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INTRODUCTION 
 

The Duck Tembusu virus (DTMUV) is an arbovirus 

belonging to the genus Flavivirus, family Flaviviridae. 

DTMUV is a single-stranded, positive-polarity RNA 

flavivirus  with  a  ~11 kb genome,  which  has only one  

 

open reading frame (ORF). The ORF encodes a 

polyprotein of ~3400aa (amino acid) residues, which is 

subsequently cleaved into three structural proteins 

(capsid [C]; precursor of M [prM] and envelope [E]) 

and seven nonstructural (NS) proteins (NS1, NS2A/2B, 

NS3, NS4A/4B and NS5) [1–6].  
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ABSTRACT 
 

Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that has caused enormous economic losses 
in Southeast Asia. However, the pathogenic mechanism and host’s responses after DTMUV infection remain 
poorly understood. During this study, total mRNA sequencing (RNA-Seq) analysis was used to detect the global 
gene expression in DEFs at various time points after DTMUV infection. We identified 326 genes altered 
significantly at all time points, and these genes were dynamically enriched in multifarious biological processes, 
including apoptosis, innate immune response, DNA replication, cell cycle arrest and DNA repair. Next, the 
results showed that apoptosis was induced and the proportion of apoptosis increased with time, and pro-
apoptotic molecules caspases were activated. The RNA-seq data analysis further revealed that most pro-
apoptosis and anti-apoptosis genes were early continually responsive, and the genes involved in both intrinsic 
and extrinsic apoptotic pathways were initiated. Further, the considerably enriched immune-relevant pathways 
were involved in apoptosis process, and protein-protein interactions (PPIs) analysis showed that IL6, STAT1, 
TNFAIP3, CFLAR and PTGS2 may be key regulators of DEFs apoptosis. In conclusion, this study not only 
contributes to understanding the underlying mechanism of DEFs infection with DTMUV, but also provides new 
insights into targets screening for antiviral therapy. 
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In recent years, DTMUV has caused huge economic 

losses to the poultry industry in Southeast Asian 

countries such as Thailand, Malaysia and China [7, 8]. In 

addition to infecting ducks, DTMUV can also infect 

chickens, geese, pigeons and house sparrows [9–11]. In 

vivo experiments showed that DTMUV can replicate in 

the spleen, kidneys and brains of BALB/c mice and 

Kunming mice, and cause systemic infection after 

intracerebral inoculation [12, 13]. A wide spectrum of 

mammalian cells ais susceptible to DTMUV and exhibit 

cytopathic effects (CPEs), such as Vero, BHK21 and 

Hela [14]. Moreover, more than 70% of duck industry 

workers were reported to have Abs against DTMUV in 

the serum samples tested, and ~50% of oral swab 

samples were found to be positive for DTMUV RNA 

[15]. It is worth noting that flaviviruses such as BAGV 

[16] and TMUV [17, 18], which cross-react with 

DTMUV, can infect human beings. These studies clearly 

prove that DTMUV is likely to spread from ducks to 

other non-avian hosts and even humans [15]. Hence, 

DTMUV is very likely to become a zoonotic pathogen, 

and it is urgent to carry out antiviral research on 

DTMUV. 

 

Apoptosis, also known as programmed cell death 

(PCD), is a crucial process for the host to resist 

pathogens invasion [19]. Apoptosis classically occurs 

via the intrinsic and extrinsic apoptotic pathways [20]. 

The intrinsic apoptosis pathway includes mitochondria- 

and endoplasmic reticulum (ER)-activated apoptosis. 

The mitochondrial apoptotic pathway could be initiated 

by numerous factors, such as nutrient deprivation, 

hypoxia and oxidative stress, resulting in a decrease in 

mitochondrial membrane potential (MMP) [21]. 

Subsequently, cytochrome C (cyt-c) is released to cyto-

plasm, a process closely controlled by the Bcl-2 protein 

family. Bcl-2 family proteins are divided into pro-

apoptotic proteins (Bak, Bad, Bax, Bid) and anti-

apoptotic proteins (Bcl-xl, Bcl-2, Mcl-1) [22]. Cyt-c 

can recruit pro-caspase-9 and apoptotic protease 

activating factor-1 (Apaf-1) to form an apoptosome, 

which then activates downstream caspase-3/7 to trigger 

apoptosis. The extrinsic apoptosis pathway, also called 

the death receptor pathway, is initiated by the binding 

of the death ligand to the corresponding receptor. Next, 

pro-caspase-8 is recruited to form a death-inducing 

signaling complex (DISC), resulting in the activation of 

caspase-8 and caspase-3/7, which ultimately leads to 

cleavage of cellular DNA [23, 24]. Although apoptosis 

can inhibit viral replication, many viruses have evolved 

strategies to prevent the occurrence of apoptosis during 

viral replication until sufficient progeny viruses are 

produced to enhance the spread of the virus [25, 26]. 

Therefore, understanding the mechanism of DTMUV 

regulating apoptosis is of great significance for future 

research. 

Emerging technologies such as transcriptomics have 

become crucial tools for studying the pathogenesis of 

virus-infected host cells [27–29]. Transcriptome analysis 

can detect all RNA transcripts in cells, helping to clarify 

the expression levels of genes in different cellular 

environments [30]. Moreover, several important viruses 

have applied this technique to study the molecular 

mechanisms of pathogen-host interactions, including 

hepatitis E virus (HEV) [31], dengue virus (DENV) [10, 

32], influenza A virus [33], Zika virus (ZIKV) [34] and 

Zaire Ebola virus (ZEBOV) [35]. These studies not only 

help to understand the host response after viral infection, 

but also provide clues for exploring the potential targets of 

antiviral drugs. Nevertheless, until now, information about 

the responses of host cell DEFs to DTMUV infection is 

rarely addressed. 

 

In this study, in order to study the interaction between 

DTMUV and host cells, we used transcriptome approach 

to compare the genome-wide expression of the DTMUV-

infected groups and the mock-infected groups at 12, 24, 

36, 48 and 60 hpi (hours post infection). Using the Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analyses, differentially 

expressed genes (DEGs) at different stages of infection 

were screened out. Eventually, we focused on the 

apoptotic pathway and the dynamic changes of pro-

apoptosis and anti-apoptosis genes in DTMUV-infected 

DEFs. In conclusion, these findings provide prime 

information for a deeper understanding of the host’s 

response to DTMUV infection and the development of 

strategies to control DTMUV infection. 

 

RESULTS 
 

Characteristics of DEFs infected with DTMUV 
 

To determine the proliferation kinetics of DTMUV in 

DEFs, CPEs and the viral titers were detected at different 

time points after infection. In Figure 1A, minimal CPEs 

can be observed at 24 hpi and obvious CPEs appeared at 

36 hpi, such as increased granularity and cellular 

fragmentation, and almost all cells fell off at 60 hpi. In 

Figure 1B, the viability of DEFs gradually decreased with 

the extension of viral infection time, confirming the high 

efficiency of viral infection. We used median tissue culture 

infective dose (TCID50) assays and Q-RT-PCR to monitor 

DTMUV proliferation (Figure 1C, 1D); the results showed 

that as the infection progressed, both the titers and viral 

RNA gradually increased. 
 

