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INTRODUCTION 
 

Renal cell carcinoma (RCC) accounts for approximately 

90% of all kidney tumors and 2% to 3% of all adult 

malignancies [1]. Kidney renal papillary cell carcinoma 

(KIRP) is the second most frequent subtype of RCC and 

accounts for nearly 15% to 20% of the total RCC cases 

[2, 3]. KIRP is a heterogeneous disease with two 

histological subtypes that show significant variations in 

disease progression and survival outcomes [4, 5]. The 

underlying molecular mechanisms are not fully 

understood, despite the characterization of several gene 

mutations in KIRP tissues [6]. Furthermore, the efficacy 

of targeted therapy has not been established in KIRP 

patients with advanced disease [3]. Currently, there is 

no consensus on the optimal risk gene signature to 

determine the prognosis of KIRP patients [7]. Hence, 

there is an urgent need to identify novel prognostic 

biomarkers and therapeutic targets for improving the 

survival outcomes of KIRP patients. 

 

DNA methylation and post-translational histone 

modifications are involved in the epigenetic 

regulation of cellular development and differentiation 

in normal and pathological conditions [8, 9].  

Recent studies also show that RNA methylation 

epigenetically regulates several biological functions. 

[10, 11] The common RNA modifications are 5-

methylcytosine (m5C), N6-methyladenosine (m6A), 

N7-methylguanosine (m7G), and pseudouridine  

[12–14]. The m6A RNA methylation is the most 

frequent, abundant, and conserved form of RNA 
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ABSTRACT 
 

In this study, we investigated the prognostic significance of the expression of N6-methyladenosine (m6A) RNA 
methylation regulatory genes in kidney renal papillary cell carcinoma (KIRP). RNA-sequencing data analysis 
showed that 14 of 20 major m6A RNA methylation regulatory genes were differentially expressed in the KIRP 
tissues from The Cancer Genome Atlas (TCGA) database. We constructed a prognostic risk signature with three 
m6A RNA methylation regulatory genes, IGF2BP3, KIAA1429 and HNRNPC, based on the results from univariate 
and LASSO Cox regression analyses. Multivariate Cox regression analysis confirmed that the risk score based on 
the three-gene prognostic risk signature was an independent predictive factor in KIRP. The overall survival of 
high-risk KIRP patients was significantly shorter than the low-risk KIRP patients. Expression of the three 
prognostic risk-related genes correlated with the AJCC and TNM stages of KIRP patients from TCGA and GEPIA 
datasets. ROC curve analysis showed that the three-gene prognostic risk signature precisely predicted the 1-
year, 3-year and 5-year survival of KIRP patients. These findings demonstrate that expression of three 
prognostic risk-related m6A RNA methylation regulatory genes accurately predicts survival outcomes in KIRP 
patients. 
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methylation that has been reported in several 

messenger RNAs (mRNAs), long noncoding RNAs 

(lncRNAs) and other RNA species [12, 15]. Genome-

wide changes in gene expression because of dynamic 

and reversible changes in m6A methylation have been 

reported in normal and disease conditions in various 

tissues [16]. Analogous to DNA methylation or 

histone modifications, m6A methylation is regulated 

by several methyltransferases, demethylases, and 

other RNA binding proteins [16]. Several 

methyltransferases (m6A writers) such as METTL3, 

METTL14, WTAP, KIAA1429, RBM15, RBM15B 

and ZC3H13 are involved in the generation of the 

m6A modification of mRNAs, lncRNAs and other 

RNAs [17]. On the other hand, m
6
A is removed by a 

demethylase (m6A eraser) composed of FTO and 

ALKBH5 [18]. The m
6
A modification alters the 

interactions of the modified RNAs with the RNA 

binding proteins (m6A readers), including IGF2BP1, 

IGF2BP2, IGF2BP3, YTHDF1, YTHDF2, YTHDF3, 

YTHDC1, YTHDC2, HNRNPC, HNRNPA2B1 and 

RBMX [15, 16, 18, 19]. The m6A RNA methylation 

regulatory proteins have been reported to play a 

critical role in stem cell differentiation and 

pluripotency, metabolism, circadian rhythm, embryo 

development, and tumor progression [13, 20, 21]. 

Aberrant m6A modification is associated with the 

progression of urological tumors [22].  

 

The clinical relevance and prognostic significance of 

m6A-RNA methylation regulatory genes has not been 

studied in KIRP. Hence, we systematically analyzed the 

relationship between the expression of 20 different m6A 

RNA methylation regulatory genes and the 

clinicopathological parameters of KIRP patients from 

The Cancer Genome Atlas (TCGA) database. We also 

established a prognostic risk signature model with three 

m6A RNA methylation regulatory genes and evaluated 

its efficacy to predict survival outcomes of KIRP 

patients. 

