China) in a 5% 

CO2 incubator at 37° C. Both kinds of medium were 

complete medium supplemented with 10% fetal bovine 

serum (FBS) (Fcmacs Biotech) and 1% penicillin and 

streptomycin (Sangon, Shanghai, China).  

 

Gene overexpression 

 

Lenti-sgRNA
WDR72

 was constructed by lenti sgRNA 

(MS2). The sgRNA
WDR72

 plasmid was mixed with the 

REV, GAG and VSVG plasmids (Hanheng Biotech, 

Shanghai, China) to construct Lenti-sgRNA
WDR72

. After 

transfection for 48 h, recombinant lentiviruses were 

obtained. Lenti-dCas9 and Lenti-MPH were constructed 

in the same way. The 786-O and 769-P cells were 

infected by the Lenti-dCas9 and Lenti-MPH to generate 

769P
dCas9+MPH+

 and 786-O
dCas9+MPH+

 cells, which were 

finally infected with Lenti-sgRNA
WDR72

. The 1640 

medium containing puromycin was used to screen the 

cells for 3-4 days. The cells with stably overexpressed 

WDR72 were selected for further study. We also 

validated the expression of WDR72 by western blot. 

 

Western blot  

 

Radioimmunoprecipitation assay (RIPA) solution was 

utilized to extract the total protein of the cells and BCA 

reagent (Beyotime, Shanghai, China) was used to 

determine their concentration. Protein samples were 

separated by electrophoresis and then transferred to 

polyvinylidene difluoride membranes (Millipore, USA) 

for 2 h. Subsequently, the membranes were blocked 

with 3% bovine serum albumin (Sangon, Shanghai, 

China) and incubated with anti-WDR72 primary 

antibody (Cell Signaling, Danvers, MA, USA) at 4° C 

overnight. The next day, 1×TBST was used to wash the 

membranes 3 times. Then, a secondary antibody was 

used to incubate the membranes at room temperature for 

1.5 h. Finally, the bands were scanned by a gel-imaging 

platform (UVP, CA, USA). 

 

Cell proliferation assay 

 

According to the instructions of the manufacturer, the 

Cell Counting Kit-8 (CCK-8) (Vazyme, Nanjing, 

China) assay was used to measure cell proliferation. 

Experimental cells were inoculated in the 96-well plate 

(each well with 1 × 10
4 

cells) and cultured in an 

incubator for 24 h, 48 h, and 72 h. Then, 10% CCK-8 

reagent was added into each well and continuously 

cultured for 1 h. The optical density (OD) at 450 nm 

was measured. Three independent experiments were 

carried out.  

 

Cell invasion assay 
 

Invasion assay was conducted using 24-well Transwell 

chambers (Corning Incorporated, USA). 786-O
WDR72(+)

, 

769-P
WDR72(+)

 cells as well as the control were seeded in 

the upper chamber (2×10
4
 cells) with 500 µL 1640 

medium. Then, the cells were cultured in the incubator for 

24 h. After wiping away the noninvading cells on the 

surface of the upper chamber, we stained the cells in the 

lower chamber with crystal violet (BBI life sciences, 

Shanghai, China) at room temperature for 30 min. The 

chamber was photographed before the cells were counted. 

Five independent areas of each well were acquired and the 

mean number of cells was used for graphing. 

 

Statistical analysis 

 

Every experiment was repeated no less than 3 times. 

The comparisons of different groups were performed 

with independent sample t-test. A two-sided P 

value<0.05 was defined as statistically significant. 

GraphPad prism 8.0 and R software (4.0.2) were used 

for graphing. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Kaplan-Meier curves of OS and DFS of hsa-miR-21-5p in RCC. 
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SUPPLEMENTARY TABLES 
 

 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

 

Supplementary Table 1. Survival-related gene in KIR. 

 

Supplementary Table 2. Multivariate Cox regression analysis of pronostic biomarkers for OS.  

Gene 
Multivariate Cox regression analysis 

HR Low 95% CI High 95% CI Coefficient 

WDR72 0.924252937 0.835673516 1.022221567 -0.078769504 

ALDH6A1 0.841058328 0.722946199 0.978467156 -0.173094266 

CDS1 1.206009676 0.992697351 1.465158881 0.187317122 

HADH 0.553366621 0.385647718 0.794026783 -0.59173453 

DNASE1L3 0.859011757 0.76805078 0.960745329 -0.15197267 

CLDN10 0.890757465 0.808626404 0.981230464 -0.115683094 

miR-21-5p 1.237694323 0.931886916 1.64385529 0.213250232 

 
Supplementary Table 3. Multivariate Cox regression analysis of pronostic biomarkers for DFS.  

Gene 
Multivariate Cox regression analysis 

HR Low 95% CI High 95% CI Coefficient 

WDR72 0.913106585 0.830464779 1.003972302 -0.090902664 

ALDH6A1 0.827531871 0.712829082 0.960691721 0.827531871 

OGDHL 0.933006303 0.853832 1.019522296 0.933006303 

HADH 0.674380721 0.469142544 0.969405487 0.674380721 

DNASE1L3 0.800762037 0.718979677 0.891846961 0.800762037 

 

 

 


