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INTRODUCTION 
 

Gastric cancer (GC) is one of the most common 

gastrointestinal cancers, with a high incidence in East 

Asian countries. The pathogenesis of GC is a multi-

factorial and multi-step process [1]. GC is diagnosed 

using endoscopy, biopsy, and pathology. Its five-year 

survival rate is related to the stage of the disease at 

diagnosis [2]. Early diagnosis has increased due to the 

application of advanced detection methods,  but the prog- 

 

nosis of patients with advanced GC remains very poor [3, 

4]. The occurrence of GC reflects the abnormal 

regulation of tumor-related genes [1, 5, 6]. Understanding 

the molecular mechanisms underlying GC will facilitate 

the diagnosis and enhance the treatment of GC, and the 

development of biomarkers for early detection will 

improve the prognosis of GC patients. 

 

Dysregulation of the metabolic environment in the body 

plays a key role in cancer. The Warburg effect is a form 
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ABSTRACT 
 

Gastric cancer (GC) is one of the most commonly occurring cancers, and metabolism-related genes (MRGs) are 
associated with its development. Transcriptome data and the relevant clinical data were downloaded from The 
Cancer Genome Atlas and Gene Expression Omnibus databases, and we identified 194 MRGs differentially 
expressed between GC and adjacent nontumor tissues. Through univariate Cox and lasso regression analyses 
we identified 13 potential prognostic differentially expressed MRGs (PDEMRGs). These PDEMRGs (CKMT2, ME1, 
GSTA2, ASAH1, GGT5, RDH12, NNMT, POLR1A, ACYP1, GLA, OPLAH, DCK, and POLD3) were used to build a Cox 
regression risk model to predict the prognosis of GC patients. Further univariate and multivariate Cox 
regression analyses showed that this model could serve as an independent prognostic parameter. Gene Set 
Enrichment Analysis showed significant enrichment pathways that could potentially contribute to 
pathogenesis. This model also revealed the probability of genetic alterations of PDEMRGs. We have thus 
identified a valuable metabolic model for predicting the prognosis of GC patients. The PDEMRGs in this model 
reflect the dysregulated metabolic microenvironment of GC and provide useful noninvasive biomarkers. 
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of glycolysis that occurs in tumors in an aerobic 

environment [7]. One study found that a long non-

coding RNA, lncRNA-MACC1, can enhance the 

Warburg effect in GC cells and up-regulate expression 

of glycolytic enzymes [8]. There are also changes in 

amino acid metabolism in patients with GC; the levels 

of cysteine, serine, isoleucine, tyrosine, and valine are 

increased [9, 10]. Exploring these metabolic changes in 

cancer may yield new treatments. In recent years, 

various metabolic enzymes and their products have 

become important as potential drug targets [11–13]. 

Drugs developed for the treatment of metabolic 

disorders may also be effective in the treatment of some 

cancers [14]. To study the prognostic utility of 

metabolism-related genes (MRGs) in GC, we 

established a GC prognostic risk model and studied its 

clinical application. 

 

RESULTS 
 

Identification of PDEMRGs in GC 

 

Four hundred and seven mRNA samples (375 GC 

tissues and 32 adjacent nontumor tissues) were analyzed 

in The Cancer Genome Atlas (TCGA). Through the 

Wilcoxon signed-rank test, 194 differentially expressed 

MRGs (DEMRGs) were obtained, including 122 up-

regulated genes and 72 down-regulated genes of GC 

tissues compared with adjacent nontumor tissues 

(Figure 1A, 1B).  

 

To determine the prognostic DEMRGs (PDEMRGs), 

univariate Cox regression analysis was used to screen 

the expression of DEMRGs in a training cohort. Sixteen 

DEMRGs (8 high-risk genes and 8 low-risk genes) were 

identified to be related to the overall survival (OS) of 

GC patients (Figure 1C).  

 

Establishment and validation of the prognostic risk 

model  

 

Lasso regression was performed to remove PDEMRGs 

that are related to each other to prevent the model from 

overfitting (Figure 2A, 2B). We obtained 13 candidate 

PDEMRGs (risk genes) to construct the prognostic risk 

model (Table 1). CKMT2, ME1, GSTA2, ASAH1, 

GGT5, RDH12, and NNMT were identified as high-risk 

genes, while POLR1A, ACYP1, GLA, OPLAH, DCK, 

and POLD3 were identified as low-risk genes.  
 