 

RESULTS 
 

Fourteen out of twenty m6A RNA methylation 

regulatory genes are differentially expressed in 

KIRP tissues 

 

We analyzed the expression levels of 20 m6A RNA 

methylation regulating proteins in KIRP (n = 289) and 

normal samples (n = 32) from the TCGA database. The 

heatmap showed that the expression of 14 m6A 

methylation regulators (IGF2BP3, IGF2BP1, HNRNPC, 

YTHDF2, KIAA1429, YTHDF3, METTL14, ZC3H13, 

ALKBH5, IGF2BP2, RBM15B, YTHDF1, RBMX and 

HNRNPA2B1) were differentially expressed in KIRP 

tissues compared to normal kidney tissues (Figure 1A). 

We observed that IGF2BP3, RBMX, YTHDF1, 

IGF2BP2, HNRNPA2B1, RBM15B and HNRNPC 

were significantly upregulated, and YTHDF2, 

IGF2BP1, METTL14, ALKBH5, KIAA1429, YTHDF3 

and ZC3H13 were significantly downregulated in the 

KIRP tissues compared to the normal kidney tissue 

samples (Figure 1B). The expression of WTAP, 

RBM15, YTHDC2, FTO, METTL3 and YTHDC1 was 

similar in KIRP and normal kidney tissue samples 

(Figure 1A). 

 

PPI network and correlation analysis between m6A 

RNA methylation regulators 

 

We then downloaded the data for the 14 differentially 

expressed m6A RNA methylation regulators from the 

STRING database and constructed a protein–protein 

interaction (PPI) network using Cytoscape. PPI network 

analysis showed that KIAA1429, HNRNPC, 

METTL14, HNRNPA2B1 and ALKBH5 were the hub 

genes (Figure 2A). The interaction between KIAA1429 

and YTHDF3 (r = 0.79) was most significant among all 

the m6A RNA methylation regulators (Figure 2B). 

 

Identification of a prognostic risk signature based on 

three m6A RNA methylation regulators in the 

training cohort of KIRP patients 

 

Univariate Cox regression analysis of the transcriptome 

data from the TCGA-KIRP dataset showed that the 

expression of four m6A RNA methylation regulators 

(IGF2BP3, KIAA1429, YTHDF3 and HNRNPC) was 

significantly associated with the overall survival (OS) 

of KIRP patients (P < 0.05; Figure 3A). Furthermore, 

based on the results of the least absolute shrinkage  

and selection operator (LASSO) Cox regression 

analysis, we constructed a prognostic risk signature with 

three genes, including IGF2BP3, KIAA1429 and 

HNRNPC (Figure 3B, 3C).  

 

Next, we analyzed the efficacy of the risk signature in 

predicting the prognosis of KIRP patients in the training 

cohort. We calculated the risk score for each patient in 

the training cohort and divided them into high-risk 

(n=71) and low-risk (n=71) groups according to the 

median risk score. Kaplan-Meier survival curve analysis 

showed that overall survival time was significantly 

shorter for KIRP patients in the high-risk group 

compared to the KIRP patients in the low-risk group 

(log-rank test P < 0.001; Figure 3D). The 3-yr OS rates 

for the high- and low-risk group were 81.3% and 

96.3%, respectively. The 5-yr OS rates for the high- and 

low-risk group were 62.8%and 96.3%, respectively. The 

ROC curve analysis demonstrated significant prognostic 

predictive value for the risk signature in determining the 

1-yr, 3-yr and 5-yr survival rates of KIRP patients (1-
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year AUC = 0.864, 3-year AUC = 0.903, 5-year AUC = 

0.714; Figure 3E). The risk score distribution of the 

high- and low-risk group patients in the training cohort 

showed that the survival rates were significantly higher 

for the low-risk group compared to the high-risk group 

(Figure 3F, 3G). The heatmap showed higher 

expression levels of the three risk-related m6A RNA 

methylation regulators (IGF2BP3, KIAA1429 and 

 

 
 

Figure 1. Fourteen out of twenty m6A RNA methylation regulatory genes are differentially expressed in KIRP tissues. (A) The 
heatmap demonstrates the expression of 20 m6A RNA methylation regulators in 289 KIRP and 32 normal kidney tissue samples from the 
TCGA database. The color bar from red to green denotes high to low gene expression. * P<0.05; ** P<0.01; *** P<0.001. (B) The boxplots 
show the expression of 14 differentially expressed m6A RNA methylation regulators in normal kidney and KIRP tissues from the TCGA 
database.  
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HNRNPC) in the high- risk KIRP patients compared to 

the low-risk KIRP patient group (Figure 3H). 

 

Validation of the prognostic risk signature in the 

testing and entire TCGA-KIRP cohorts 

 

We validated the accuracy and robustness of 

prognostic risk signature in the testing cohort and the 

entire TCGA-KIRP cohort. We calculated the 

prognostic risk scores of patients in both the testing 

(n=94) and the entire TCGA-KIRP (n=237) cohorts 

based on the prognostic risk signature and stratified 

the patients into high-risk (testing cohort: 47; entire 

TCGA cohort: 119) and low-risk (testing cohort: 47; 

entire TCGA cohort: 118) groups based on the median 

cut-off value. The detailed clinicopathological features 

of all the TCGA-KIRP patients are listed in Table 1. 

