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INTRODUCTION 
 
Coronavirus disease 2019 (COVID-19), a deadly disease 
induced by the novel coronavirus severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), was first 
discovered in China, and is accompanied by a high 
degree of morbidity and mortality [1]. The virus has 
spread across the world and infected very large 
populations, especially in the United States [2]. Clinical 
features of COVID-19 may include pyrexia, asthenia, 
dyspnea, as well as acute respiratory distress syndrome, 
septic shock, and coagulation dysfunction in critically  

 

ill patients [3]. It is believed that, due to its high fatality 
rate, SARS-CoV-2 may strongly bind to angiotensin-
converting enzyme 2 (ACE2), which is a key factor in the 
pathological pathway of SARS-CoV infection in the host 
[4]. The latest research findings have indicated that the 
affinity of SARS-CoV-2 to ACE2 may be 10 to 20 times 
greater than that of SARS-CoV [5]. In the SARS-CoV-2-
infected population, it has been reported that people aged 
over 65 years have the highest rate of death [6]. 
Clinically, an effective and accurate diagnosis of SARS-
CoV-2 has been achieved. However, the medical 
pharmacotherapy to treat COVID-19 is still insufficient 
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ABSTRACT 
 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), an 
epidemic disease characterized by rapid infection and a high death toll. The clinical diagnosis of patients with 
COVID-19 has risen sharply, especially in Western countries. Globally, an effective treatment for COVID-19 is still 
limited. Vitamin A (VA) exhibits pharmacological activity in the management of pneumonia. Thus, we reason that 
VA may potentially serve as an anti-SARS-CoV-2 regimen. In this study, bioinformatics analysis and computation 
assays using a network pharmacology method were conducted to explore and uncover the therapeutic targets and 
mechanisms of VA for treating COVID-19. We identified candidate targets, pharmacological functions, and 
therapeutic pathways of VA against SARS-CoV-2. Bioinformatics findings indicate that the mechanisms of action of 
VA against SARS-CoV-2 include enrichment of immunoreaction, inhibition of inflammatory reaction, and biological 
processes related to reactive oxygen species. Furthermore, seven core targets of VA against COVID-19, including 
MAPK1, IL10, EGFR, ICAM1, MAPK14, CAT, and PRKCB were identified. With this bioinformatics-based report, we 
reveal, for the first time, the anti-SARS-CoV-2 functions and mechanisms of VA and suggest that VA may act as a 
potent treatment option for COVID-19, a deadly global epidemic. 
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[7]. Accordingly, it is necessary to explore and develop 
bioactive compounds to treat COVID-19. Vitamins are 
considered as a food supplement and have been reported 
to play an important role in the immune system [8]. 
Vitamin A (VA) has potent physiological functions, such 
as promoting growth and reproduction and maintaining 
bone, epithelial tissue, vision, and normal secretion of 
mucosal epithelium. VA and its derivatives can prevent 
precancerous lesions [9]. An increasing number of 
reports indicate that VA is necessary to maintain immune 
function and that it is responsible for immune cell 
differentiation and proliferation [10]. It has been reported 
that VA can improve the ability of immune cells to 
produce antibodies and induce T lymphocytes to release 
functional lymphokines through modulation of target 
genes via nuclear receptors [11]. Additionally, VA is 
extremely important for maintaining sufficient levels of 
natural “killer cells” (showing antiviral activity) in 
circulating blood [12]. VA adjuvant therapy may enhance 
body immune function by increasing IgM and IgG levels 
and activating T lymphocytes [13]. More importantly, 
vitamin A was reported to play a significant role against 
pneumonia. It is evidenced that low VA content is linked 
to neonatal pneumonia [14]. Clinical data show that VA 
deficiency is implicated in fatal mycoplasma-induced 
pneumonia in children [15]. In addition, VA 
supplementation contributes to the reduction of clinical 
complications and shortening of in-hospital time for 

children with pneumonia [16]. All these pieces of 
evidence suggest that vitamin A may be an optional 
treatment for COVID-19; however, to date there has been 
no investigation of VA against SARS-CoV-2, especially 
its pharmacological mechanism. In this report, we aimed 
to determine and identify the curative effect of VA for 
treating COVID-19 and to utilize a network 
pharmacology approach to uncover the mechanisms 
underlying the therapeutic role of VA.  
 