Global changes of gene expression after DTMUV 

infection 
 

As shown in Supplementary Dataset 1, genes with 2-

fold changes or greater at 12, 24, 36, 48 and 60 hpi were 
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defined as DEGs (P<0.05). In Figure 2A, six randomly 

selected DEGs were verified by Q-RT-PCR and 

confirmed that they all have good similarity to RNA-seq 

results, indicating that our data is accurate and valid and 

hence can be used for biological analysis. The principal 

component analysis (PCA) can demonstrate the 

dissimilarities among different samples. In Sup-

plementary Figure 1, all the mock-infected samples 

were clearly distinct from DTMUV-infected samples, 

and the DTMUV-infected samples at each time point 

did not cluster with other time point. All sequencing 

data were deposited online in SRA (accession number 

SRS6277135). 

 

Next, we compared the transcriptome profiles of 

DTMUV-infected groups relative to mock-infected 

groups at different time points to determine the DEGs 

levels during DTMUV infection. In Figure 2B, the 

numbers of DEGs increased with the time of DTMUV 

infection (681, 1649, 3583, 3822 and 4142 at 12, 24, 36, 

48 and 60 hpi, severally), and most DEGs were 

upregulated or downregulated after 24 hpi. Since there 

were numerous DEGs at each time point, we first 

screened 10 genes that were most upregulated or down-

regulated (log2foldchange) at various time points for 

analysis (Table 1).  

 

Among the upregulated genes, RSAD2 (radical S-adenosyl 

methionine domain-containing protein 2) was most 

significantly upregulated at 12 and 24 hpi, while POMC 

(proopiomelanocortin), IL12B (interleukin 12B) and 

HMX3 (H6 family homeobox 3) were most upregulated at 

36, 48 and 60 hpi, respectively (Table 1). It’s worth noting 

that the interferon-stimulated gene RSAD2 was 

significantly upregulated at all the time points, indicating 

the activation of antiviral and innate immune responses. 

 

Among the downregulated genes, HPD (4-

hydroxyphenylpyruvate dioxygenase), SIGLEC15 

(sialic acid binding Ig like lectin 15), LMOD3 

(leiomodin 3), MLXIPL (MLX interacting protein like) 

and C7H21orf58 (chromosome 7 C21orf58 homolog) 

were most downregulated at 12, 24, 36, 48 and 60 hpi, 

respectively (Table 1). 

 

Further, we established Venn diagrams to delve deeper 

into genes that are unique or shared at each time point 

(Figure 2C). In total, 6172 DEGs were identified after 

DTMUV infection, of which 3220 genes were 

upregulated (52%) and 2952 genes were downregulated 

(48%). Of the 3220 upregulated genes, 499 were 

upregulated at 12 hpi, 1134 at 24 hpi, 1935 at 36 hpi, 

1998 at 48 hpi and 2115 at 60 hpi; among 2952 

downregulated genes, 182 were downregulated at 12 

hpi, 515 at 24 hpi, 1648 at 36 hpi, 1824 at 48 hpi and 

2027 at 60 hpi. In the meantime, most differentially 

expressed genes were activated only at the 60 hpi, 520 

out of 3220 upregulated genes (16.15%) compared with 

 

 
 

Figure 1. DTMUV infection in DEFs cells. (A) The cytopathic effects (CPE) of DEFs cells at 12, 24, 36, 48 and 60 hpi, and mock-infected 

cells as control. (B) The cell survival analysis at 12, 24, 36, 48 and 60 hpi. (C) One-step growth curve of DTMUV in DEFs cells. (D) Quantitative 
analysis of viral DNA by quantitative real-time PCR assay.  
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Figure 2. Changes of the gene expression in DEFs at different times after DTMUV infection. (A) Q-RT-PCR versus RNA-seq analyses 

of the expression for representative six genes (CCL19, IFIH1, TRIM25, CD36, IGF1 and SFRP4). (B) The upregulated/downregulated number 
and total number of DEGs (≥ twofold change, P<0.05) at 12, 24, 36, 48 and 60 hpi. (C) Venn diagrams showing overlap of DTMUV-induced 
DEGs across different time points. Upregulated and downregulated genes were analyzed separately and have been shown with the number 
of genes specifically or commonly responsive at different time points. 
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Table 1. The genes that were most up- or downregulated at each time point of DTMUV infection. 

Gene category 

12hpi 24hpi 36hpi 48hpi 60hpi 

Gene 
log2Fold 

Change 
Gene 

log2Fold 

Change 
Gene 

log2Fold 

Change 
Gene 

log2Fold 

Change 
Gene 

log2Fold 

Change 

Upregulated RSAD2 9.66 RSAD2 10.31 POMC 12.64 IL12B 12.22 HMX3 10.72 

 
DDX60 8.96 CMPK2 9.55 RSAD2 11.78 IFITM1 10.71 POMC 9.91 

 
EPSTI1 8.46 DDX60 9.39 IL12B 11.72 POMC 10.59 RSAD2 9.88 

 
CMPK2 8.13 IL12B 9.17 LHX4 11.21 RSAD2 10.55 CMPK2 9.14 

 
USP18 7.86 CCL19 8.79 CMPK2 11.2 HMX3 10.37 SIX3 9.04 

 
CD7 7.09 LHX4 8.58 SIX3 11.14 EOMES 10.06 IFITM1 9.02 

 
VCAM1 6.7 IFITM1 8.55 HMX3 10.68 CMPK2 10.06 THEMIS 8.29 

 
CCL19 6.67 EPSTI1 8.54 FLT3 10.68 LHX4 10.06 FGF4 8.28 

 
IFITM1 6.65 USP18 8.39 CD7 10.54 NKX2-1 9.42 DDX60 8.26 

 
TRANK1 6.45 POMC 8.03 THEMIS 10.18 FOXS1 9.2 USP18 8.21 

           Downregulated HPD -3.76 SIGLEC15 -4.65 LMOD3 -7.55 MLXIPL -8.19 C7H21orf58 -10.06 