 

Kaplan-Meier survival curve analysis showed that the 

overall survival of high-risk patients were 

significantly shorter compared to the low-risk patients 

in both the testing cohort (P < 0.05; Figure 4A) and 

the entire TCGA-KIRP cohort (P < 0.001; Figure 4B). 

In the testing cohort, the 3-year and 5-year survival 

rates were shorter for the high-risk patients compared 

to the low-risk groups (3-year: 73.3% vs. 97.7%; 5-

year: 61.9% vs. 82.5%). Similarly, in the entire 

TCGA-KIRP cohort, the 3-year and 5-year survival 

rates in high-risk group were lower than those in the 

low-risk group (3-year: 77.7 vs. 97.0%; 5-year: 62.0 

vs. 88.6%). ROC curve analysis showed that the AUC 

values for the 1-, 3- and 5-year survival in the testing 

cohort were 0.988, 0.853 and 0.712, respectively 

(Figure 4C). The AUC values for the 1-, 3- and 5-year 

survival in the entire TCGA-KIRP cohort were 0.925, 

0.869 and 0.708, respectively (Figure 4D). The  

risk score distribution, survival status and the risk 

gene expression in the testing cohort and the entire 

TCGA-KIRP cohort are shown in Figures 4E and 4F. 

Overall, our results showed that the prognostic risk 

signature accurately predicted the survival outcomes 

of KIRP patients. 

 

Independent prognostic value of the risk signature 
 

To determine whether the risk signature can be used as 

an independent prognostic factor, Next, we performed 

univariate and multivariate Cox regression analyses to 

determine the independent prognostic significance of 

the risk score and the relevant clinicopathological 

factors, including age, gender, AJCC stage, T stage, N 

stage, and M stage. In the TCGA training cohort, 

univariate analyses showed that AJCC stage, T stage, N 

stage, M stage and risk score were significantly 

 

 
 

Figure 2. PPI network and Pearson correlation analyses of 14 differentially expressed m6A RNA methylation regulatory 
genes. (A) PPI network of the 14 differentially expressed m6A RNA methylation regulatory genes. (B) Pearson correlation analysis of the 14 
differentially expressed m6A RNA methylation regulatory genes in the TCGA-KIRP cohort. Note: ‘r’ denotes Pearson correlation co-efficient 
whose value ranges between -1 (perfect negative correlation) and +1 (perfect positive correlation). 
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associated with OS. Subsequently, multivariate analyses 

showed that AJCC stage, T stage, M stage and risk 

score were significantly associated with OS (Table 2). 

Similar results were obtained for both the testing and 

the entire TCGA-KIRP cohorts (Table 2). These results 

demonstrate that the risk score calculated based on the 

prognostic risk signature is an independent prognostic 

factor in KIRP patients.  

 

 
 

Figure 3. Construction and evaluation of the 3-gene prognostic risk signature in the training cohort of KIRP patients. (A) 

Univariate Cox regression analysis results show the p values and hazard ratios (HR) with confidence intervals (CI) of the 14 differentially 
expressed m6A RNA methylation regulatory genes. (B, C) LASSO Cox regression analysis results show the identification of the 3 prognostic risk 
signature genes. (D) Kaplan-Meier survival curves show the overall survival (OS) rates of high-risk (n=71) and low-risk (n=71) KIRP patients of 
the training cohort. The high-risk group shows shorter OS compared to the low-risk group. (E) ROC curve analysis results show the 

accuracy and reliability of the prognostic risk signature in determining the 1-year, 3-year, and 5-year survival outcomes of the high- and low-

risk KIRP patients in the training cohort. The AUC values are shown in parenthesis. (F) The risk score distribution of the high-risk (red) and 
low-risk (green) KIRP patients in the training cohort. (G) The distributions of training cohort patients based on their survival times and risk 
scores. The red dots represent patients that have died, whereas, the green dots denote patients that are alive at the time of analysis. (H) The 
heatmap shows the expression levels of the three prognostic risk-related m6A RNA methylation regulators in the high-risk (blue) and low-risk 
(pink) KIRP patients of the training cohort. 
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Table 1. Characteristics of KIRP patients included in this study. 

Variable 
Training cohort (n = 237) Testing cohort (n = 94) TCGA cohort (n = 331) 

P 
Number (%) Number (%) Number (%) 

Age    0.2569 

≤65 93(61.58) 53(56.38) 146(61.34)  

>65 51(35.42) 41(43.62) 92(38.66)  

Gender    0.3097 

Female 42(29.17) 21(22.34) 63(26.47)  

Male 102(70.83) 73(77.66) 175(73.53)  

AJCC stage    0.2672 

I/II 113(78.47) 67(71.28) 180(75.63)  

III/IV 31(21.153) 27(28.72) 58(24.37)  

T stage    0.5685 

T1-2 116(80.56) 72(76.60) 188(78.99)  

T3-4 28(21.53) 22(23.40) 50(21.01)  

N stage     0.2062 

N0 125(86.81) 75(79.79) 200(84.03)  

N1-2 19(13.19) 19(20.21) 38(15.97)  

M stage    0.5844 

M0 137(95.14) 87(92.55) 224(94.12)  

M1 7(4.86) 7(7.45) 14(5.88_  

 

Consensus clustering of KIRP patients based on the 

expression of the three prognostic risk-related m6A 

RNA methylation regulators 

 

We then performed consensus clustering based on the 

expression levels of the three m6A RNA methylation 

regulators in the TCGA-KIRP dataset. We chose K = 2 

as the most optimal clustering of the TCGA-KIRP 

patients because the clustering was suboptimal when 

divided into more than 2 clusters (Figure 5A–5D). 

