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INTRODUCTION 
 

Bladder cancer (BCa) is one of the most prevalent 

malignant urological cancers worldwide. In 2019, 

approximately 80,470 patients were diagnosed with 

BCa in the United States, resulting in approximately 

17,670 deaths [1]. BCa can be categorized into two 

groups, non-muscle-invasive bladder cancer (NMIBC) 

and muscle-invasive bladder cancer (MIBC). These 

cancers have 5-year survival rates of 60% and 90%, 

respectively [2]. The recurrence rate of BCa is high [3]. 

Approximately 80% of patients will die within 5 years 

after distant metastases are discovered [4]. 

Transurethral resection of bladder tumor is considered 

to be an effective treatment for NMIBC [5], while 

radical cystectomy and/or systemic chemotherapy 

provides limited benefits to late stage MIBC [6, 7]. 

 

The majority of transcripts in the human genome are 

derived from non-coding RNA (ncRNA) [8]. MicroRNA 

(miRNA) is a class of ncRNA that is 19-22 nucleotides 

long. These transcripts act as endogenous, post-

transcriptional regulators of gene expression by binding 

to the 3’-untranslated region (3’-UTR), 5’-UTR or coding 

sequence region of the target mRNA. miRNA performs 

its functions through either inhibition of protein 

translation or through mRNA degradation. Microarray 

expression profiles and miRNA bioinformatics reveal 

aberrant expression in BCa tissues [9]. miRNA can act as 

either a tumor suppressor or an oncogene in different 

types of cancer. It has been reported that miR-140-3p 

functions as a tumor suppressor in breast cancer [10], 

lung cancer [11] and lymphoma [12]. 

 

The forkhead box protein Q1 (FOXQ1) gene is a 

member of the FOX gene family, which encode proteins 

characterized by a conserved 110-amino acid DNA-

binding motif called the forkhead or winged helix 

domain. Recent studies revealed that upregulation of 

FOXQ1 was associated with progression of many human 
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tumors, including those found in hepatocellular 

carcinoma [13], gastric cancer [14], colorectal carcinoma 

[15], prostate cancer [16], lung cancer [17], laryngeal 

carcinoma [18], esophageal cancer [19], pancreatic 

cancer [20], breast cancer [21], and BCa [22]. 

 

In our study, we detected the expression of miR-140-3p 

and FOXQ1 in BCa tissues. We investigated the 

regulation of FOXQ1 by miR-140-3p, as well as the 

biological functions of FOXQ1 targeted by miR-140-3p 

in BCa cells. 

 

RESULTS 
 

FOXQ1 promotes BCa cell proliferation and invasion 
 

Knockdown of FOXQ1 inhibits the migration and 

invasion of BCa cells [22]. We conducted a western blot 

assay and confirmed that FOXQ1 was effectively 

upregulated or downregulated after transfection of 

functional FOXQ1-cDNA or FOXQ1-shRNA in T24 and 

UMUC3 cells, respectively (Figure 1A). Furthermore, a 

cell proliferation assay demonstrated that overexpression 

of FOXQ1 increased cell proliferation, while knockdown 

of FOXQ1 inhibited cell proliferation in T24 and 

UMUC3 cells (Figure 1B). A transwell invasion assay  

in T24 and UMUC3 cells revealed similar results  

(Figure 1C). 

 

Analysis of GEO DataSets (GSE40355, GPL13497) 

showed that FOXQ1 expression was significantly 

higher in 16 BCa tissues than in 8 nonmalignant 

bladder tissues (Figure 1D). Data from The Cancer 

Genome Atlas (TCGA) showed that BCa patients with 

higher FOXQ1 expression had a shorter overall 

survival (OS) than patients with lower FOXQ1 

expression (Figure 1E). We then investigated FOXQ1 

expression in BCa samples and adjacent normal 

bladder samples from 30 patients from our department. 

The results revealed that the expression of FOXQ1  

was significantly higher in BCa samples compared 

with adjacent normal bladder samples (Figure 1F). 

Together, results from Figure 1A–1F indicated that 

FOXQ1 expression was higher in BCa samples than in 

adjacent normal bladder samples. 