 
ACSL5 -3.34 CER1 -4.26 GJD4 -6.34 MARCO -7.26 ADPRHL1 -9.61 

 
ADRA1B -3.27 CD36 -3.93 ANKRD34B -5.96 GJD4 -7.12 ENPEP -8.66 

 
CD79B -3.13 TLDC2 -3.84 C1QTNF8 -5.92 ADPRHL1 -7.05 MARCO -8.39 

 
HHATL -2.61 SLC5A12 -3.59 IGSF10 -5.6 ENPEP -7.01 C7 -8.24 

 
CD4 -2.59 PAH -3.52 OMG -5.54 P2RY13 -6.87 IGF1 -8.2 

 
NR4A1 -2.56 WEE2 -3.33 TLR4 -5.17 CACNG1 -6.54 MLKL -8.08 

 
FMOD -2.38 GDF2 -3.28 CMBL -5.08 PPP1R3A -6.48 MGP -8.06 

 
MEF2B -2.34 IGF1 -3.22 C4H4orf54 -5.05 C7H21orf58 -6.47 HSPB2 -7.54 

 
TNXB -2.33 IGSF10 -3.14 MARCO -4.97 C4H4orf54 -6.4 CACNG1 -7.53 

 

24 (0.75%), 141 (4.38%), 250 (7.76%) and 169 (5.25%) 

at 12, 24, 36 and 48 hpi, similarity, 533 out of 2952 

downregulated genes (18.06%) compared with only 55 

(1.86%), 114 (3.86%), 265 (8.98%) and 194 (6.57%) at 

12, 24, 36 and 48 hpi, respectively.  

 

GO and KEGG enrichment analysis 

 

In Figure 2C, genes that were differentially expressed at 

all time points were called continuous upregulated and 

downregulated genes, marked with yellow circle, the 

DEGs in this group undoubtedly play an important role 

during DTMUV infection. The Venn diagrams revealed 

that 277 genes were continuous upregulated, whereas only 

49 genes were continuous downregulated. In Figure 3A, a 

total of 326 genes that were differentially expressed at all 

time points were subjected to GO enrichment analysis, 

and it was found that the DEGs were mainly related to 

defense response to virus, innate immune response, MHC 

class I protein complex and cytokine activity. In addition, 

the details of GO enrichment analysis are shown in 

Supplementary Dataset 2. In addition, the results of GO 

analysis of DEGs that were upregulated or downregulated 

at all time points are shown in Supplementary Figures 2A, 

3A, respectively.  
 

What’s more, to delve into the functions of these DEGs, 

KEGG enrichment analysis was performed. In Figure 3B, 

DEGs were considerably enriched in immune-relevant 

pathways, including the Toll-like receptor signaling 

pathway, NOD-like receptor signaling pathway, RIG-I-

like receptor signaling pathway and cytosolic DNA-

sensing pathway, which plays a vital role in controlling 

viral infection and antiviral immune regulation. In 

addition, a strong enrichment was observed for genes 

involved in apoptosis, indicating that dysregulation of cell 

survival and cell growth are associated with DTMUV 

infection. The DEGs were also enriched in p53 signaling 

pathway that positively regulates apoptosis and cell cycle 

arrest, suggesting that DTMUV will induce cell growth 

arrest. Moreover, Necroptosis, Calcium signaling pathway 

and MAPK signaling pathway, which are involved in 

Apoptosis, were also enriched. In addition, the details of 

KEGG enrichment analysis are shown in Supplementary 

Dataset 3. Similarly, the results of KEGG analysis of 

DEGs that were upregulated or downregulated at all time 

points are shown in Supplementary Figures 2B, 3B, 

respectively. 

 

Differential expression of innate immune cytokines 

in DTMUV-infected DEFs 

 

A variety of evidences indicate that innate immune 

responses plays an important role in limiting flavivirus 

infection [42, 43]. In the GO and KEGG enrichment 

analyses, the DEGs were significantly enriched in
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Figure 3. Analysis of the genes with expression changes at all time points. (A) The top 30 Gene Ontology (GO) enrichment of 

differentially expressed genes. (B) The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially 
expressed genes. 
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immune-related pathways (Figure 3A and 3B), moreover, 

in Table 1, we found that the interferon-stimulated gene 

RSAD2 was significantly upregulated, so it was of interest 

to survey the transcriptomic information about key genes 

in immune-related pathways. Thus, we examined the 

expression levels of cytokines participated in immune-

related pathways, specifically, IFN-α2, IL12B, IFN 

regulatory factor 3 (IRF3), DHX58, IL-7, and signal 

transducer and activator of transcription 1 (STAT1) were 

selected. As shown in Figure 4, the results of both Q-RT-

PCR and RNA-seq showed that all these genes are 

upregulated to varying degrees at various time points. 

Hence, these results indicated that innate immune 

responses were robust after DTMUV infection, which is 

consist with the GO and KEGG enrichment results. Since 

the elimination of virus-infected cells by apoptosis is often 

affected by the innate immune responses, the innate 

immune responses may be involved in DTMUV-induced 

apoptosis. 

 

DTMUV induces the counteraction of pro-apoptosis 

and anti-apoptosis 

 

Apoptosis play a vital role in virus-induced cytotoxicity 

[44]. Analysis of the sequencing data indicated that 

apoptosis pathway was activated after DTMUV 

infection. In order to link the analysis results with virus 

biology, we infected DEFs with DTMUV, and the flow 

cytometric analysis was performed after staining with 

Annexin V-FITC and PI, the results showed that 

DTMUV had a significant pro-apoptotic effect and 

obvious time dependence (Figure 5A, 5B). 

 

Based on GO analysis, we identified 81 genes related to 

apoptosis, of which 45 and 31 genes play a positive and 

negative regulation role, respectively, and another 5 

genes may regulate apoptosis either in both manners or 

in an unclear way (Supplementary Dataset 4). 

Meanwhile, the changes in gene expression shown by 

the heat map indicated that DTMUV infection will alter 

both pro-apoptosis and anti-apoptosis genes (Figure 

5C). Among pro-apoptosis genes, death receptor genes 

(TNFRSF9 and FAS), mitochondrial pathway related 

genes (caspase-9, cyt-c and apaf-1), Bcl-2 family pro-

apoptosis genes (BAK1 and BID, inhibitors of the IAP 

family members) and p53-dependent target genes 

(CYFIP2), were upregulated at various time points after 

DTMUV infection. The results indicate that both 

intrinsic and extrinsic apoptosis pathways may be 

initiated. Furthermore, anti-apoptotic genes, GADD45B 

and CFLAR, and the IAP family members (BIRC2 and 

BCL2L1) were upregulated early or late after DTMUV 

infection. Although the expression of the pro-apoptotic 

and anti-apoptotic genes were both altered, genes 

involved in pro-apoptotic in the competition between 

the two ultimately had an advantage, thus DTMUV 

infection induced apoptosis. 

 

In addition, to determine whether the caspases family 

protein plays an indispensable role in DTMUV-induced 

apoptosis, we detected the mRNA levels of caspase-

3/7/8/9 by Q-RT-PCR. In Figure 6A, caspase-7 mRNA 

levels in DTMUV-infected cells increased significantly 

at all time points, while the caspase-3 mRNA levels 

were significantly increased at 36, 48 and 60 hpi. 