Principal component analysis (PCA) also divided the 

TCGA-KIRP patients into two clusters (clusters 1 and 

2) based on their transcriptional profiles (Figure 5E). 

Subsequently, Kaplan-Meier survival curve analysis 

showed that the OS was significantly shorter for the 

KIRP patients in cluster 2 compared to those in cluster 

1 (Figure 5F). We then analyzed the correlations 

between the two clusters and their corresponding  

clinicopathological features. KIRP patients in  

clusters 1 and 2 showed significant differences in 

AJCC stage (P < 0.05), N stage (P < 0.01) and 

survival status (P < 0.01), but did not show any 

significant differences in age, gender, T stage and M 

stage (Figure 5G). Moreover, the expression of m6A 

RNA methylation modulators was significantly higher 

in the cluster 2 KIRP patients compared to the cluster 

1 KIRP patients. 

 

Relationship between prognostic risk signature and 

clinicopathological parameters of KIRP patients 

 

Next, we analyzed the association between the 

prognostic risk signature and the clinicopathological 

parameters. The heatmap showed that the expression 

levels of the three risk-related m6A RNA methylation 

regulators correlated with the clinicopathological 

variables in the high- and low-risk groups. We observed 

significant differences between the high- and low-risk 

groups in regard to T stage (P < 0.01), AJCC stage (P < 

0.01), gender (P < 0.01) and survival status (P < 0.001) 

(Figure 6A). Moreover, advanced-stage tumors 

significantly associated with the high-risk group, 

whereas, the early-stage tumors correlated with the low-

risk group (Figure 6B–6E). 

 

We further analyzed the prognostic value of our risk 

score model in different subgroups of KIRP patients 

that were stratified based on clinicopathological 

parameters. We observed significantly shorter overall 

survival rate in the male patients (P =2.776e-04) and 
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Figure 4. Validation of the prognostic risk signature in the testing cohort and entire cohort. (A) Kaplan-Meier curve analysis 
shows the overall survival rates of high-risk (n=47) and low-risk (n=47) KIRP patients in the testing cohort. (B) Kaplan-Meier curve analysis 
shows the overall survival rates of high-risk (n=119) and low-risk (n=118) KIRP patients in the entire TCGA cohort. (C, D) ROC curve analyses of 
the (C) testing cohort and (D) the entire TCGA-KIRP cohort show the false positive rate vs. true positive rate plots based on the prognostic risk 
signature. The AUC values for 1-year (blue), 3-year (green), and 5-year (red) survival rates are also shown. (E, F) The risk score distribution, 
survival status and prognostic risk gene expression in the (E) testing cohort and (F) entire TCGA-KIRP cohort is shown.  
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Table 2. Univariate and multivariate Cox regression analysis of clinical factors and prognostic risk signature for OS in 
the training, testing and entire cohort. 

Variable 

Training cohort Testing cohort Entire cohort 

 Univariate   Multivariate   Univariate   Multivariate   Univariate   Multivariate  

HR P HR P HR P HR P HR P HR P 

Age 

≤65 vs >65 
0.980 0.351 1.044 1.106 0.984 0.479 0.945 0.046 0.984 0.316 1.018 0.356 

Gender 

Female vs 

Male 

0.753 0.597 0.320 1.156 0.441 0.136 0.452 0.248 0.597 0.179 0.510 0.138 

AJCC stage 

I/II vs III/IV 
2.457 2.684e-04 366.9 2.427e-05 3.291 3.082e-05 1.942 0.296 2.806 9.227e-10 3.347 2.247e-03 

T stage 

T1-2 vs T3-4 
2.020 1.504e-03 0.007 2.041e-04 2.602 7.525e-04 0.899 0.845 2.272 1.864e-06 0.464 2.048e-02 

N stage 

N0 vs N1-2 
3.943 8.454e-05 41.64 0.011 5.261 3.011e-05 2.439 0.231 4.394 5.446e-09 0.693 0.415 

M stage 

M0 vs M1 
8.301 4.704e04 0.018 4.228e-03 28.38 1.805e-06 3.185 0.291 14.85 2.761e-11 6.087 5.313e-03 

Risk score 

Low vs High 
1.023 9.689e-05 1.047 3.746e-04 10.95 1.042e-06 6.919 1.764e-03 3.308 1.996e-12 3.083 4.494e-06 

 

those with age ≤ 65 (P = 5.846e-04), AJCC stage 

III/IV (P = 1.775e-02), T1-2 stage (P = 2.829e-02), 

T3-4 stage (P= 2.591e-02), N0 stage (P = 8.657e-03), 

N1-2 stage (P=2.839e-02) and M0 stage (P =4.862e-

04) in the high-risk group compared to those in the 

low-risk group (Figure 7). However, OS rates were 

similar in female patients (P = 2.314e-1), and those 

with age > 65 (P = 1.494e-1), AJCC stage I/II (P = 

1.324e-1), and M1 stage (P = 8.386e-1) in both the 

high- and low-risk groups. 