To study the role of the risk model in predicting the 

overall survival (OS) of GC patients, we used the 

expression levels of genes and regression coefficients to 

calculate the risk score for each patient. The risk score = 

(0.0152×expression of GSTA2) – (0.0058×expression 

of POLD3) – (0.0350×expression of GLA) + 

(0.0092×expression of GGT5) – (0.0088× expression of 

DCK) + (0.0784×expression of CKMT2) + 

(0.0117×expression of ASAH1) – (0.0105×expression 

of OPLAH) + (0.0244×expression of ME1) – 

(0.0452×expression of ACYP1) + (0.0035×expression 

of NNMT) – (0.0566×expression of POLR1A) + 

(0.0090×expression of RDH12).  

 

Patients in the training cohort were divided into a high-

risk (n=167) and a low-risk group (n=167) by the 

median risk score. To identify the prognostic difference 

between them we made a Kaplan-Meier curve. The OS 

was poorer in the high-risk group than the low-risk 

group (p < 0.001) (Figure 3A). We ranked the risk score 

of patients in the TCGA dataset (training cohort). The 

dot chart showed the survival state of patients and a heat 

map described the expression pattern of the high-risk 

and low-risk genes in the two groups (Figure 3C). 

Seven high-risk genes (CKMT2, ME1, GSTA2, 

ASAH1, GGT5, RDH12, and NNMT) were up-

regulated, while six low-risk genes (POLR1A, ACYP1, 

GLA, OPLAH, DCK, and POLD3) were down-

regulated. The risk genes showed opposite expression 

patterns for patients with low-risk scores. The 

prognostic model was validated in the Gene Expression 

Omnibus dataset (GEO, verification cohort), and  

the results were consistent with the training group 

(Figure 3B, 3D).  

 

These results indicated that this risk model can 

accurately predict the prognosis for GC patients. 

 

Independent prognostic value of the risk model  

 

We performed univariate and multivariate Cox 

regression analysis to determine if the risk score 

generated by the prognostic model was independent of 

other clinical indices. 

 

In the training cohort, univariate Cox regression 

analysis representing age, stage, tumor (T), node (N), 

and risk score were significantly correlated with the OS 

(p < 0.05) (Figure 4A). Multivariate Cox regression 

analysis indicated the variables of age, gender, and risk 

score were independently correlated with the OS (p < 

0.05) (Figure 4B). In the verification cohort, univariate 

and multivariate Cox regression analysis showed the 

variables of age, T, N, and risk score were significantly 

associated with the OS (p < 0.05) (Figure 4C, 4D). The 

results indicated that the risk model could serve as an 

independent prognostic factor independent of other 

clinical indices. 

 

The risk score was more precise than other clinical 

indices. The AUCs (area under the curve) of the training 

cohort at risk score, age, gender, T, and N were 0.695, 
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0.572, 0.536, 0.558 and 0.574, respectively (Figure 5A). 

However, the risk score in the verification cohort is not 

the largest, which is not consistent with the result of the 

training cohort. This may be related to the relatively 

small sample size of the verification cohort (Figure 5C). 

To better predict the prognosis of GC patients, we 

established a nomogram model that accurately predicted 

the OS at 1, 3, and 5 years based on the variables 

 

 
 

Figure 1. Identification of PDEMRGs. (A) Heatmap of DEMRGs: the red to blue spectrum signifies high to low gene expression. (B) 

Volcano plot of DEMRGs: red indicates upregulated DEMRGs, green indicates downregulated DEMRG, and black indicates DEMRGs that were 
not significantly differentially expressed. (C) Forrest plot of PDEMRGs: The red represents high-risk genes (hazard ratios, HR > 1); the green 
represents low-risk genes (HR < 1). 
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associated with OS (age, gender, grade, stage, T, N, 

metastasis (M) and risk score) (Figure 5B, 5D). 