 

miR-140-3p downregulates FOXQ1 expression and 

suppresses BCa cell proliferation and invasion 

 

miRNA regulates the targeted mRNA at the post-

transcriptional level to depress the mRNA degradation 

or protein translation. Therefore, miRNA might play a 

vital role in regulating FOXQ1 expression in BCa. We 

focused our attention on miRNAs that could decrease 

FOXQ1 expression and inhibit BCa cell proliferation 

and invasion. 

Using miRNA target-prediction databases (miRDB, 

Targetscan and MicroCosm), we determined that miR-

140-3p might target FOXQ1 mRNA. We explored the 

effects of miR-140-3p on FOXQ1 expression and found 

that miR-140-3p decreased FOXQ1 expression in T24 

and UMUC3 cells (Figure 2A). We then quantified 

miR-140-3p expression in 30 pairs of BCa samples and 

adjacent normal bladder samples. The expression of 

miR-140-3p was significantly lower in BCa samples 

compared with adjacent normal bladder samples (Figure 

2B). An inverse correlation was found between the 

expression of miR-140-3p and FOXQ1 in the 30 paired 

samples above (Figure 2C). We also observed the 

expression of FOXQ1 in patients tissue samples using 

immunohistochemical staining. The results showed that 

cells from normal bladder samples expressed lower 

level of FOXQ1 than cells from BCa samples. What’s 

more, we found more positive FOXQ1 expression in 

patients with lower miR-140-3p expression than in 

patients with higher miR-140-3p expression (Figure 

2D). Analysis of GEO DataSets (GSE40355, GPL8227) 

also verified that the expression of miR-140-3p was 

significantly lower in 16 BCa tissues than in 8 

nonmalignant bladder tissues (Figure 2E). We found 

from TCGA data analysis that patients with lower  

miR-140-3p expression had a shorter OS (HR=1.521, 

P=0.0136) than patients with higher miR-140-3p 

expression (Figure 2F). 

 

We quantified the expression of miR-140-3p in T24 and 

UMUC3 cells. We found that miR-140-3p expression 

was higher in UMUC3 cells compared with T24 cells 

(Supplementary Figure 1A). miR-140-3p mimics was 

transfected into T24 cells, while an miR-140-3p 

inhibitor was transfected into UMUC3 cells. We 

explored whether miR-140-3p regulated FOXQ1 

expression in BCa cells. The results of western blot 

analyses verified that miR-140-3p mimics reduced 

FOXQ1 expression in T24 cells and the miR-140-3p 

inhibitor increased FOXQ1 expression in UMUC3 cells 

(Figure 4A, 4B). qRT-PCR was conducted to verify that 

miR-140-3p was effectively overexpressed in T24 cells 

and knocked down in UMUC3 cells after transfection 

(Supplementary Figure 1B). A cell proliferation assay 

revealed that miR-140-3p overexpression significantly 

decreased the growth rate of T24 cells (Figure 2G). In 

contrast, miR-140-3p knockdown had the opposite 

effect on the growth rate in UMUC3 cells (Figure 2H). 