 

Validation of the three prognostic signature-related 

genes 

 

Subsequently, we analyzed the correlation between the 

expression of each of the three prognostic risk signature 

genes and the clinicopathological features of KIRP 

patients in the TCGA cohort. We observed differential 

expression of the 3 risk signature-related genes across 

various clinicopathological parameters (Table 3). 

Higher expression of IGF2BP3, KIAA1429 and 

HNRNPC correlated with higher AJCC, T, N and M 

stages in the KIRP patients (Figure 8). Moreover, we 

observed age-dependent differences in the expression of 

IGF2BP3, and gender-related differences in the 

expression of KIAA1429 (Table 3). 

 

We further analyzed the relationship between the risk 

signature-related genes and the OS and DFS rates of 

KIRP patients in the GEPIA database. Kaplan-Meier 

survival curves and log-rank test showed that the OS 

rate of KIRP patients with higher expression of 

IGF2BP3 (P = 6.4e-05), KIAA1429 (P = 0.05) and 

HNRNPC (P = 7.2e-04) was significantly shorter 

compared to those with lower expression of the three 

risk signature-related genes (Figure 9A). Moreover, 

higher expression of IGF2BP3 (P = 0.018) and 

KIAA1429 (P = 9.1e-04) correlated with significantly 

shorter DFS rate (Figure 9B). These data are 

consistent with our previous findings in the TCGA 

cohort of KIRP patients. However, we did not find 

any significant differences in the DFS rates of KIRP 

patients with differential expression (high or low) of 

HNRNPC (Figure 9B). Overall, our results 

demonstrate that the three m6A RNA methylation 

regulators are potential prognostic biomarkers that can 

accurately predict survival outcomes of KIRP 

patients. 

 

DISCUSSION 
 

KIRP is the second most common renal cancer 

following clear cell renal cell carcinoma (ccRCC), but, 

patients with KIRP are often excluded from molecular 

investigations and randomized clinical trials for kidney 

cancer because of limited number of cases. Therefore, 

the molecular mechanisms associated with progression 

of KIRP are not well understood. Moreover, there is an 

urgent need to identify effective diagnostic and 

prognostic biomarkers for early diagnosis and accurate 

prognosis to improve survival outcomes of KIRP 

patients. The oncogenic role of several m6A RNA 
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methylation regulators has been reported in several 

tumors. Hence, in this study, we systematically 

investigated the prognostic significance of m6A RNA 

methylation regulators in KIRP. 

 

In the present study, we demonstrated that the abnormal 

expression of m6A RNA methylation modulators was 

closely related to tumor progression and survival 

outcomes in KIRP. Firstly, we demonstrated that 14 out 

of 20 m6A RNA methylation regulators were 

differentially expressed in KIRP tissues, including 

IGF2BP3, IGF2BP1, HNRNPC, YTHDF2, KIAA1429, 

YTHDF3, METTL14, ZC3H13, ALKBH5, IGF2BP2, 

RBM15B, YTHDF1, RBMX and HNRNPA2B1. Based 

on the results of the univariate Cox regression analysis 

followed by LASSO regression analysis, we constructed 

a prognostic risk signature with IGF2BP3, KIAA1429 

and HNRNPC and classified KIRP patients into high- 

and low-risk groups based on their risk scores. We 

demonstrated that the overall survival was shorter for 

the high-risk patients in the training, testing and the 

entire TCGA-KIRP cohort compared to the low-risk 

patients.. We used consensus clustering analysis to 

categorize the KIRP cohort into two subgroups 

 

 
 

Figure 5. Consensus clustering analysis shows two clusters of KIRP patients with differential prognosis. (A) Cumulative 
distribution function (CDF) curves for the consensus score (k = 2 to 9). (B) Relative change in area under the CDF curve for k = 2 to 7. (C) The 
tracking plot for k = 2 to 9. (D) Consensus clustering matrix for the optimal cluster number, k = 2. (E) Principal component analysis shows the 
gene expression differences between clusters 1 and 2. (F) Kaplan-Meier survival curve analysis shows OS rates in cluster 1 and 2 KIRP 
patients. As shown, OS is significantly shorter for KIRP patients in cluster 2 compared to those in cluster 1. (G) The heatmap shows the 
expression of the three prognostic risk-related m6A methylation regulatory genes in cluster 1 and cluster 2 patients that were stratified 
according to the clinicopathological parameters, namely, survival status (alive or dead), age (>65 y or <65 y), gender (male or female), AJCC 
stages (stages I, II, III or IV), T stage (T1-T4), N stage (N0, N1 or N2), and M stage (M0 or M1). As shown, the expression of the three 
prognostic genes are significantly altered in cluster 1 and cluster 2 patients stratified based on the N stage, AJCC stage and the survival status. 
* P<0.05; ** P<0.01. 
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Figure 6. Correlation analysis between the expression of prognostic risk-related genes and clinicopathological features in 
high-risk and low-risk KIRP patients. (A) The heatmap shows the expression of the three prognostic signature-related genes in the low- 