What’s more, caspase-8 mRNA levels increased 

observably at 24 and 48 hpi, while caspase-9 mRNA 

increased significantly at 48 and 60 hpi. Figure 6B 

showed that the enzymatic activity of caspase-3/7 in the 

infection groups increased significantly at all the time 

 

 
 

Figure 4. Differentially expressed genes (DEGs) in innate immune system-related response after infection. 
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points compared to the control groups, while the 

caspase-8 enzymatic activity only increased 

significantly at 60 hpi. In contrast, the caspase-9 

enzymatic activity did not change significantly at all the 

time points. These findings suggested that caspases 

were involved in the apoptosis triggered by DTMUV in 

DEFs. 

 

DTMUV induces DEF S-phase cell cycle arrest  

 

Studies have shown that DNA damage caused by viral 

infections can lead to cell cycle arrest [45]. Analysis of 

the results of flow cytometry showed that the cells 

number of S phase at 24 and 36 hpi in the DTMUV-

infected group was significantly higher than that in the 

control group (Figure 7A, 7B), indicating that the cell 

blockage in S phase after DTMUV infection. In 

addition, we found that DTMUV can induce 

downregulation of numerous genes involved in DNA 

replication, thereby inhibiting cell cycle progression 

(Supplementary Table 1). Further, the key genes of S 

phase were tested. CUL1 and CCNE1, two S phase 

target genes, whose mRNA levels were upregulated at 

various time points after DTMUV infection, while the 

mRNA levels of RBX1, SKP2 and CCNE2 were 

decreased at all the time points, moreover, CCNE2 was 

time-dependently downregulated. Further, the 

expression levels of SKP1 and ORC3 were increased 

only at 12 hpi, but decreased at 24, 36, 48 and 60 hpi 

(Figure 7C). Interestingly, G2/M phase arrest only 

appeared at 36 hpi, but not at 24 hpi (Figure 7B). As we 

can see, the proportion of S phase arrested cells at 36 

hpi was significantly lower than that at 24 hpi, possibly 

because with the prolonged infection time, some S 

phase cells entered G2/M phase, thus the cells blocked 

in G2/M phase at 36 hpi was significantly increased. 

 

 
 

Figure 5. Apoptotic effects induced by DTMUV infection. (A) The absence of apoptosis analyzed by double staining with annexin V-

FITC/PI, followed by flow cytometry. Representative images are shown (n=3). (B) Histogram of the percentage of apoptotic cells. The data are 
presented as the means ± SD of three independent experiments. *** p<0.0001, compared with the control group. (C) The heat map 
illustrating the dynamic regulation of apoptosis genes by DTMUV infection, including genes involved in pro-apoptosis, anti-apoptosis, or both 
positive and negative regulation of apoptosis. The green-to-red gradient bar represents log2 values of fold-changes in the gene expression 
induced by DTMUV infection. 
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Figure 6. Effects of DTMUV infection on the caspase family. (A) mRNA expression levels of caspase-3, caspase-7, caspase-8 and 

caspase-9. (B) Activities of caspase-3, caspase-7, caspase-8 and caspase-9. The data are presented as the means ± SD of three independent 
experiments. * p<0.05, ** p<0.01 and *** p<0.0001, compared with the control group. 

 

 
 

Figure 7. Analysis of cell cycle arrest induced by DTMUV infection. (A) The representative distribution and (B) the percentage of cells 

in G0/G1, S and G2/M phases at 24 and 36 hpi. Histograms of the cell percentage data are also shown (n=3). * p<0.05, ** p<0.01 and *** 
p<0.0001, compared with the control group. (C) RNA-seq data showing transcriptional expression changes of some key factors in the S 
checkpoint at 12, 24, 36, 48 and 60 hpi. 
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Since the G2/M phase can protect cell viability by 

giving time for DNA repair [46], we analyzed the 

expression of genes participated in DNA repair 

pathways (Supplementary Table 2), containing mis-

match repair, base excision repair, recombinational 

repair and nucleotide excision repair. It was found that 

most genes were significantly suppressed, indicating 

that the inefficiency of DNA repair after DTMUV 

infection. 

 

PPI revealed key genes regulating DEFs apoptosis 

 

In order to explore key genes involved in the regulation 

of DEFs apoptosis, we performed PPIs (protein to 

protein interactions) analysis using genes related to 

apoptosis that were significantly differentially 

expressed at all the time points (P<0.05). This PPI 

network diagram was used to reveal the central genes 

involved in the apoptosis of DEFs (Figure 8). Genes 

with higher edge count, such as IL-6 [47], STAT1 [48], 

TNFAIP3 [49], CFLAR [50], IRF1 [51] and PTGS2 

[52], may be the central nodes of the apoptotic network. 

 

DISCUSSION 
 

DTMUV is a vital pathogen that harms waterfowl and has 

caused huge economic losses to the poultry industry in 

China since 2010. Hence, deepening the understanding of 

the molecular mechanism of host-pathogen interactions is 

of great significance to inhibit the occurrence and 

prevalence of DTMUV infection. In recent years, RNA-

Seq technology has become a powerful and revolutionary 

tool for uncovering molecular expression profiles [53–

55]. Nevertheless, little information is available on the 

molecular expression profiles of DTMUV interacting with 

host cell DEFs.  

 

 
 

Figure 8. Protein to protein interaction (PPI) relationships of apoptosis-related genes. Apoptosis-related genes were selected from 

genes differentially expressed at various time points that were annotated with “apoptosis” and had significant.  
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In this research, to better elucidate the precise molecular 

mechanisms of DTMUV invasion into host cells, DEFs 

were served as an in vitro model to analyze the global 

molecular expression profiles. In total, 6172 DEGs were 

identified, of which 326 genes were continuous 

upregulated or downregulated at all time points (Figure 

2C). Specifically, RSAD2 was most upregulated at the 

intersections of all time points (Table 1). RSAD2 is an 

interferon-stimulated gene involved in innate immunity 

and subsequent adaptive immunity during viral 

infection, as such is mainly responsible for limiting 

viral replication and antiviral responses [56–58]. In 

addition, RSAD2 had been shown to limit the replication 

of multiple viruses in monocytes, fibroblasts and 

neurons, such as DENV [59], HCV [60], WNV [61], 

chikungunya [62], influenza [63], human cyto-

megalovirus [56] and human immunodeficiency viruses 

[64]. Thus, the upregulation of RSAD2 is likely to 

prevent DTMUV invasion by activating the immune 

response. 