Moreover, we found that the cell invasion activity was 

significantly inhibited by miR-140-3p overexpression in 

T24 cells (Figure 2I). In contrast, miR-140-3p 

knockdown had the opposite effect on the cell invasion 

activity in UMUC3 cells (Figure 2J). These data 

suggested that miR-140-3p functioned as a tumor 

suppressor to inhibit BCa cell proliferation and 

invasion. 
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Figure 1. FOXQ1 promotes BCa cell proliferation and invasion. (A) Verification of FOXQ1 overexpression and knockdown in T24 and 
UMUC3 cells by western blot assay. Approximately 50 ug of protein was loaded into each lane 2 to 4 days after transfection. (B) T24 and 
UMUC3 cells were transfected with pWPI-FOXQ1-cDNA, pWPI-vector, pLKO-FOXQ1-shRNA or pLKO-vector. Cell growth was measured by 
MTT assay. (C) Transwell invasion assays were performed using UMUC3 cells (pWPI and oeFOXQ1) and T24 cells (pLKO and shFOXQ1). The 
invaded cells were counted in 10 randomly chosen microscopic fields (100X) of each experiment and pooled. (D) Analysis of microarray 
sequencing from NCBI GEO Datasets (GSE40355, GPL13497) showed the FOXQ1 mRNA level in 16 BCa and 8 nonmalignant bladder tissue 
samples. (E) Curves of BCa patient OS were analyzed according to FOXQ1 expression (data were download from TCGA). (F) FOXQ1 expression 
in 30 paired human primary BCa tissues and adjacent normal bladder tissues. (B–D) Each sample was run in triplicate and used in multiple 
experiments to determine the mean ± SD. *P < 0.05; **P < 0.01 compared to controls. 
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Figure 2. miR-140-3p downregulates FOXQ1 expression and suppresses BCa cell proliferation and invasion. (A) Overexpression 
of miR-140-3p in T24 and UMUC3 cells to determine its effect on FOXQ1 expression by western blot assay. Approximately 50 ug of protein 
was loaded into each lane 2 to 4 days after transfection. (B) miR-140-3p expression in 30 paired human primary BCa and adjacent normal 
bladder tissues. (C) Correlation analysis of miR-140-3p and FOXQ1 mRNA level was performed using the Pearson correlation coefficient. (D) 
Representative immunohistochemical staining of FOXQ1 in BCa and nonmalignant bladder tissue samples. (E) Analysis of microarray 
sequencing from NCBI GEO Datasets (GSE40355, GPL8227) showed miR-140-3p expression in 16 BCa and 8 nonmalignant bladder tissue 
samples. (F) OS curves of BCa patients were analyzed according to miR-140-3p expression. Data were download from TCGA. (G) T24 cells 
were transfected with NC and miR-140-3p mimics. (H) UMUC3 cells were transfected with miR-140-3p inhibitor. Cell growth was measured 
by MTT assay. (I, J) Transwell invasion assays were performed by transfecting T24 cells with a negative control (NC) or miR-140-3p mimics (I) 
and UMUC3 cells with NC or miR-140-3p inhibitor (J). The invaded cells were counted in 10 randomly chosen microscopic fields (100X) of 
each experiment and pooled. (G–J) Each sample was run in triplicate and used in multiple experiments to determine the mean ± SD. *P < 
0.05; **P < 0.01 compared to controls. 
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miR-140-3p directly regulates FOXQ1 expression by 

targeting the 3'-UTR 

 

To verify that FOXQ1 is a potential downstream target 

of miR-140-3p, we used online bioinformatics databases 

(miRDB, Targetscan and MicroCosm) for analysis. The 

predicted interactions between miR-140-3p and the 

binding sites on the 3’-UTR of FOXQ1 mRNA are 

illustrated in Figure 3A. Results from luciferase reporter 

assays showed that in T24 and UMUC3 cells, 

transfection of miR-140-3p and wild-type sequences of 

the FOXQ1 3’-UTR decreased luminescence intensity. 

Altering miR-140-3p expression did not affect the 

luminescence intensity of the mutant FOXQ1 3’-UTR in 

either cell type (Figure 3B, 3C). Collectively, these data 

supported the hypothesis that miR-140-3p inhibited 

FOXQ1 expression by directly interacting with the 3'-

UTR. 

 

miR-140-3p suppresses proliferation and invasion of 

BCa cells by reducing FOXQ1 expression 
 

We explored whether miR-140-3p regulated FOXQ1 

expression in BCa cells. The results of western blot 

analyses verified that miR-140-3p mimics reduced 

FOXQ1 expression in T24 cells and miR-140-3p 

inhibitor increased FOXQ1 expression in UMUC3 cells 

(Figure 4A, 4B). To determine whether miR-140-3p is 

involved in the FOXQ1-induced promotion of BCa cell 

proliferation and invasion, we conducted rescue 

experiments in T24 and UMUC3 cells. The results 

showed that miR-140-3p mimics partially reversed the 

increase mediated by overexpression of FOXQ1 on T24 

cell proliferation (Figure 4C). In UMUC3 cells, a miR-

140-3p inhibitor partially reversed the proliferation 

suppression mediated by knockdown of FOXQ1 (Figure 

4D). We obtained similar results in both T24 and 

UMUC3 cells using an invasion assay in place of the 

cell proliferation assay (Figure 4E, 4F). These data 

verified that miR-140-3p suppressed FOXQ1-induced 

proliferation and invasion of BCa cells. 