RESULTS 
 
Identification of SARS-CoV-2- and vitamin A-
associated genes 
 
In order to determine the SARS-CoV-2-associated and 
VA-pharmacological action genes, we conducted a 
series of bioinformatic analyses. We assayed and 
identified 393 SARS-CoV-2-associated genes from the 
Genecard and OMIM datasets. In addition, 122 VA-
pharmacological action genes were identified following 
data correction using the UniProt tool (Figure 1). When 
we compared the target (VA-associated and SARS-
CoV-2-associated) genes, 15 VA-associated targets 
against SARS-CoV-2 were identified, and the common 
genes were subjected to target-function-protein 
interaction network analysis (Figure 1). By setting the 
median degree of freedom to 2.923, the maximum degree

 

 
 

Figure 1. Identification of vitamin A and SARS-CoV-2 associated genes. Venn diagram showing the intersection targets of vitamin A 
against SARS-CoV-2 with an identified PPI network. 
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of freedom to 7, and the core target screening condition 
ranged to 3–7), seven core targets of VA against SARS-
CoV-2 were identified, namely MAPK1, IL10, EGFR, 
ICAM1, MAPK14, CAT, and PRKCB (Figure 2).  
 
Biological role of vitamin A against SARS-CoV-2 
 
The core targets were subjected to gene ontology (GO) 
biological process and KEGG pathway enrichment 
analysis to understand the possible biological role of VA 
and the signaling pathway against SARS-CoV-2. The GO 
results highlighted that VA mediated a number of 
biological processes related to cellular response to the 
virus, immunity, cytokine production and secretion, and 
inflammatory response (Figure 3A and Supplementary 
Table 1). Immune responses are mediated by different 
classes of immune cells, such as neutrophils and 
lymphocytes, through the immune response-activating 
cell surface receptor signaling pathway. The VA-mediated 
immune response is also regulated by immunoglobulin 
production (Figure 3A and Supplementary Table 1). In 
addition, VA played a role in both acute and chronic 
inflammatory responses against SARS-CoV-2 (Figure 3A 
and Supplementary Table 1). 
 
Vitamin A-mediated signaling pathway and network 
against SARS-CoV-2 
 
We conducted a KEGG pathway analysis to further 
understand the possible mechanism underlying the 

anti-SARS-CoV-2 role of vitamin A. Our results 
highlighted that vitamin A might regulate a series of 
signaling pathways related to viral infections, such as 
human cytomegalovirus, influenza A, Kaposi 
sarcoma-associated herpes virus, human 
immunodeficiency virus 1, hepatitis C, Epstein-Barr, 
and human papilloma virus (Figure 4 and Online 
Resource 2). In addition, we also found that vitamin A 
was involved in many important cell signaling 
pathways such as FoxO, VEGF, TNF, Ras, nuclear 
factor kappa B (NF-κB), phospholipase D, mTOR, 
and JAK-STAT (Figure 4 and Supplementary Table 
2). More importantly, we found the involvement of 
vitamin A in immune responses such as T cell 
receptor signaling pathway, leukocyte transendothelial 
migration, natural killer cell mediated cytotoxicity, Fc 
epsilon RI signaling pathway, B cell receptor 
signaling pathway, Th1 and Th2 cell differentiation, 
Fc gamma R-mediated phagocytosis, IL-17 signaling 
pathway, Toll-like receptor signaling pathway, Th17 
cell differentiation, and human T-cell leukemia virus 
1 infection (Figure 4 and Supplementary Table 2). 
Vitamin A regulates cytokine production via NOD-
like receptor signaling pathway and chemokine 
signaling pathway (Figure 4 and Supplementary Table 
2). These findings suggest that vitamin A could be a 
potential treatment for COVID-19. Finally, we used 
Cytoscape software to construct the gene network 
diagram of VA-target-GO-KEGG-SARS-CoV-2 
(Figure 5). 

 

 
 

Figure 2. Gene network of the seven core targets of vitamin A against SARS-CoV-2 
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Figure 3. Gene ontology analysis of the seven core targets of vitamin A against SARS-CoV-2. (A) Bubble diagram showing the 
vitamin A-mediated biological process against SARS-CoV-2. (B) All core biotargets of vitamin A against SARS-CoV-2 were linked to the top 10 
most enriched GO terms in Circro diagrams. 
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Figure 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the seven core targets of vitamin A against 
SARS-CoV-2. (A) Bubble diagram showing the vitamin A-mediated cell signaling pathways against SARS-CoV-2. (B) Identified core biotargets 
of vitamin A against SARS-CoV-2 were associated with the 10 most enriched KEGG terms in Circro diagrams. 
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Figure 5. Interaction network of the target-KEGG pathways of VA against SARS-CoV-2. The middle part represented the anti-SARS-
CoV-2 targets of vitamin A, and the enriched top 20 biological functions and KEGG pathways. 
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DISCUSSION 
 