 

By performing GO and KEGG enrichment analysis on 

the 326 genes, several immune-relevant signaling 

pathways were further confirmed to be participated in 

the response to DTMUV infection, including Cytosolic 

DNA-sensing pathway, Toll-like receptor signaling 

pathway, RIG-I-like receptor signaling pathway and 

NOD-like receptor signaling pathway [65], and so on 

(Figure 3A and 3B). These antiviral pathways have 

also been shown to be involved in the infection 

process of other flaviviruses, such as DENV [66], 

ZIKV [67], West Nile virus (WNV) [68, 69] and 

Hepatitis C virus (HCV) [42]. In addition, we found 

that DTMUV can effectively induce the activation of 

various immune molecules (IFN-α2, IL12B, IRF3, 

DHX58, IL-7 and STAT1) (Figure 4). Nevertheless, 

these cytokines did not inhibit DTMUV replication in 

DEFs (Figure 1C, 1D). This may cause the occurrence 

of “cytokine storm”, which is the excessive production 

of multiple inflammatory cytokines to resist pathogens 

invasion. And overexpressed cytokines will cause 

great damage to the host cells [70, 71], and finally 

induce cell death. 

 

The results further showed that genes related to 

apoptosis, cell cycle arrest, DNA replication and DNA 

repair were transcriptionally modulated and highly 

enriched. First, it was found that DTMUV can induce 

apoptosis of DEFs, and the proportion of apoptosis 

gradually increases with time (Figure 5A and 5B). Since 

the percentage of apoptotic cells in DEFs after DTMUV 

infection was positively correlated with the viral titers 

achieved by these cells, DTMUV may promote the 

replication and spread of the virions by inducing cell 

apoptosis as reported by Dengue virus-2 [72] and 

PRRSV [73]. In Figure 5C, the dynamic gene 

expression patterns revealed that the most pro-apoptosis 

and anti-apoptosis genes showed an early and persistent 

response. Among the upregulated pro-apoptosis genes, 

the caspase-7 plays a role in executing apoptosis, 

moreover, genes closely related to the intrinsic and 

extrinsic apoptotic pathways were also affected. For 

instance, caspase-9, cyt-c and apaf-1, which are 

involved in the formation of apoptosome, were 

significantly upregulated at all the time points. 

Meanwhile, death receptor genes (TNFRSF9 [74] and 

FAS [75]) and caspase-8 were also activated. In 

addition, Bcl-2 family pro-apoptotic genes (BAK1 [76] 

and BID [77], inhibitors of IAP family members) 

participated in the intrinsic apoptosis pathway were 

signally upregulated as well. The results indicated that 

both intrinsic and extrinsic apoptosis pathways were 

initiated after DTMUV infection. What’s more, the pro-

apoptotic gene p73 (encoded by TP73), which functions 

similar to p53, has been reported to be involved in the 

apoptotic response caused by DNA damage [78], we 

found it is also involved in DTMUV-induced apoptosis. 

Moreover, among the downregulated anti-apoptosis 

genes, NOTCH1 can initiate gene expression programs 

through translocation of intracellular NOTCH domain 

(NICD) [79, 80]. In addition, BNIP3 is a member of the 

Bcl-2 family, it has been found to be located in the 

nucleus and prevent cell death by inhibiting the 

expression of AIF (apoptosis inducing factor) [81, 82]. 

The two downregulated molecules may promote 

apoptosis caused by DTMUV, thereby increasing the 

proportion of apoptosis. According to previous reports, 

apoptosis caused by viral infection is often affected by 

the innate immune responses, which is considered to be 

a pioneer in combating RNA virus infection [68, 83–

85]. This may explain the activation of the immune-

relevant pathways and the high expression of innate 

immune cytokines observed in this study (Figures 3 and 

4), indicating that the intact and functional innate 

immune responses are involved in the apoptosis process 

induced by DTMUV, but experimental verification is 

still required.  

 

Furthermore, our research demonstrated that DTMUV 

infection caused S phase arrest (Figure 7A and 7B) and 

repressed vast genes involved in DNA replication 

(Supplementary Table 1). The S phase arrest may be 

closely related to the downregulation of some key S 

phase genes (Figure 7C). Since these genes have a 

protective effect on DNA damage-induced cytotoxicity, 

the abrogation of them may promote cell death. Our 

further found that G2/M arrest occurred at 36 hpi, 

resulting in insufficient time to repair DNA 

(Supplementary Table 2). Overall, this reflected that 

cell cycle arrest and decreased DNA replication/repair 

capabilities may promote DTMUV invasion of DEFs 

and cause cell apoptosis. 
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In addition, many other signaling pathways were also 

involved in the occurrence of apoptosis [86]. The PPI 

network revealed that IGF-1 was one of the central 

nodes (Figure 8). Previous studies have confirmed that 

IGF-1 can inhibit apoptosis of chicken bursal cells [87], 

it suggested that IGF-1 may also play an important role 

in the apoptosis of DEFs. Next, it has been reported that 

the upregulated anti-apoptosis gene PTGS2 promotes 

cell survival by activating the PKA and PI3K pathways 

[88]. Moreover, apoptosis-related genes IL-6 and 

CFLAR, they are up-regulated at various time points 

(Figure 5C), indicating that they also play a vital role 

during apoptosis. In addition to apoptosis-related genes, 

genes involved in other pathways also play a role in the 

process of apoptosis, such as STAT1 and TNFAIP3. 

STAT1 is one of the most critical members of the STAT 

protein family and plays an important role in regulating 

cell growth, proliferation and differentiation [89]. 

Previous studies have confirmed that STAT1 is 

involved in dsRNA induced apoptosis [90], TNFAIP3 

was found to be participate in apoptosis as well [91]. 

What’s more, STAT1 and TNFAIP3 were both enriched 

in Toll-like receptor and NOD-like receptor signaling 

pathway, since both pathways are involved in innate 

antiviral response, implied that innate immune 

responses play an essential role in DEFs apoptosis, 

which are consist with the previous research findings in 

this article (Figures 3 and 4). 

 

In conclusion, we identified for the first time a dynamic 

gene expression network for apoptosis and cell cycle 

arrest induced by DTMUV. Moreover, the apoptotic 

response was affected by the dynamic expression 

changes of pro-apoptotic and anti-apoptotic genes, as 

well as by the intricate interactions with the innate 

immune cytokines, which provides essential references 

for deepening our understanding of the responses to 

DTMUV infection. The PPI network diagram further 

revealed several pivotal genes involved in apoptosis 

process (IL-6, STAT1, TNFAIP3, CFLAR, IRF1 and 

PTGS2), which provides effective information for 

screening the candidate targets for inhibition of 

DTMUV. 

 

MATERIALS AND METHODS 
 

Cells and viruses 

 

DEFs were obtained from 10-day-old duck embryos 

according to the manufacturer’s instructions [36]. The 

cells were grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM) (Gibco Life Technologies, Shanghai, 

China) supplemented with 10% newborn bovine serum 

(NBS) (Gibco, Gaithersburg, MD, USA) at 37°C in a 

humidified atmosphere with 5% CO2. When DEFs 

reached ~90% confluence, they were mock-infected or 

infected with DTMUV CQW1 strain (GenBank 

accession No. KM233707.1) at a multiplicity of 

infection (MOI) of 1 [37, 38]. After the virus was 

adsorbed in a 37°C, 5% CO2 incubator for 1 h, the 

inoculum was replaced with maintenance medium 

(DMEM containing 2% NBS), and the cell samples 

were collected at 12, 24, 36, 48 and 60 hpi, respectively. 