 

Gene set enrichment analyses 

 

Gene Set Enrichment Analysis software (GSEA) was 

used and identified 60 significantly enriched Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

pathways in the training cohort or verification cohort 

(Nominal p-value < 0.05). The majority of enrichment 

pathways were associated with metabolism, including 

arachidonic acid metabolism, drug metabolism by 

cytochrome p450, xenobiotics metabolism by 

cytochrome p450, pyrimidine and purine metabolism, 

glyoxylate and dicarboxylate metabolism, alanine 

aspartate and glutamate metabolism, cysteine and 

methionine metabolism, and fructose and mannose 

metabolism. Physiological processes such as glycan 

degradation and ubiquitin-mediated proteolysis 

significantly inhibit the occurrence and development 

of cancer, and there are common signaling pathways in 

cancer, MAPK signaling pathway, and the p53 

signaling pathway (Figure 6). 

 

Clinical utility of the PDEMRGs 

 

Exploration of the PDEMRGs during GC clinical 

progression indicated that the levels of GGT5 and 

NNMT were increased with clinical stage. This 

correlation between the expression levels of these two 

genes and GC progression may be useful in GC 

diagnosis (Figure 7A). 

 

Survival analysis indicated that the expression of 

GGT5, NNMT, and GLA had a significant association 

with patient survival (P < 0.05). Higher expression 

(yellow line) of GGT5 and NNMT indicated poorer 

prognosis. Lower expression (blue line) of GLA 

indicated lower patient survival (P < 0.05). The 

correlation between PDEMRGs and GC prognosis 

showed that PDEMRGs contribute to the progression of 

GC (Figure 7B).  

 

External validation of the PDEMRGs using the 

online database 

 

The Gene Expression Profiling Interactive Analysis 

database (GEPIA) corroborated the differences in gene 

expression between GC and normal gastric tissues. 

Boxplot showed most genes in the model had 

differences in GC mRNA expression compared with 

normal gastric tissues (P < 0.05) (Figure 8A). Genes 

such as CKMT2, GSTA2, and RDH12 were down-

regulated, while POLR1A, ASAH1, GLA, DCK, and 

POLD3 were up-regulated. Representative protein 

expression was determined in the Human Protein Atlas 

(Figure 8B). The immunohistochemistry of GC genes 

was positive compared with normal gastric tissues, 

 

 
 

Figure 2. PDEMRGs selected by lasso regression. (A) Constructing the lasso coefficient prediction model. (B) Selecting variables in lasso 

regression with minimum criteria by 1000 times cross-validation. 
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Table 1. Lasso Cox analysis. 

Gene Full name of gene Coefficient Metabolism-related  KEGG pathways 

CKMT2 Creatine kinase, mitochondrial 2 0.07837 Amino acid metabolism; Arginine and proline metabolism 

ME1 Malic enzyme 1 0.02443 Lipid metabolism; Pyruvate metabolism; 

GSTA2 Glutathione S-transferase alpha 2 0.01516 Other amino acids metabolism; Glutathione metabolism 

Xenobiotics biodegradation and metabolism; Metabolism of xenobiotics by cytochrome 

P450; Drug metabolism - cytochrome P450; Drug metabolism - other enzymes 

ASAH1 N-acylsphingosine amidohydrolase 1 0.01175 Lipid metabolism; Sphingolipid metabolism 

GGT5 Gamma-glutamyl transferase 5 0.00916 Lipid metabolism; Arachidonic acid metabolism; other amino acids metabolism; Taurine 

and hypotaurine metabolism; Glutathione metabolism 

RDH12 Retinol dehydrogenase 12 0.00904 Cofactors and vitamins metabolism; 

Retinol metabolism 

NNMT Nicotinamide N-methyltransferase 0.00346 Cofactors and vitamins metabolism; Nicotinate and nicotinamide metabolism 

POLR1A RNA polymerase I subunit A -0.05663 - 

ACYP1 Acylphosphatase 1 -0.04524 Carbohydrate metabolism; Pyruvate metabolism 

GLA Galactosidase alpha -0.03499 Galactose metabolism; 

Glycosphingolipid metabolism; 

Sphingolipid metabolism 

OPLAH 5-oxoprolinase (ATP-hydrolysing) -0.0105 Other amino acids metabolism; Glutathione metabolism 

DCK Deoxycytidine kinase -0.00875 Nucleotide metabolism; 

Pyrimidine metabolism; 

Purine metabolism 

POLD3 DNA polymerase delta 3 -0.00575 Pyrimidine metabolism 

 

 
 

Figure 3. Establishment and validation of the prognostic risk model. (A, B) Kaplan-Meier curve analysis of the high-risk and low-risk 

groups. (C, D) From top to bottom=Risk score distribution of patients. Survival status scatter plots of patients. Expression patterns of risk genes. 
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Figure 4. Independent value of the prognostic risk model. (A, B) Forrest plots of the univariate and multivariate Cox regression 

analysis in training cohort. (C, D) Forrest plot of the univariate and multivariate Cox regression analysis in verification cohort. 