 

miR-140-3p suppresses the growth of BCa cells in vivo 
 

To identify the effects of miR-140-3p on BCa cell 

growth, we transfected T24 cells with either miR-140-
3p mimics or a negative control. The cells were injected 

into nude mice subcutaneously. Tumor volume was 

monitored weekly. The mice were sacrificed 4 weeks 

after injection. The weights and volumes of the 

xenografted tumors were measured. As expected, miR-

140-3p mimics dramatically decreased the tumor 

weights and tumor volumes compared with those of  

the negative control group (Figure 5A–5C). Our 

immunohistochemical staining demonstrated that both 

Ki-67 and FOXQ1 expression was significantly lower in 

the miR-140-3p mimics group than in negative control 

group (Figure 5D). We performed qRT-PCR to 

 

 
 

Figure 3. miR-140-3p directly regulates FOXQ1 expression by targeting the 3'-UTR. (A) Sequence alignment of FOXQ1 3’-UTR with 
wild-type (WT) versus mutant potential miR-140-3p targeting sites using bioinformatics online databases (miRDB, Targetscan, and 
MicroCosm). (B, C) Co-transfection of wild-type or mutant seed regions of FOXQ1 3’-UTR constructs with miR-140-3p in T24 (B) and UMUC3 
cells (C). The luciferase assay was applied to detect the luciferase activity. *P < 0.05 compared to controls. 
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Figure 4. miR-140-3p suppresses proliferation and invasion of BCa cells by reducing FOXQ1 expression. (A, B), Western blot 
assay was performed to detect FOXQ1 expression. Approximately 50 ug of protein was loaded into each lane 2 to 4 days after transfection. 
(A) T24 cells were transfected with pWPI+NC, oeFOXQ1+NC, oeFOXQ1+miR-140-3p mimics or pWPI+miR-140-3p mimics. (B) UMUC3 cells 
were transfected with pLKO+NC, shFOXQ1+NC, shFOXQ1+inh-miR-140-3p or pLKO+ inh-miR-140-3p (C) An MTT rescue assay revealed that 
FOXQ1-increased cell proliferation could be reversed after adding miR-140-3p mimics to T24 cells. (D) An MTT rescue assay revealed that 
shFOXQ1-decreased cell proliferation could be reversed after adding miR-140-3p inhibitor to UMUC3 cells. (E) A transwell invasion assay 
revealed that FOXQ1-increased cell invasion could be reversed after adding miR-140-3p mimics to T24 cells. (F) A transwell invasion assay 
revealed that shFOXQ1-decreased cell invasion could be reversed after adding miR-140-3p inhibitor to UMUC3 cells. (C–F) Each sample was 
run in triplicate and used in multiple experiments to determine the mean ± SD. *P < 0.05; **P < 0.01 compared to controls. 
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confirm that the expression of miR-140-3p increased in 

the miR-140-3p mimics group more than in negative 

control group (Figure 5E). The result of qRT-PCR also 

suggested that FOXQ1 expression was lower in the 

miR-140-3p overexpression group (Figure 5F). Together 

these data demonstrated that miR-140-3p suppressed the 

growth of BCa cells in vivo and might serve as a 

therapeutic marker in bladder cancer. 

 

DISCUSSION 
 

The forkhead gene in Drosophila and the hepatocyte 
nuclear factor 3 alpha gene in rats were the first FOX 

family genes to be identified [23]. Members of the FOX 

gene family exist in a large range of organisms, 

functioning in a variety of tissues and playing vital roles 

in various biological processes. The FOX genes are 

involved in embryonic development [24], cell-cycle 

regulation [25], tissue-specific gene expression [26], 

cell signaling [27] and tumorigenesis [28]. 

The human FOXQ1 gene was first isolated and 

characterized in 2001 [29]. The FOXQ1 gene is 

expressed strongly in the trachea and stomach, and to a 

lesser degree in the salivary gland and bladder. In 2010, 

researchers found that in colorectal cancer, FOXQ1 

promoted tumorigenicity and tumor growth by 

upregulating p21 expression, which in turn enhanced 

angiogenesis and anti-apoptosis. It has since been 

revealed that FOXQ1 functions as an oncogene in many 

human cancer types, including BCa [22, 30]. 