and high-risk group KIRP patients stratified according to the clinicopathological parameters, namely, survival status (alive or dead), age (>65 y 
or <65 y), gender (male or female), AJCC stages (stages I, II, III or IV), T stage (T1-T4), N stage (N0, N1 or N2), and M stage (M0 or M1). Chi-
square test evaluated the correlation between the clinicopathological parameters and prognostic risk. *P < 0.05, **P < 0.01 and ***P < 0.001. 
(B–E) The distribution of risk scores in high- and low-risk patients stratified according to (B) AJCC stage (stages I-II vs. stages III-IV), (D) T stage 
(T1-2 vs. T3-4), (D) N stage (N0 vs. N1-2) and (E) M stage (M0 vs. M1). 
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(cluster1 and cluster 2) according to the expression levels 

of the three risk-related m6A RNA methylation 

regulators. Furthermore, univariate and multivariate Cox 

regression analyses showed that the prognostic risk 

signature was an independent prognostic factor for KIRP. 

Overall, our findings demonstrate the predictive value of 

the three-m6A RNA methylation related gene signature 

to accurately determine the prognosis of KIRP patients. 

 

Our study demonstrates that IGF2BP3, KIAA1429 

and HNRNPC genes are part of a three-gene 

prognostic prediction signature based on 

bioinformatics analyses of gene expression profiles of 

KIRP datasets. IGF2BP3, also known as IMP3, 

belongs to a conserved IGF2 mRNA-binding protein 

family. Previous reports have demonstrated that 

IGF2BP3 is an independent prognostic marker that 

can be used to identify RCC patients at initial 

diagnosis who have a high potential to develop 

metastasis and are candidates for early systemic 

treatment [23]. Zhou et al. demonstrated that high 

IGF2BP3 expression correlated with poor survival 

rates of gastric cancer (GC) patients; moreover, 

IGF2BP3 knockdown significantly inhibited 

proliferation and invasion of GC cells [24]. IGF2BP3 

has been reported to promote carcinogenesis in 

colorectal cancer [25], ovarian cancer [26] and 

pancreatic ductal adenocarcinoma [27]. KIAA1429 is 

an important methyltransferase that participates in the 

m6A modification. Qian et al showed that KIAA1429 

was associated with in vitro and in vivo proliferation 

and metastasis of breast cancer cells [28]. High 

expression of KIAA1429 was associated with poor 

prognosis of hepatocellular carcinoma (HCC) 

patients, whereas, KIAA1429 silencing suppressed in 

vitro and in vivo proliferation and metastasis of HCC 

cells [29]. HNRNPC belongs to a class of proteins 

that are associated with heterogeneous nuclear RNAs 

and are involved in the regulation of alternative 

cleavage and polyadenylation (APA) of mRNAs [30], 

RNA expression and export [31], post-transcriptional 

hnRNA stability [32], and cell cycle and apoptosis[33]. 

Wu et al. showed that repression of HNRNPC inhibits 

in vitro and in vivo growth and proliferation of 

 

 
 

Figure 7. The overall survival rates in high- and low-risk KIRP patients stratified by clinicopathological parameters. Kaplan-

Meier survival curve analysis shows the OS rates of high-and low-risk KIRP patients stratified by (A, B) age ≤ 65 and > 65, (C, D) male and 
female, (E, F) AJCC stages I/II and III/IV), (G, H) T1-2 and T3-4 stages, (I, J) N0 and N1-2 stages, and (K–L) M0 and M1 stages. 
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Table 3. Correlation analysis between risk genes from our signature and clinical variables for KIRP.  

Variables 
Age(≤65, 

>65) t(p) 

Gender(Fema

le, Male) t(p) 

AJCC Stage(I/II, 

III/IV) t(p) 

T Stage(T1-

2,T3-4) t(p) 

N Stage(N0,N1-

2) t(p) 

M Stage(M0, 

M1) t(p) 

IGF2BP3 2.9(0.004)** 1.38(0.171) 
-4.086(1.404e-

04)*** 
-3.263(0.002)** -3.479(0.001)** -2.998(0.010)* 

KIAA1429 0.662(0.509) 
3.45(8.505e-

04)*** 

-4.403(3.518e-

05)*** 

-4.443(3.883e-

05)*** 
-3.349(0.002)** -2.706(0.016)* 

HNRNPC 0.353(0.724) 0.458(0.648) 
-3.731(3.402e-

04)*** 

-3.848(2.647e-

04)*** 

-3.75(4.839e-

04)*** 
-2.494(0.026)* 

t: t value from Student’s t test; p: p-value from Student’s t test.  
* p< 0.05; ** p< 0.01; *** p< 0.001. 