 

 
 

Figure 5. Establishment of ROC curves and nomograms. (A, C) ROC curves (receiver operating characteristics) of the risk score and 

other clinical indices. (B, D) The nomogram was established based on the independent prognosis model. 
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suggesting that the protein expression was increased. 

These results are consistent with the results of mRNA 

expression. However, RDH12 was not found in the 

database. 

 

NNMT, ACYP1, and GLA were significantly over-

expressed in GC, while CKMT2, ME1, GSTA2, and 

RDH12 were significantly under-expressed in the 

Oncomine database (Figure 9A). There is no mRNA 

expression of ASAH1, GGT5, POLR1A, OPLAH, 

DCK, and POLD3 in GC in the Oncomine database, but 

these genes have been confirmed to be over-expressed 

in GC both in the GEPIA and The Human Protein Atlas. 

Mutations in the form of amplification and deletion was 

 

 
 

Figure 6. Significantly enriched KEGG pathways in training or verification cohort by GSEA. Above the horizontal axis indicated the 

pathways are in the high-risk group, and below the horizontal axis indicated that the pathways are in the low-risk group. 
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expressed in the high-risk group, while amplification 

was expressed in the low-risk group. OPLAH had the 

most common genetic alterations (12%), and 

amplification was the most frequent genetic alteration 

(Figure 9B). 

 

We evaluated the tumor mutation burden (TMB) of the 

GC dataset and found the mutation count in the high TMB 

group was higher compared with the low-risk group  

(p < 0.05) (Figure 10). This result illustrates that our 

model can stratify patients for personalized treatment. 

 
 

Figure 7. Relationships of the PDEMRGs with pathological stage and survival time. (A) The violin pot shows the expression levels of 

GGT5 and NNMT is significantly correlated with the pathological stage. (B) Survival plot indicates that the expression levels of GGT5, NNMT, 
and GLA are significantly correlated with OS. 
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DISCUSSION 
 

The development of genome sequencing and combining 

prognosis-related genes with traditional parameters  

has advantages in predicting cancer [15, 16]. 

Metabolism-related research is a new research focus  

[7]. Recent studies have analyzed the association 

between metabolism-related genes, the risk of GC, and 

 

 

 

Figure 8. Expression of the PDEMRGs. (A) The mRNA expression levels of the PDEMRGs in GC and normal gastric tissue (*P < 0.05). Red 

represents GC and gray represents normal gastric tissue. (B) The representative protein expression of the PDEMRGs in GC and normal gastric 
tissue. 
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diagnostic value [17]. Wei Zheng found that single 

nucleotide polymorphisms (SNPs) in trace element-

related metabolic genes were related to GC risk [18]. 

Therefore, the expression of PDEMRGs may predict the 

progression of GC and the prognosis of GC patients. 

We identified the PDEMRGs based on a training cohort 

and utilized the PDEMRGs to build a reliable model to 

predict the OS in GC patients, which we verified with a 

verification cohort. 

Univariate and multivariate Cox regression analysis 

showed that this model was an independent prognostic 

factor independent of other clinical indices. The risk 

score derived with the model was more accurate than 

other clinical parameters in predicting OS. Nomogram 

analysis showed that this model combined with clinical 

indices (age, gender, grade, stage, and TNM) could be 

used to accurately predict the OS of GC patients at 1, 3, 

and 5 years. This may help plan short-term follow-up of

 

 
 

Figure 9. Genetic alterations of the PDEMRGs. (A) The expression profiles of the PDEMRGs in the Oncomine database. Red represents 

over-expressed; blue represents under-expressed. (B) Genetic alterations of the PDEMRGs from cBioportal for Cancer Genomics. 
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individualized treatment, so that early intervention can 

improve prognosis. 

 

GSEA analysis showed that abundant metabolic 

pathways were related to tumors, which confirmed the 

close relationship between the model and the metabolic 

system. Patients in the high-risk group were associated 

with arachidonic acid and cytochrome P450 metabolic 

pathways, while patients in the low-risk group were 

associated with pyrimidine, glyoxylic acid and 

dicarboxylates, aspartic acid and glutamate, alanine, 

cysteine, and methionine, fructose and mannose, and 

purine metabolic pathways. Interestingly, the low-risk 

group involved more diverse metabolic pathways, and 

they may benefit from metabolic-related treatments.  