 

In our study, we found that the expression of FOXQ1 

was higher in BCa tissues than adjacent normal bladder 

tissues. FOXQ1 promoted BCa cell proliferation and 

invasion. We also found that miRNA regulates FOXQ1 

mRNA at a post-transcriptional level to repress mRNA 

degradation or protein translation. Investigators have 
discovered that miR-124, miR-506 and miR-342-3p 

suppressed nasopharyngeal carcinoma cell proliferation 

and metastasis by targeting FOXQ1 [31–33]. Other 

 

 
 

Figure 5. miR-140-3p suppresses the growth of BCa cells in vivo. (A) Macroscopic appearance of murine tumor xenografts.  
(B) Weights of tumors in 2 groups were measured using electronic scales. (C) Summary of tumor volume, which were measured weekly.  
(D) Representative immunohistochemical staining of Ki-67 and FOXQ1 in murine BCa cell xenografts. (E) The expression of miR-140-3p in 
xenografts was detected using qRT-PCR. (F) The expression of FOXQ1 in xenografts was detected using qRT-PCR. (B–F) Each sample was run in 
triplicate and used in multiple experiments to determine the mean ± SD. *P < 0.05; **P < 0.01 compared to controls. 
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researchers have revealed that miR-1271, miR-345 and 

miR-519 inhibited FOXQ1 in gastric cancer [14, 34, 35]. 

In colorectal cancer, miR-320, miR-342 and miR-106a 

restrained tumor cell growth by targeting FOXQ1 [36–

38]. Finally, lncRNA MALAT1 promoted BCa 

proliferation and metastasis by targeting miR-124/ 

FOXQ1 expression [30]. 

 

A single gene can be targeted by multiple miRNAs to 

initiate various functions. We explored whether other 

miRNAs regulated FOXQ1 expression to influence BCa 

proliferation and invasion. We used in silico analysis to 

identify miR-140-3p as a candidate that regulated 

FOXQ1 expression in BCa cells. By literature review, 

we found that miR-140 had been shown to perform anti-

cancer functions in many types of human cancer. Xie et 

al. reported that miR-140 suppressed PD-L1 and cyclin E 

expression to inhibit cell proliferation in non-small cell 

lung cancer (NSCLC) [39]. Fang et al. found that miR-
140-5p downregulated YES1 expression to inhibit 

proliferation, invasion and migration of gastric cancer 

[40]. Lv et al. revealed that lncRNA-Unigene56159 

silenced miR-140-5p to de-repress the expression of 

Slug, promoting cell invasion and EMT in hepatocellular 

carcinoma cells [41]. Wang et al. reported that miR-140-

5p inhibited the proliferation, migration and invasion of 

BCa cells [42]. Here we found that miR-140-3p directly 

inhibited FOXQ1 expression in BCa cells. In addition, 

we determined that miR-140-3p inhibited FOXQ1 

expression by targeting the 3'-UTR. Gain- and loss-of-

function analysis revealed that miR-140-3p suppressed 

proliferation and invasion of BCa cells by reducing 

FOXQ1 expression. Furthermore, miR-140-3p inhibited 

the growth of BCa cells in a xenograft mouse model. 

These results revealed a network involving miR-140-3p 

and FOXQ1 that fine tunes the invasion and proliferation 

of BCa cells. 

 

We found that the expression level of miR-140-3p was 

significantly lower in BCa tissues than in adjacent 

normal bladder tissues. We found similar results in GEO 

DataSets (GSE40355, GPL8227). Using TCGA database 

analysis, we found that patients with higher miR-140-3p 

expression had longer disease-free survival periods than 

patients with lower miR-140-3p expression. miR-140 

was also downregulated in types of cancer [43–45]. The 

above results suggested that miR-140 might work as a 

tumor suppressor miRNA in cancer. 

 

It is well known that one miRNA can target multiple 

genes. For example, miR-140 suppresses tumor 

proliferation and metastasis by targeting insulin-like 

growth factor 1 receptor in NSCLC [46]. miR-140 also 

suppresses cell proliferation and invasion by targeting 

ATP8A1 in NSCLC [11]. To explore the role of this 

newly identified pathway in bladder tumorigenesis 

signaling, we upregulated miR-140-3p expression and 

found that the growth and invasion of BCa cells were 

inhibited, which imitated the function of FOXQ1 

reduction by targeted siRNA. Furthermore, the 

overexpression of FOXQ1 partially attenuated the anti-

proliferative and anti-invasive effects of miR-140-3p on 

BCa cells. 