Each treatment at each time point has three independent 

biological repeats. 

 

Cell viability assays 

 

The cell viability was measured using the CCK8 assay 

according to the manufacturer’s instructions. Briefly, 

the cells were seeded in 96-well plates, the cell viability 

was detected at 12, 24, 36, 48 and 60 hpi, respectively. 

 

RNA extracting, cDNA library construction and 

sequencing 

 

Techniques and methods for transcriptome sequencing are 

provided by Oebiotech (Shanghai, China). Briefly, DEFs 

treated with PBS or DTMUV for 12, 24, 36, 48 and 60 

hpi were collected in biological duplicates and rapidly 

stored at -80°C until further use. Total RNA was extracted 

using Trizol reagent (Invitrogen, CA, USA) according to 

the manufacturer’s instructions. RNA integrity was 

evaluated using the Agilent Bioanalyzer 2100 (Agilent 

Technologies, CA, USA), the mRNA was purified using 

oligo (dT) magnetic beads and then fragmented with 

fragmentation buffer. The fragmented mRNA was used as 

a template to synthesize cDNA, and the cDNA libraries 

was constructed after terminal repair and adding poly (A) 

and sequencing joints. Then, the libraries were sequenced 

on the Illumina sequencing platform (HiSeq 2500) to 

generate 150 bp paired-end reads.  

 

Data analysis and differentially expressed genes 

(DEGs) 

 

Clean reads obtained after Raw reads were processed by 

removing the reads containing adaptors, ploy-N 

sequences and rRNA. The assembled unigenes were 

then mapped to mallard (Anas platyrhynchos) genome 

(GenBank: NM_001005484.1) using TopHat2 software 

[39]. After that, the transcripts were assembled with 

cufflinks [40]. Differences in genes expression levels 

were standardized by the reads per kilobase of unigene 

per million mapped reads (FPKM) method. Genes with 

a P value < 0.05 and |log2 Fold Change|>1 were used to 

decide the significant levels of DEGs. 

 

Annotation and function prediction of DEGs 

 

All DEGs were annotated with GO and KEGG analysis. 

The GO terms with P value less than 0.05 were 
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Table 2. Primers for Q-RT-PCR analysis of gene expression. 

Target Gene Forward (5'-3') Reverse (5'-3') 

CCL19 TTCTCTGCCTCGGTCTC TTCTCGCTCGTCCTCAG 

IFIH1 GGTGTCCGCTTATCAGATT TTGTTGTAGACGCCTTCC 

TRIM25 CAGCAGTTCTTGGTGTATTG TTGGTAGCCTTCACATTGG 

CD36 AAGAGGACCTTACACATACAG GAGCAGCATTAGGCAACA 

IGF1 CTTCAGTTCGTATGTGGAGA TTGTGGTGTAAGCGTCTAC 

SFRP4 TTCAATGCCGATTCCTCTG CAACTAGACATCCATCAAGAAG 

Caspase-3 TGGTGTTGAGGCAGACAGTGGA CATTCCGCCAGGAGTAATAGCC 

Caspase-7 AGGCTCCTGGTTTGTGC AGCGTGGATCATCAGATTG 

Caspase-8 GGTGATGCTCGTCAGAAAGGTG AGCCATGCCCAAGAGGAAGT 

Caspase-9 

IFN-α2 

IL-12B 

IRF3 

DHX58 

IL-7 

STAT1 

GCTGCTTCAACTTCCTCCGTAA 

ATCCTCCAACACATCTTCTACA 

CTGAAGAGCACCAGCCAATT 

AGTGCCTGCTGACCTACCA 

AAGCCAAGATCAGCGAGAGG 

GCCACTACTCCTTGTTCTGTCA 

CCTGTGTCTCTGGAATGATGG 

CATCTCCACGGACAGACAAAGG 

TCTTAGTTACACATGCCTCCAA 

CGTCCAGGTCACTGTTCCA 

TACTGCCGCTGCTTGCTAT 

CCAGCGAGACCGTGTAGTAG 

AGCACCTGTCACGATACTCTG 

GCTGCTCTCACTGAACCTTAG 

βactin GATCACAGCCCTGGCACC CGGATTCATCATACTCCTGCTT 

 

considered to be remarkable enriched. DEGs identified 

its main biological functions through GO function 

enrichment analysis. KEGG is the main database 

resource of understanding biological systems that links 

genomes to life (http://www.genome.jp/kegg/tool/ 

map_pathway2.html). Pathways with P value less than 

0.05 in KEGG were used to recognize the vital 

metabolic pathways or signal transduction pathways 

regulated by DEGs. 

 

Quantitative real-time PCR (Q-RT-PCR) 

 

Isolation of total RNA from DTMUV-infected and 

mock-infected cells at different time points using 

Trizol reagent. Purity of all RNA samples were 

detected by analyzing the A260/A280 ration using a 

Nano drop ND-1000 spectrophotometer (Nano drop 

Technologies), which was expected to be 1.8~2.0. 

First-strand cDNA was obtained from extracted RNA 

reverse transcribed by PrimeScriptTM RT Reagent kit 

(TAKARA). Q-RT-PCR was performed using SYBR 

Green real-time PCR assay (CFX96 Bio-Rad, 

Hercules, CA, USA). The Q-RT-PCR reaction was set 

up in a total volume of 20 µl containing 2 µl of cDNA, 

10 µl of SYBR Premix (Tli RNaseH Plus), 1 µl of 

forward/reverse primer and 6 µl of ddH2O. The duck 

β-actin gene were used as internal control gene to 

normalize the targeted gene expression value. 

DTMUV copies were detected by absolute quantitative 

PCR according to the real-time quantitative PCR 

procedure previously established in our laboratory 

[41]. The quantity mRNA was calculated by the 

2−ΔΔCt method and represented as the mean ± SD 

(n =3). Primers employed are listed in Table 2. 

Analysis of cell cycle progression 

 
The cells infected with DTMUV for 24 and 36 hpi were 

collected, washed three times with PBS, then fixed in 

tubes with 1 ml 70% ice ethanol and incubated overnight 

at -20°C. After incubation, cells were centrifuged at 1000 

r/m. for 5 min, the cell pellets were resuspended in 500 µl 

of PI/RNASE buffer and incubated for 15 min. The cells 

were given assay by flow cytometry (FCM) within 1 h.  