 

We also analyzed the clinical application of the model. 

The expression of several genes, including GGT5, 

NNMT and ME1, was increased in stage I and II GC, 

and there was a negative association with patient 

survival. This indicates that this model has high 

prognostic value, especially for the short-term survival 

of GC patients. The PDEMRGs in the prognostic risk 

model are associated with the occurrence and 

development of cancer. For instance, ME1, a well-

known oncogene, promotes GC growth, lung 

metastasis, and peritoneal dissemination, and over- 

expression of ME1 correlates with shorter and disease-

free GC survival [19]. In addition, cancer cells expressing 

NNMT can alter the epigenetic state and increase 

expression of pro-tumorigenic gene products [20]. 

 

DNA replication stress induced by oncogenes is 

considered a driving factor of tumorigenesis. Research 

has shown that POLD3 plays a unique role in the process 

of RS-induced DNA break repair, so targeting POLD3 

could provide a priority opportunity to target cancer cells 

[21–23]. DCK negatively regulates the transcriptional 

activity of NRF2, resulting in a decrease in the 

expression of antioxidant genes, and negatively regulates 

intracellular redox homeostasis and ROS production. 

DCK has a negative regulatory effect on the proliferation 

and metastasis of pancreatic cancer cells. The low 

expression of DCK promoted NRF2-mediated 

antioxidant transcription, which enhanced drug 

resistance to gemcitabine [24]. OPLAH encodes the 5-

oxoproline enzyme, which controls the synthesis and 

degradation of glutathione. Hypermethylation of 

OPLAH3 is a common feature of some tumors. Naumov 

et al. sequenced the genomes of 22 pairs of colorectal 

cancer (CRC) and adjacent tissues and found that 

OPLAH is the initiation gene of DNA methylation in 

CRC [25]. Roy et al. found that GLA promotes 

mitochondrial death and apoptosis and reduces hypoxia. 

It combines limitation of de novo fatty acid synthesis 

and the cholinergic anti-inflammatory pathway that 

confirms anticancer function [26]. Cao et al. reported 

that ACYP1 was lower in imatinib-resistant 

gastrointestinal stromal tumor T1 cells [27]. Silencing 

POLR1A can hinder G1-S cell cycle progression in p53-

inactivated human cancer cell lines [28]. Guo et al. 

observed that in cervical squamous cell carcinoma 

(CSCC) tissues, RDH12 expression was reduced by 

74.5%. The expression of RDH12 was negatively 

associated with tumor size and infiltration depth in 

cervical cancer [29]. Studies have confirmed that  

GGT5 gene amplification contributes to non-small cell 

lung cancer (NSCLC). Cells produce high levels of 

 

 
 

Figure 10. Mutation count of GC patients in the low and high TMB groups of the TCGA cohort. 
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glutamate and promote glutamine metabolism [30]. 

Immunohistochemical staining was used to detect the 

expression of ASAH1 in 120 cases of non-special 

invasive ductal carcinoma (IDC-NOS). The expression 

of ASAH1 correlated with lymph node metastasis, 

suggesting that ASAH1 is a biomarker predictive of 

lymph node status [31]. Low expression of glutathione 

S-transferases (GSTs) in the liver reduces the 

detoxification of chemical carcinogens. GSTA2 was 

found to be in linkage disequilibrium in Caucasians 

[32]. It was concluded that CKMT2 was a key 

regulatory factor in the development of osteosarcoma, 

and significantly correlated with patient OS [33]. 

 

Mutations in the genome can alter gene expression 

[34]. Research by DeBerardinis and Chandel 

confirmed that glycolysis is correlated with activated 

oncogenes and mutated tumor suppressors [11]. When 

Laskowski and her colleagues studied aging com-

plement factor H-deficient mice, they observed 

spontaneous hepatic tumor formation in more than 

50% [35]. The results illustrate the interaction between 

aging, genetic mutation, and cancer. We believe that 

aging is closely related to gastric cancer. Additionally, 

Hamada et al. found that tumor mutation burden 

(TMB) is related to the emergence of new antigens 

[36]. Therefore, we checked whether this model 

reflected the TMB of GC patients. The results showed 

the high TMB group was significantly higher than the 

low TMB group. We found the overall probability of 

genetic alterations was higher in the low-risk group 

than in the high-risk group. These findings indicate 

that this model can be used in patients with different 

metabolic abnormalities, making individualized therapy 

strategies possible. 