 

 
 

Figure 8. The relationship between the expression levels of the three prognostic signature-related genes and the 
clinicopathological features in KIRP patients. The dot plots show the expression of IGF2BP3, KIAA1429 and HNRNPC genes in KIRP 
patients belonging to AJCC stages (I&II vs. III&IV), T stages (T1-2 vs. T3-4), N stages (N0 vs. N1-2), and M stages (M0 vs. M1). The p values are 
shown in parenthesis. As shown, higher expression of the three prognostic-risk related genes correlated with higher AJCC, T, N, and M stages. 
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breast cancer cells [34]. These findings are in agreement 

with our results. We also analyzed the relationship 

between the three risk-related m6A RNA methylating 

proteins and the clinicopathological features of KIRP 

patients and found that increased expression of 

IGF2BP3, KIAA1429 and HNRNPC significantly 

correlated with KIRP progression.  
 

To understand the clinical feasibility of the prognosis 

risk signature for KIRP, we evaluated the association 

between the risk signature and the clinicopathological 

parameters. The results showed that the risk signature 

accurately predicted the survival outcomes of KIRP 

patients and significantly correlated with their 

clinicopathological features. Furthermore, we observed 

two clusters of KIRP patients based on the expression 

of the three genes in the risk signature. The cluster 1 

and 2 proteins showed significantly different OS rate 

and tumor stages, thereby suggesting that the expression 

of these three genes correlated with tumor progression. 

Multivariate Cox regression analysis showed that the 

three-gene risk signature was an independent prognostic 

predictor in KIRP patients. Moreover, the risk signature 

clearly discriminated between early stage or low-risk 

KIRP patients from advanced stage or high-risk KIRP 

patients. 

 

Our study has a few limitations. Firstly, the construction 

and evaluation of our prognostic prediction model was 

based on the data available in the public databases. 

Therefore, our results need to be verified by further 

experimental and clinical investigations. Second, our 

study failed to identify specific signaling pathways that 

regulate KIRP growth and progression. Finally, data 

regarding important clinical variates such as 

Fuhrman's grade and therapeutic strategy were not 

available for the KIRP patients in the TCGA database. 

 

In conclusion, we systematically showed that three 

specific m6A RNA methylation regulators were 

significantly associated with KIRP progression. We 

further demonstrated that the prognostic risk signature 

 

 
 

Figure 9. The overall and disease-free survival rates of KIRP patients from the GEPIA database according to the expression 
levels of the three prognostic risk signature genes. Kaplan-Meier survival curves show the (A) overall survival (OS) and (B) disease-free 

survival (DFS) rates in KIRP patients from the GEPIA database with high- or low- expression of IGF2BP3, KIAA1429 and HNRNPC genes. 
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consisting of IGF2BP3, KIAA1429 and HNRNPC 

precisely and independently predicted the prognosis  

of patients with KIRP. Overall, our findings 

demonstrate that m6A RNA methylation regulatory 

genes are potential diagnostic and prognostic 

biomarkers in KIRP. 

 

MATERIALS AND METHODS 
 

Patient data  

 

In this study, we obtained RNA-sequencing data of  

289 KIRP and 32 normal kidney samples from the 

TCGA database (https://cancergenome.nih.gov/). We 

downloaded the corresponding clinical data regarding 

gender, age, clinicopathological parameters, and 

survival using the GDC data transfer tool (https:// 

portal.gdc.cancer.gov/). We excluded 14 KIRP patients 

from the study because their survival time was less than 

30 days. We also excluded 38 KIRP patients because of 

incomplete data. Ethics approval and informed consent 

were not required for this study because we used 

publicly available data from TCGA. 

 

Identification of differentially expressed m6A RNA 

methylation regulators 

 

We systematically analyzed the expression of 20 m6A-

related genes, including seven m6A writers (METTL3, 

METTL14, WTAP, KIAA1429, RBM15, RBM15B and 

ZC3H13), two m6A erasers (FTO and ALKBH5), and 

eleven m6A readers (IGF2BP1, IGF2BP2, IGF2BP3, 

YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, 

HNRNPC, HNRNPA2B1 and RBMX) in KIRP and 

non-cancerous kidney samples using the LIMMA 

package (version 3.30.3; http://bioconductor.org/pack-

ages/release/bioc/html/limma.html) from the R software 

(version 3.6.2; https://cran.r-project.org/bin/windows/ 

base/) and identified differentially expressed genes 

using P-value < 0.05 as a threshold parameter. 