Recently, the prevalence and mortality of SARS-CoV-
2 has increased sharply worldwide, especially in 
developed countries in 2020 [17]. However, there are 
few existing drug treatments for COVID-19, and some 
of the immunotherapy treatments and antiviral drugs 
used in clinical practice have shown limited 
therapeutic effectiveness [18]. Thus, further 
investigation and development of potential therapeutic 
agents is warranted. In this bioinformatics report, we 
aimed to identify and reveal the anti-SARS-CoV-2 
targets and molecular mechanisms of VA through an 
emerging approach to network pharmacology. VA may 
exert potent, beneficial pharmacological activity for 
the treatment of COVID-19 via associated 
cytoprotection, anti-viral and anti-inflammatory 
effects, and immunoregulation. By using the network 
pharmacology strategy to uncover the molecular 
functions, the anti-SARS-CoV-2 effects of VA could 
be shown to be modulated by some key molecules and 
corresponding genes, including MAPK1, IL10, EGFR, 
ICAM1, MAPK14, CAT, and PRKCB. In our previous 

report, we demonstrated that vitamin C could also 
modulate a cluster of core targets against SARS-CoV-
2 [19]. When we compared the findings, we found that 
two core targets, MAPK1 and EGFR, were found in 
the effect of both vitamin A and vitamin C. MAPK1, a 
functional protein kinase, is a key connection in the 
switch from extracellular irritation to intracellular 
signaling. Changes in the signaling pathway are 
evidenced in complex diseases, including cancers [20]. 
It has been reported that anti-pneumonia action exerted 
by VA is related to specific suppression of the MAPK 
signaling pathway, including MAPK1 activity [21]. 
EGFR, a tyrosine kinase receptor, plays important 
roles in modulating cell proliferation, division, 
differentiation, survival, and oncogenesis [22]. It has 
been reported that EGFR-mutated patients are likely to 
have hospital-acquired pneumonia [23]. IL-10, a 
pivotal anti-inflammatory cytokine, can effectively 
control inflammatory Th cells and immunopathology 
and secure cellular homeostasis [24]. Some reports 
have shown that inactivation of IL-10 is linked to an 
increased risk of developing pneumonia [25–26]. 
ICAM-1, a transmembrane glycoprotein receptor, can 

 

 
 

Figure 6. A schematic diagram to summarize the workflow of the study. 
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recruit inflammatory cells and cytokines to target 
tissue [27]. Reportedly, blood ICAM-1 content may 
function as a potent biomarker of patients with 
pneumonia [28], including pediatric pneumonia [29]. 
Catalase, a well-known antioxidant enzyme, acts as an 
oxidative catalyst for some biological functions [30]. 
Biologically, catalase is found to have potential 
therapeutic effectiveness against influenza-induced 
pneumonia [31]. PRKCB, an important regulator of B 
cells, can regulate metabolic and mitochondrial 
reprogramming responsible for B cell fate [32]. Some 
evidence indicates that PRKCB overexpression is 
associated with the development of pneumonia via 
activation of the NF-κB pathway [33]. Collectively, 
these predictive peptides may be used as potential 
markers for detecting SARS-CoV-2 and may serve as 
pharmacological targets against SARS-CoV. In further 
bioinformatics and computational assays, the 
therapeutic mechanisms of VA for managing COVID-
19 could be conjunctively actualized through 
collective regulation of the FoxO signaling pathway, 
GnRH signaling pathway, PD-L1 expression, and PD-
1 checkpoint pathway. Accordingly, VA demonstrates 
several pharmacological mechanisms against SARS-
CoV, namely, cytoprotective action, anti-viral activity, 
anti-inflammatory effects, and immunity-based 
immunomodulation. The anti-coronavirus benefits may 
be the dual efficacy of a nutrient agent and bioactive 
compound to treat complex disease by synergistically 
modulating all presumptive multi-targets and multi-
pathways. Adjuvant supplementation of VA may 
enhance the therapeutic efficacy of current clinical 
anti-viral agents and immunotherapy to treat 
potentially fatal COVID-19. However, the current 
findings should be further validated clinically. 
 