 

miRNA plays important roles in tumor onset and 

progression. Recent studies revealed that replacement of 

tumor suppressive miRNA or inhibition of oncogenic 

miRNA were possible strategies in cancer therapy [47]. 

In our study, we found that miR-140-3p downregulated 

FOXQ1 expression both in vitro and in vivo. Flamini et 

al. found that miR-140 replacement treatment combined 

with other drugs enhanced drug efficacy by reducing the 

invasion and migration ability of NSCLC [48]. Hence, 

miR-140-3p mimic replacement therapy is a candidate 

for BCa treatment. 

 

MATERIALS AND METHODS 
 

Human tissue specimens 
 

Human BCa tissues and normal bladder tissues were 

acquired from patients who had undergone surgery and 

were diagnosed with BCa by pathologists in Shengjing 

Hospital of China Medical University (Shenyang, 

China) between 2014 and 2017. Informed consents 

were signed by each patient before using the tissues. 

The ethics approval was authorized by the Ethics 

Committee of Shengjing Hospital of China Medical 

University. 

 

Reagents 

 
FOXQ1 antibody was purchased from Biorbyt Ltd (host: 

rabbit; catalog number: orb77456 for western blot and 

orb53843 for IHC). GAPDH antibody (0411) was 

purchased from Santa Cruz Biotechnology (host: mouse; 

catalog: sc-47724). Anti-mouse/rabbit second antibodies 

were from Invitrogen (Grand Island, NY). miR-140-3p 

mimic (sequence: UACCACAGGGUAGAACCACGG) 

and miR-140-3p inhibitor (sequence: AGGCGAAGG 

AUGACAAAGGGAA) were purchased from Biomics 

Biotechnologies. The antibodies were kept at -20C. 

 

Cell culture and transfection 
 

The BCa cell lines (T24 and UMUC3) were purchased 

from the American Type Culture Collection (ATCC; 

Manassas, VA) and cultured with DMEM (Invitrogen, 

Grand Island, NY) containing 10% fetal bovine serum 

(FBS), penicillin (25 units/ml), 1% L-glutamine, and 

streptomycin (25 g/ml). The cells were maintained at 

37C in a 5% CO2 humidified atmosphere. Cells were 
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detected and identified as mycoplasma and bacteria 

free for 3 months following the ATCC's instructions. 

 

Lentivirus packaging 
 

The pWPI; pWPI-FOXQ1-cDNA (F-primer: GTGAG 

GAATTTCGACATTTAAATTTAATGAAGTTGGA

GGTGTTCGT, R-primer: TCCTGCAGCCCGTAGTT 

TTCAGGCTAGGAGCGTCTC); pLKO.1; pLKO.1-

FOXQ1-shRNA (F-primer: CCGGCGAGTACCTCA 

TGGGCAAGTTCTCGAGAACTTGCCCATGAGGT

ACTCGTTTTTG, R-primer: AATTCAAAAACGAG 

ACCTCATGGGCAAGTTCTCGAGAACTGCCCAT

GAGGTACTCG); pMD2G envelope plasmid and 

psPAX2 packaging plasmid were transfected into HEK 

293 cells using the standard calcium chloride 

transfection method. The lentivirus soups were 

collected after incubation 48 hours and 72 hours and 

frozen at -80C for use. 

 

RNA isolation and quantitative real-time 

polymerase chain reaction (qRT-PCR) 
 

Total RNA was extracted from cells and tissues by 

Trizol reagent (Invitrogen, Grand Island, NY) 

according to the manufacturer’s protocols [49]. 

Complementary DNA was synthesized from RNA 

reverse transcription by Superscript III transcriptase 

(Invitrogen, Grand Island, NY). qRT-PCR was 

conducted using a Bio-Rad CFX96 system. GAPDH 

was used as an internal control. miRNA was isolated 

with a PureLink miRNA kit (Invitrogen, Grand Island, 

NY). RPL32 and U6 were used as endogenous 

controls. All primers were designed as follows: 

FOXQ1: F-primer: CTACTCGTACATCGCGCTCA; 

R-primer: ACCTTGACGAAGCAGTCGTT; miR-140-
3p: TACCACAGGGTAGAACCACGG. 