 

In summary, we used 13 PDEMRGs to build a risk 

model that accurately predicts the prognosis in patients 

with GC. In addition, this model reflects the dys-

regulated metabolic microenvironment in tumor 

patients, and provides biomarkers for metabolic 

treatment of these patients. However, further in vitro 

and in vivo experiments are needed to validate the 

results of this research.  

 

MATERIALS AND METHODS 
 

Data collection 

 

Transcriptome data and the relevant clinical data were 

downloaded from TCGA (https://portal.gdc.cancer.gov/) 

and GEO (https://www.ncbi.nlm.nih.gov/geo/). The 

somatic mutation data were obtained from TCGA. The 

candidate metabolic gene sets were searched from 

“c2.cp.kegg. v7.0. symbols” of Gene Set Enrichment 

Analysis (GSEA). 

Identification of differentially expressed metabolism-

related genes 

 

Wilcoxon signed-rank test was used to analyze the 

differences of 745 annotated MRGs with protein-coding 

functions. Screening condition: false-discovery rate 

[FDR] < 0.05, log2 fold-change [FC] > 0.5.  

 

Establishment of experimental model  

 

We used univariate Cox analysis to initially identify 

potential PDEMRGs. Lasso penalty Cox regression 

analysis [37] was used for confirmation. The penalized 

maximum likelihood estimator with 1000-fold cross 

validation was used to construct the prognostic risk 

model. The expression values of PDEMRGs were 

weighted by the regression coefficient of the Cox 

regression model to calculate the risk score of every 

patient. Risk score = (CoefficientmRNA1×mRNA1 

expression) + (CoefficientmRNA2×mRNA2 expression) + 

⋯ + (CoefficientmRNAn× mRNAn expression). Taking the 

median risk score of the training cohort as the  

cut-off value, all patients with GC were divided  

into a high-risk group and a low-risk group. R  

packages “survival” [38] and “survminer” were 

performed to compare the survival differences between 

the high-and low-risk group, and a significant p-value 

was obtained. The verification cohort was used for 

verification. 

 

Independence of the PDEMRGs 

 

Univariate and multivariate Cox regression analysis 

were performed to analyze the independent prognosis of 

GC patients with forwarding stepwise procedure. P < 

0.05 indicated statistical significance. The 

“SurvivalROC” [39] of R package was used to 

determine the prognostic value of the risk score. The 

nomogram [40] was constructed by including all 

independent prognostic factors to predict the survival of 

GC patients at 1, 3, and 5 years.  

 

Gene set enrichment analyses 
 

GSEA v4.0.1 software (https://www.gsea-msigdb.org/ 

gsea/login.jsp) was run to reveal potential biological 

pathways and mechanisms in the KEGG. P < 0.05 was 

considered statistically significant. 
 

External verification of PDEMRGs 
 

To verify the expression of PDEMRGs in this model,  

the mRNA level was validated by Gene Expression 

Profiling Interactive Analysis database (GEPIA, 

http://gepia.cancer-pku.cn/) and the Oncomine database 

(https://www.oncomine.org/resource/main.html). The 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/login.jsp
https://www.gsea-msigdb.org/gsea/login.jsp
http://gepia.cancer-pku.cn/
https://www.oncomine.org/resource/main.html
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Human Protein Atlas database (http://www.protei 

natlas.org) was used for the protein level. GEPIA was 

also used to determine the pathological stage and survival 

of PMRGs in this model. The genetic alterations of 

PMRGs in this model were evaluated by cBioportal for 

Cancer Genomics (http://www.cbioportal.org/). 
 

Statistical analysis 
 

All statistical analyses were run through R software 

version 3.6.1 (https://www.r-project.org/). Differences 

between variables were evaluated using independent t-

tests. Log-rank test was used to compare the high-risk 

with the low-risk group in the Kaplan-Meier curve. 

Qualitative variables were compared by Pearson χ2 test 

or Fisher's exact test. A two-sided P<0.05 was 

considered statistically significant. 
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