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Supplementary Figure 1. Comparison between our results and previously published methods. (A) Comparison of the driver
genes identified by ourintegrative analysis, and mutated genesandgenes potentially associated with HCCidentified from literature.
Previously re ported significantly mutated HCC-associated genes were obtained from Cancer Gene Census (CGC) and Network of Cancer
Genes (NGC) databases. Genes potentially assodated with HCCwere obtained from PubMed by searching “hepatocellular carcinoma” and
“gene”in the abstracts. (B) Cancer hallmarks enrichment for drivers identified by differentomics data. Drivers fromthe integrated analysis
were significantly enriched in the cancer hallmarks related terms, compared to independentanalyses from each omics. Cancer hallmark
terms were downloaded from MsigDB datasets. The size of the circle indicatesthe significance of the enrichment and the color indicates the

number of drivers.
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Supplementary Figure 2. Multi-omics landscape of Wnt and cell cycle pathways associated with HCC driver genes. (A) Tox
analysis of drivers; hepatocellular carcinoma, liver hyperplasia/hyperproliferation and liver cirrhosiswere significantly enriched, indicating
correlation with liver cancer. (B) Overview ofalterations in Wnt and cell cycle pathways. The solid rectanglesrepresent drivers and dashed
rectangles represent necessary linking genes in pathways that are not drivers. Colors represent the percentage of patients wi th mutations,
copynumber alterations, and dysregulation of methylationand expression. (C, D). Mutation landscape of Wnt and cell cycle pathway.
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Supplementary Figure 3. Experimental validation of typic driver genes. (A, B) SPP1 methylation and expression correlate with HCC
progression. Pvalue wasdetermined by Wilcoxon rank sum test: ****p <0.0001; ***p <0.001; **p < 0.01; *p < 0.05. (C) Survival of HCC
patients with high and low SPP1 expression. (D) Proliferation of CLC7 and CLC1 cellstransfected with sgRNAs targeting SPP1 and SFN (n=3,
regression analysis) after 96 hours. The relative cell numberis normalized by the first day. (E) siRNA screening for top 50 genes with the
highest integrative scoresand upregulatedintumors. The genes that affect cell proliferation are determined by a 10% decrea se ora 10%
increase in cell proliferation rate in at least half of the repeated experiments after siRNA knockout.
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Supplementary Figure 4. Comparison of integrative classification and other single-platform methods. (A) The consistency of
integrative clustering and single-platform clustering. (B) The heat-map depicts gene expression profiles of 619 genes in Hoshida’s subtypes.
(C, D). Kaplan—Meier estimates of the overall survival. Patients were classified according to Hoshida’s signature genes or single-platform
drivers.
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Supplementary Figure 5. Genomic alteration and expression of PBX1 and AHR. P value was determined by Wilcoxon rank sumtest:
*¥**p<0.001; **P<0.01; *P<0.05; NS:P>0.05.
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Supplementary Figure 6. Relationship of chromatin states and enhancers with gene expression in HCC and normal samples.
(A) Genesinactivation regions (chromatin statesE1-E12) show higher | evels of gene expression thanininactivated regions (chromatin states
E13-E18). (B) Enhancers significantly affect gene expression in activation regions. Strong enhancers are regions marked with both H3K4me1
and H3K27ac, and weak enhancers are regions only marked with H3K4me1, excluding promoters. (C) High-expression genes show greater
association with strongenhancers. Genes assodated with genome regions are assigned by 20kb from the TSS. P value was determined by
Wilcoxon rank sum test: ***P < 0.001; **P < 0.01; *P < 0.05.
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Supplementary Figure 7. Enhancer subgroups and gene expression in stable and gain regions. (A) Scatter plot of H3K4me1 signal
in HCCcellline (HepG2) and normal liver tissue. Lost, stable, and gained peaks were labelled by blue, black, and red, respectively. (B, C) Gene
expressioninenhancer stable and gained regions. Pvalue was determined by student’s t test: ***P<0.001; **P<0.01:*P<0.05; NS P>0.05.
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