 

Flow cytometric analysis of apoptosis 

 

Based on the instruction of FITC-Annexin V Apoptosis 

Detection Kit (BD Pharmingen), 5 ul of FITC-Annexin V 

and 5 ul PI were added to 100 ul of cell suspension, and 

then incubate for 15 min at 25 °C in the dark. 400 ul of 

1×Binding Buffer was added to each tube and the 

percentage of apoptotic cells were assayed by FCM 

within 1 h. 
 

Caspases activity assays 
 

The activities of caspase-3/7, caspase-9 and caspase-8 

were measured using Caspase-Glo assay kit (Promega, 

CA, USA). Briefly, approximately 20,000 cells (with or 

without DTMUV infection) were collected at 12, 24, 

36, 48 and 60 hpi, then added to a 96-well plate 

containing 100 ul of Caspase-Glo reagent and incubated 

for 30 min. Finally, the luciferase activity was detected 

at 485/530 nm using a multifunctional enzyme marking 

instrument (Thermo Scientific, USA), and the fold 

change in protease activity was measured via comparing 

the luciferase activity of infected cells with that of 

mock-infected cells.  

http://www.genome.jp/kegg/tool/map_pathway2.html
http://www.genome.jp/kegg/tool/map_pathway2.html
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Statistical analysis 

 

All experiments were performed in triplicate and the 

data analysis was performed using GraphPad Prism 7.0. 

The results are expressed as the mean ± SEM and 

statistical significance was assessed with Student’s t-

test. P values less than 0.05 were considered to be 

statistically significant. 

 

Abbreviations 

 
DTMUV: Duck Tembusu virus; RNA-Seq: mRNA 

sequencing; DEFs: duck embryo fibroblasts; PPIs: 

protein-protein interactions; CPEs: cytopathic effects; 

ORF: open reading frame; NS: non-structural; DENV: 

dengue virus; WNV: West Nile virus; ZIKV: Zika 

virus; HEV: hepatitis E virus; HCV: hepatitis C virus; 

ZEBOV: Zaire ebola virus; GO: Gene Ontology; 

KEGG: Kyoto Encyclopedia of Genes and Genomes; 

DEGs: differentially expressed genes; NBS: newborn 

bovine serum; DMEM: Dulbecco’s Modified Eagle’s 

Medium; MOI: multiplicity of infection; PCA: principal 

component analysis; FPKM: fragments per kilobase of 

transcript per million mapped reads; FCM: flow 

cytometry; Q-RT-PCR: Quantitative real-time PCR; 

SEM: standard error of the mean; ANOVA: analysis of 

variance; TCID50: tissue culture infective dose; RSAD2: 

radical S-adenosyl methionine domain-containing 

protein 2; POMC: proopiomelanocortin; IL12B: 

interleukin 12B; HMX3: H6 family homeobox 3; HPD: 

4-hydroxyphenylpyruvate dioxygenase; SIGLEC15: 

sialic acid binding Ig like lectin 15; LMOD3: leiomodin 

3; MLXIPL: MLX interacting protein like; 

C7H21orf58: chromosome 7 C21orf58 homolog; IFN: 

interferon; MAVS: mitochondrial activated antiviral 

signaling; TRIM: tripartite motif; IRF3: IFN regulatory 

factor 3; STAT1: signal transducer and activator of 

transcription 1. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Principal component of samples at 12, 24, 36, 48 and 60 hpi. Note: PC1 shows the differences among 

duck Tembusu virus (DTMUV)-infected samples; PC2 indicates differences between mock- and DTMUV-infected samples. 12h_Con, mock-
infected DEFs at 12 hpi; 24h_Con, mock-infected DEFs at 24 hpi; 36h_Con, mock-infected DEFs at 36 hpi; 48h_Con, mock-infected DEFs at 48 
hpi; 60h_Con, mock-infected DEFs at 60 hpi; 12h_DTMUV, DTMUV-infected DEFs at 12 hpi, 24h_DTMUV, DTMUV-infected DEFs at 24 hpi, 
36h_DTMUV, DTMUV-infected DEFs at 36 hpi, 48h_DTMUV, DTMUV-infected DEFs at 48 hpi, 60h_DTMUV, DTMUV-infected DEFs at 60 hpi. 
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Supplementary Figure 2. Analysis of the upregulated genes with expression changes at all time points. (A) The top 30 Gene 

Ontology (GO) enrichment of differentially expressed genes. (B) The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis of differentially expressed genes. 
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Supplementary Figure 3. Analysis of the downregulated genes with expression changes at all time points. (A) The top 30 Gene 

Ontology (GO) enrichment of differentially expressed genes. (B) The top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis of differentially expressed genes. 
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Supplementary Tables 
 

 

Supplementary Table 1. Information of DNA replication related genes. 

Gene  Putative function 12hpi 24hpi 36hpi 48hpi 60hpi 

Name (cell component, function and process) Log2(fold change) 

BLM ATP-dependent DNA helicase activity; DNA replication initiation -0.43  -0.38  -0.94  -1.53  0.43  

BRCA2 structure-specific DNA binding; transcription, DNA-dependent -0.15  -0.62  -1.11  -1.06  0.16  

CDT1 S phase of mitotic cell cycle; DNA-dependent DNA replication initiation -0.09  0.35  -0.22  -0.06  0.11  

DKC1 RNA-directed DNA polymerase activity; rRNA processing; 0.10  -0.49  -0.34  -0.06  0.17  

DNA2 DNA helicase activity; DNA stand elongation -0.08  0.22  0.12  -0.63  0.43  

DSCC1 DNA replication; mitotic sister chromatid cohesion -0.12  -0.54  -0.68  -0.47  0.20  

GINS2 the initiation of DNA replication; DNA-dependent DNA replication -0.06  -0.14  -0.54  -0.55  1.01  

HMGB1 
negative regulation of transcription from RNA polymerase II promoter;  

DNA conformation change 
0.24  -0.17  -0.47  -0.59  0.21  

MCM4 helicase activity; DNA-dependent DNA replication; -0.02  -0.02  -0.59  -0.53  0.15  

MCM5 Regulation of gene expression -0.19  0.26  0.21  -0.38  0.16  

POLA1 
DNA-directed RNA polymerase activity; structure-specific DNA binding;  

DNA strand elongation involved in DNA replication 
0.02  -0.08  -0.24  -0.48  0.07  

POLD3 DNA replication; DNA repair 0.11  0.04  -0.24  -0.29  0.19  

PRIM1 DNA polymerase, primase complex; replication fork 0.05  0.14  -0.71  -0.59  0.93  

RAD51 DNA-dependent ATPase activity; DNA-dependent DNA replication -0.05  0.03  -0.51  -2.05  1.47  

RFC2 DNA metabolic process; DNA clamp loader activity 0.01  0.03  -0.63  -1.06  0.94  

RFC3 nucleoside-triphosphatase activity; DNA-dependent DNA replication; DNA repair -0.04  -0.08  -0.63  -0.91  0.48  

RFC5 DNA metabolic process; DNA clamp loader activity -0.34  -0.06  -0.07  0.25  0.01  

RPA1 structure-specific DNA binding; DNA replication; nucleotide-excision repair 0.24  0.65  -0.22  -0.53  0.23  

SMC3 motor activity; DNA replication; chromosome segregation; 0.34  0.13  -0.05  -0.33  0.40  

TERT sequence-specific DNA binding; RNA-dependent DNA replication -0.30  -0.07  -1.37  -0.19  1.42  

TFAM DNA-dependent DNA replication; mitochondrial transcription factor 0.00  -0.07  -0.06  -0.63  0.87  

TIPIN DNA replication involved in S phase; 0.12  0.17  -0.09  -0.21  0.28  
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Supplementary Table 2. Information of DNA repair related genes. 