In conclusion, the bioinformatics and computational 
findings from this study highlight the role of vitamin A 
in anti-viral, anti-inflammatory, and immunomodulatory 
effects via different biological processes and cell 
signaling pathways, as revealed by network 
pharmacology analysis. More importantly, VA may be 
used clinically for the treatment of COVID-19, as 
evidenced by the identified biological processes—
which indicate pharmacological functions—and the 
signaling pathways, which suggest therapeutic 
mechanisms (Figure 6). 
 
MATERIALS AND METHODS 
 
Identification of candidate genes activated by VA  
 
By using online datasets, in particular TCMSP, 
Drugbank, SuperPred, Swiss Target Prediction, 
ChemMapper, and BATMAN TCM, all target genes 
activated by VA were obtained. The genes activated by 

VA were collected for target correction from reviewed 
(Swiss-Prot) and Uniprot databases. The Genecard and 
OMIM datasets were employed to harvest SARS-CoV-2 
genes. All the shortlisted genes and targets of VA and 
SARS-CoV-2 were subjected to intersection analysis 
via an online platform with graphical output 
(http://bioinformatics.psb.ugent.be/webtools/Venn/) in 
the form of Venn diagrams were plotted to display the 
relational VA-activated genes and targets of VA against 
SARS-CoV-2 [34, 35].  
 
Gene Ontology (GO) and KEGG pathway 
enrichment analyses  
 
The R-language package ClusterProfiler, ReactomePA, 
org.Hs.eg.Db, and GOplot were applied in the assay and 
visualization of the relational targets. GO analysis was 
conducted with the use of org.Hs.eg.Db, with a p-value 
cutoff of 0.05 in enriched output of bubble charts and 
Circos-circle charts. The Pathview package in R-
language was used to merge the relational targets of 
enriched KEGG pathways by drawing pathway 
diagrams [36, 37].  
 
Construction of network visualization in core targets 
 
The software Cytoscape (v3.7.1) was used to plot the 
component-target-pathway network and the GO 
biological process and KEGG pathway-based visual 
graphics of VA against SARS-CoV-2 [38, 39]. 
 
Establishment of the biological process and KEGG 
molecular pathway of VA  
 
To compare the anti-SARS-CoV-2 effects of VA, 
bioinformatics data of top biological functions and 
KEGG-enriched pathways were applied for pairwise 
comparison, including the value of -log10 (p-adjust) as 
the heat-map parameter, and the heat-map was drawn 
using HemI 1.0 software [19, 40]. 
 
Construction of construction of protein-protein 
interaction (PPI) network graphics of core targets 
 
The relational targets of VA against SARS-CoV were 
employed as inputs to the software STRING for plotting 
target-to-target network interactions and target 
interaction PPI network diagram. The NetworkAnalyzer 
setting in Cytoscape software was applied to analyze 
topology parameters, such as median degrees of 
freedom and maximum degrees of freedom in the 
network. The optimal targets were collected based on 
degree values (DV). The upper limit of the filtering 
range was the maximum DV in the topology data, and 
the lower limit was twice the median of freedom, as 
previously reported [41, 42]. 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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SUPPLEMENTARY MATERIALS  
 
Supplementary Tables 
 
 
Please browse Full Text version to see the data of Supplementary Table 1. 
 
Supplementary Table 1. Gene ontology analysis (biological process) using the identified seven core targets of VA 
against SARS-CoV-2. 

 

Supplementary Table 2. KEGG pathway enrichment analysis using the identified seven core targets of VA against 
SARS-CoV-2. 

ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count remark 

hsa05
163 

Human 
cytomegalovirus 

infection 
4/7 225/8025 

1.97E-
05 

0.000313 8.71E-05 
MAPK1/EGFR/
MAPK14/PRKC

B 
4 viral 

hsa05
164 

Influenza A 3/7 170/8025 
0.00030

7 
0.00132 0.000367 

MAPK1/ICAM1
/PRKCB 

3 viral 

hsa05
167 

Kaposi sarcoma-
associated 

herpesvirus infection 
3/7 186/8025 0.0004 0.001632 0.000454 

MAPK1/ICAM1
/MAPK14 

3 viral 

hsa05
170 

Human 
immunodeficiency 
virus 1 infection 

3/7 212/8025 
0.00058

8 
0.002175 0.000605 

MAPK1/MAPK
14/PRKCB 

3 viral 

hsa05
160 

Hepatitis C 2/7 155/8025 
0.00730

4 
0.012354 0.003435 MAPK1/EGFR 2 viral 

hsa05
169 

Epstein-Barr virus 
infection 

2/7 201/8025 
0.01206

6 
0.019176 0.005332 

ICAM1/MAPK1
4 

2 viral 

hsa05
165 

Human 
papillomavirus 

infection 
2/7 330/8025 

0.03086
8 

0.045444 0.012636 MAPK1/EGFR 2 viral 

hsa04
660 

T cell receptor 
signaling pathway 

3/7 104/8025 
7.13E-

05 
0.000515 0.000143 

MAPK1/IL10/M
APK14 

3 immune 

hsa04
670 

Leukocyte 
transendothelial 

migration 
3/7 112/8025 

8.89E-
05 

0.000524 0.000146 
ICAM1/MAPK1

4/PRKCB 
3 immune 

hsa04
650 

Natural killer cell 
mediated 

cytotoxicity 
3/7 131/8025 

0.00014
2 

0.000705 0.000196 
MAPK1/ICAM1

/PRKCB 
3 immune 

hsa04
664 

Fc epsilon RI 
signaling pathway 

2/7 68/8025 
0.00144

6 
0.00442 0.001229 

MAPK1/MAPK
14 

2 immune 

hsa04
662 

B cell receptor 
signaling pathway 

2/7 82/8025 
0.00209

5 
0.005552 0.001544 

MAPK1/PRKC
B 

2 immune 

hsa04
658 

Th1 and Th2 cell 
differentiation 

2/7 92/8025 0.00263 0.006744 0.001875 
MAPK1/MAPK

14 
2 immune 

hsa04
666 

Fc gamma R-
mediated 

phagocytosis 
2/7 93/8025 

0.00268
7 

0.00678 0.001885 
MAPK1/PRKC

B 
2 immune 

hsa04
657 

IL-17 signaling 
pathway 

2/7 94/8025 
0.00274

4 
0.006817 0.001895 

MAPK1/MAPK
14 

2 immune 

hsa04
620 

Toll-like receptor 
signaling pathway 

2/7 104/8025 
0.00334

8 
0.007293 0.002028 

MAPK1/MAPK
14 

2 immune 

hsa04
659 

Th17 cell 
differentiation 

2/7 107/8025 
0.00354

1 
0.007608 0.002115 

MAPK1/MAPK
14 

2 immune 
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hsa05
166 

Human T-cell 
leukemia virus 1 

infection 
2/7 219/8025 

0.01422
2 

0.021743 0.006046 MAPK1/ICAM1 2 immune 

hsa04
750 

Inflammatory 
mediator regulation 

of TRP channels 
2/7 100/8025 0.0031 0.007142 0.001986 

MAPK14/PRKC
B 

2 
inflamm

ation 

hsa04
621 

NOD-like receptor 
signaling pathway 

2/7 181/8025 
0.00986

1 
0.016164 0.004494 

MAPK1/MAPK
14 

2 drug 

hsa04
062 

Chemokine signaling 
pathway 

2/7 189/8025 
0.01071

8 
0.01739 0.004835 

MAPK1/PRKC
B 

2 drug 

hsa04
068 

FoxO signaling 
pathway 

5/7 131/8025 
2.20E-

08 
3.49E-06 9.71E-07 

MAPK1/IL10/E
GFR/MAPK14/

CAT 
5 signaling 

hsa04
370 

VEGF signaling 
pathway 

3/7 59/8025 
1.29E-

05 
0.000298 8.29E-05 

MAPK1/MAPK
14/PRKCB 

3 signaling 

hsa04
668 

TNF signaling 
pathway 

3/7 112/8025 
8.89E-

05 
0.000524 0.000146 

MAPK1/ICAM1
/MAPK14 

3 signaling 

hsa04
014 

Ras signaling 
pathway 

3/7 232/8025 
0.00076

6 
0.002767 0.000769 

MAPK1/EGFR/
PRKCB 

3 signaling 

hsa04
064 

NF-kappa B 
signaling pathway 

2/7 104/8025 
0.00334

8 
0.007293 0.002028 ICAM1/PRKCB 2 signaling 

hsa04
072 

Phospholipase D 
signaling pathway 

2/7 148/8025 
0.00667

6 
0.011819 0.003286 MAPK1/EGFR 2 signaling 

hsa04
150 

mTOR signaling 
pathway 

2/7 155/8025 
0.00730

4 
0.012354 0.003435 

MAPK1/PRKC
B 

2 signaling 

hsa04
630 

JAK-STAT 
signaling pathway 

2/7 162/8025 
0.00795

7 
0.013179 0.003664 IL10/EGFR 2 signaling 

 