 

Cell proliferation assay 
 

Transfected BCa cells were plated in 24-well plates 

(2000 cells/well). At day 1, 2, 3, and 4, 50 µL of 10 

mg/mL MTT reagent was added to the wells. After 2 

hours of incubation, the medium was sucked out and 

500 µL DMSO was added. The absorbance was 

measured at 570 nm. 

 

Cell invasion assay 
 

The upper chamber was coated with 100 µL Matrigel 

(Corning), which was diluted at 1:20 for T24 cells and 

1:30 for UMUC3 cells. The chamber was incubated for 

2 hours before cells were plated. The transfected BCa 

cells were suspended in serum-free medium and 

seeded into the upper chambers of each transwell (8.0 

µM pore size) at a 1x105/mL concentration. Then 750 

µL medium containing 10% FBS was added to the 

bottom chambers. The cells were incubated at 37°C 

with 5% (v/v) CO2 for 18 hours (for T24 cells) or 24 

hours (for UMUC3 cells). The invaded cells on the 

lower surface were permeabilized with methanol and 

stained with 0.1% crystal violet in the dark. The 

stained cells were photographed and counted under a 

microscope. 

 

Western blot assay 
 

Cells were lysed with RIPA lysis buffer on the ice. 

Proteins were collected and quantified with BCA 

analysis. Approximately 50 ug protein was loaded into 

each lane 2 to 6 days after transfection, separated by a 

10% SDS/PAGE gel and transferred onto a PVDF 

membrane (Millipore, Billerica, MA). After incubation 

with FOXQ1 antibody (dilution, 1:1000) or GAPDH 

antibody (dilution, 1:1000) overnight at 4°C, the 

proteins were then incubated with secondary 

antibodies (dilution, 1:5000) at room temperature for 1 

hour. After samples were washed with TBST, the 

signals were visualized using a chemiluminescent 

detection system (ThermoFisher Scientific, Rochester, 

NY) and analyzed with Image Lab software. 

 

Luciferase reporter assay 
 

Cells were co-transfected with miR-140-3p mimics and 

plasmid containing 3’-UTR sequences of FOXQ1 
wild-type or mutant fragments using the 

Lipofectamine 3000 reagent (Invitrogen, Carlsbad, 

CA) according to the manufacturer’s instruction. Dual-

luciferase activity was measured 36-48 hours after 

transfection by a dual-luciferase reporter assay system 

(Promega, Madison, WI) according to the 

manufacturer’s instruction. 

 

Xenografts in nude mice 
 

The animal experiments were performed according to 

the institutional ethics guidelines approved by the 

Animal Care Committee of China Medical University. 

Eight nude mice were purchased from Shanghai 

Laboratory Animal Center Co. Ltd (China). T24 cells 

were transfected with miR-140-3p mimics or a 

negative control. T24 cells (2×106) were injected 

subcutaneously into the posterior flank of the mice (5-

6 weeks, 4 mice per group). Tumor sizes were 

monitored once a week by measuring the length and 

width with calipers. Tumor volume was calculated by 

the following formula: volume = (length x width2) x 

0.52 [50]. Mice were sacrificed 4 weeks after 

injection, and tumor weights were measured. qRT-

PCR was conducted to quantify miR-140-3p and 

FOXQ1 expression in xenograft tumors. 
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Immunohistochemical staining 
 

Each tissue was cut to 5 μm section. The slide was 

treated for antigen retrieval and incubated with primary 

antibody. After rinsing with tris-buffered saline, the 

slide was incubated with secondary antibody, and then 

incubated with enzyme conjugate horseradish 

peroxidase. Finally, the slide was counter-stained with 

hematoxylin. 

 

Statistical analysis 
 

Statistical analyses were performed using SPSS 17.0 

(SPSS, Chicago, IL). Data were expressed as mean ± 

standard deviation (SD) from at least 3 independent 

experiments. P < 0.05 was considered statistically 

significant. Data differences were identified by chi-

square test or Student’s t-test. Pearson correlation 

analysis was used for comparing data sets. Kaplan–

Meier curves were used for survival analysis. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. (A) The levels of miR-140-3p in T24 and UMUC3 cells were compared using qRT-PCR. (B) miR-140-3p 
overexpression and knockdown in T24 and UMUC3 cells were verified using qRT-PCR. *P < 0.05 compared to controls. 