Gene  Putative function 12hpi 24hpi 36hpi 48hpi 60hpi 

Name (cell component, function and process) Log2(fold change) 

XPC DNA secondary structure binding; nucleotide-excision repair 0.20  0.04  -0.63  -0.82  -0.47  

ERCC6 helicase activity; nucleotide-excision repair; RNA elongation -0.08  -0.34  -0.78  -0.30  -0.47  

DDB2 nucleotide-excision repair -0.12  -0.14  0.19  0.27  0.19  

RPA1 recombinational repair; DNA replication; nucleotide-excision repair 0.24  0.65  -0.22  -0.53  -0.23  

RPA2 structure-specific DNA binding; DNA replication; nucleotide-excision repair 0.03  -0.08  -0.04  0.03  0.22  

RPA3 structure-specific DNA binding; nucleotide-excision repair 0.41  0.15  0.53  0.13  0.44  

XRCC2 ATPase activity, coupled; recombinational repair -0.23  -0.07  -0.36  -0.58  -0.45  

RAD51 DNA-dependent ATPase activity; recombinational repair -0.05  0.03  -0.51  -2.05  -1.47  

RAD54L nucleoside-triphosphatase activity; recombinational repair -0.23  0.27  -0.70  -0.29  -0.22  

RAD54B helicase activity; recombinational repair -0.01  0.03  -0.75  -0.41  -0.33  

RAD51AP1 structure-specific DNA binding; recombinational repair 0.27  0.86  0.03  0.57  0.39  

BRCA2 structure-specific DNA binding; recombinational repair; transcription, DNA-dependent -0.15  -0.62  -1.11  -1.06  0.16  

BRCA1 recombinational repair; regulation of gene-specific transcription from RNA polymerase II 

promoter 

-0.25  -0.33  -0.70  -1.09  -0.43  

EME1 Homologous recombination -0.21  0.11  -0.24  -0.39  -0.66  

XRCC4 DNA ligation; non-homologous recombination 0.31  0.38  -0.24  -0.31  -0.06  

PRKDC Non-homologous recombination -0.04  -0.16  -0.46  -0.07  -0.03  

MSH2 single base insertion or deletion binding; sequence-specific DNA binding; mismatch repair 0.11  -0.20  0.06  0.48  1.10  

MSH6 regulation of DNA recombination; mismatch repair 0.28  0.22  -0.18  -0.55  -0.10  

EXO1 single-stranded DNA specific exodeoxyribonuclease activity;mismatch repair 0.02  -0.10  0.67  -0.55  0.20  

MUTYH nuclease activity; base-excision repair, AP site formation -0.79  -0.09  -0.89  -0.83  0.48  

FEN1 endodeoxyribonuclease activity; structure-specific DNA binding; base excion repair -0.16  0.13  -0.15  0.02  0.36  

NEIL3 DNA secondary structure binding; base excision repair -0.17  -0.20  0.39  0.07  -1.12  

OGG1 oxidized base lesion DNA N-glycosylase activity; base-excision repair, AP site formation -0.12  0.22  0.57  -0.27  -0.15  

HMGB1 base-excision repair; regulation of gene-specific transcription from RNA polymerase II promoter 0.24  -0.17  -0.47  -0.59  -0.21  

HMGB2 base-excision repair; regulation of gene-specific transcription from RNA polymerase II promoter 0.53  0.99  1.24  0.59  0.97  

PMS1 nucleoside-triphosphatase activity; DNA repair; DNA recombination 0.38  0.01  0.09  -0.22  -0.09  

FANCC DNA repair -0.15  0.34  0.96  0.06  0.98  

USP1 endopeptidase activity; DNA repair; 0.10  0.01  -0.06  -0.06  0.29  

RBBP8 endodeoxyribonuclease activity; DNA double-strand break processing 0.25  0.12  -0.26  -0.59  0.34  

DCLRE1C exonuclease activity; DNA repair 0.16  -0.10  -0.52  -0.98  -0.57  

RFC3 nucleoside-triphosphatase activity; DNA-dependent DNA replication; DNA repair -0.04  -0.08  -0.63  -0.91  -0.48  

MAD2L2 nucleotidyltransferase activity; translesion synthesis -0.17  -0.04  -0.26  -0.41  -0.45  

BLM ATP-dependent DNA helicase activity; DNA damage checkpoint; recombinational repair;  -0.43  -0.38  -0.94  -1.53  -0.43  

POLA1 DNA-directed RNA polymerase activity; DNA strand elongation involved in DNA replication 0.02  -0.08  -0.24  -0.48  -0.07  

TRIP13 adenyl ribonucleotide binding; DNA repair; DNA recombination;  0.21  0.04  -0.36  -1.07  -0.48  

BRIP1 DNA helicase activity; DNA repair; regulation of transcription, DNA-dependent 0.13  -0.14  -0.45  -0.58  -0.10  

TP73 
sequence-specific DNA binding; DNA repair; regulation of gene-specific transcription from RNA 

polymerase II promotertransduction by p53 class mediator 

-0.38  1.12  1.78  0.85  0.03  

TUBB6 nucleoside-triphosphatase activity; DNA repair  0.00  0.25  -0.64  -1.38  -1.78  

POLD3 DNA replication; DNA repair 0.11  0.04  -0.24  -0.29  -0.19  

TDP1 nuclease activity; structure-specific DNA binding; DNA repair 0.08  0.21  0.78  1.06  1.79  

PARP1 nucleotide binding; nucleic acid binding; DNA repair; transcription, DNA-dependent -0.01  -0.15  -0.93  -1.00  -1.01  
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Supplementary Datasets 
 

 

Please browse Full Text version to see the data of Supplementary Dataset 1 to 4. 

 

Supplementary Dataset 1. Information of differentially expressed genes at 12, 24, 36, 48 and 60 hpi. 

Supplementary Dataset 2. Information of the GO terms of the differentially expressed genes at 12, 24, 36, 48 and 60 
hpi. 

Supplementary Dataset 3. Information of the KEGG pathways of the differentially expressed genes at 12, 24, 36, 48 
and 60 hpi. 

Supplementary Dataset 4. Information of apoptosis related genes. 

 