 

PPI network and Pearson correlation analysis 
 

We constructed a PPI network between the 14 

differentially expressed m6A RNA methylation 

regulatory genes by downloading the data from the 

Search Tool for the Retrieval of Interacting Genes 

(STRING; version 11.0, http://string-db.org) online 

database [17] and constructing the network with the 

Cytoscape software (version 3.7.2) between the 

differentially expressed m6A RNA methylation 

regulators [35]. Pearson correlation analysis was 

performed to determine positive or negative association 

between different m6A RNA methylation regulators 

based on the Pearson’s correlation coefficient (r) value 

between −1 and +1. 

Construction of the prognostic risk model 

 

We randomly assigned the 237 KIRP patients to a 

training cohort (n = 143) and a testing cohort (n = 94). 

We then performed univariate Cox regression analysis 

to determine the correlation between differentially 

expressed m6A RNA methylation regulatory genes and 

OS of KIRP patients in the training set. We selected the 

genes showing significant correlation with OS (P < 

0.05) as prognosis-related genes. Subsequently, we 

performed the least absolute shrinkage and selection 

operator (LASSO) Cox regression analysis and 

identified 3 potential genes to develop the prognostic 

risk signature. The risk score (RS) of the patients was 

estimated using the following formula: 

 

1
RiskScore ( ) ( )

n

i
Coef i x i


   

 

wherein, Coef(i) and x(i) represent the estimated 

regression coefficient and the expression value of each 

target gene by LASSO analysis, respectively. The risk 

score formula for the 3-gene prognostic risk signature 

was as follows: risk score = (0.6715 × expression value 

of IGF2BP3) + (0.2675 × expression value of 

KIAA1429) + (0.0109 × expression value of 

HNRNPC). We then divided the KIRP patients in the 

training cohort based on their risk scores into high- and 

low-risk groups by using the median risk score as the 

cut-off value. We then analyzed the survival parameters 

of the two groups using the Kaplan-Meier survival 

curve and two-sided log-rank test. We also used 

receiver operating characteristic (ROC) curves and area 

under the ROC curve (AUC) values to evaluate the 

prediction accuracy of our prognostic model. We also 

performed univariate Cox regression analysis to 

evaluate the prognostic prediction ability of other 

clinicopathological factors such as age, gender, AJCC 

(The American Joint Committee on Cancer) stages, and 

TNM (Tumor, Node, Metastasis) stages. Multivariate 

Cox regression analysis was used to assess if the risk 

score was an independent prognostic factor. The 

robustness and reliability of the prognostic risk score 

was then evaluated in the testing cohort (n=94) and the 

entire TCGA-KIRP cohort (n=237).  

 

Consensus clustering analysis 

 

We used the Consensus Clusterplus R package to 

identify different KIRP patient subgroups based on the 

cumulative distribution function (CDF), delta area, 

tracking plot and consensus matrix. We evaluated k=2 

to 9 potential subgroups for class discovery and 

clustering validation (50 iterations and 80% resampling 

rate). Principal component analysis (PCA) was used to 

assess the signature-related genes expression 

https://cancergenome.nih.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://bioconductor.org/packages/release/bioc/html/limma.html
http://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.rproject.org/bin/windows/base/
https://cran.rproject.org/bin/windows/base/
http://string-db.org/
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differences in the two clusters. Kaplan-Meier survival 

curves and log-rank test were used to determine the OS 

rates of KIRP patients in the two clusters. Chi-square 

test was used to evaluate the differences of 

clinicopathological characteristics between the two 

clusters. 

 

Validation of the clinical utility of the prognostic risk 

model 

 

Using the Kaplan-Meier (K-M) survival curves, we 

tested the ability of the prognostic risk signature to 

predict the survival outcomes of TCGA-KIRP patients 

stratified by various clinicopathological characteristics, 

including age (≤ 65 and > 65), gender (female and 

male), AJCC stage(I/II and III/IV), T stage (T1-2 and 

T3-4), N stage (N0 and N1-2) and M stage (M0 and 

M1). The relationship between the expression of the 

three individual risk signature genes and the 

clinicopathological characteristics was evaluated using 

the Student’s t-test. We also analyzed the relationship 

between the risk signature-related genes and the 

survival parameters (OS and DFS) of KIRP patients in 

the GEPIA database (http://gepia.cancer-pku.cn/). 

 

Statistical analysis 

 

All statistical analyses were performed using the R 

software (version 3.6.2). Student’s t-test was applied to 

examine the differences among variables. Pearson’s or 

Spearman correlation analyses were used to determine 

the association between various parameters. Kaplan-

Meier curve analysis with log-rank test was used to 

analyze survival rates between different patient 

subgroups. Chi-square tests were performed to compare 

categorical variables. Univariate and multivariate Cox 

regression analyses identify prognostic significance of 

various clinicopathological characteristics and the 

prognostic risk score. ROC curve analysis was used to 

evaluate the efficacy of the prognostic risk model to 

discriminate between high- and low-risk KIRP patients 

as well as cluster 1 and cluster 2 KIRP patients based on 

the AUC values. An AUC value of 1.0 denotes perfect 

prognostic prediction, whereas an AUC value below 0.5 

denotes poor prediction. P < 0.05 was considered 

statistically significant. 
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