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INTRODUCTION 
 

Glioblastoma (GBM) is the most common primary 

malignant brain tumor in adults, comprising 14.6% of 

all tumors and 48.3% of malignant tumors of the central 

nervous system (CNS) [1]. Due to the highly aggressive 

nature of GBM, neurological deficits, seizures and 

symptoms of intracranial hypertension occur rapidly in 

GBM patients within days or months [2]. Despite 

considerable advances in the development of 

treatments, including surgical resection, radiotherapy, 

and chemotherapy, little progress toward prolonged 

survival and better prognosis has been achieved over the 

last few decades [3]. The modest median overall 

survival (OS) time is approximately 14 months, and 

only 5% to 6.8% of GBM patients survive 5 years after  

 

diagnosis [1, 4]. Multiple clinical trials, including 

those on immunotherapy, have been conducted for 

GBM patients, but the results have been largely 

disappointing [5]. Prognosis predictors of GBM 

patients have been studied, and patient age, the extent 

of tumor resection, and several molecular alterations 

were reported as promising predictors [6–8]. Since 

autophagy plays a vital role in GBM development and 

progression, in our previous study, we generated a 

risk score nomogram based on 3 autophagy-related 

genes, NRG1, ITGA3, and MAP1LC3A, to predict the 

survival of GBM patients [9]. However, biomarkers 

and predictors for patient outcome and the 

immunotherapy response of GBMs have not been 

fully elucidated, and existing predictive models are far 

from satisfactory. 
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ABSTRACT 
 

Glioblastoma (GBM) is the most common and lethal primary brain tumor. In this study, we aimed to investigate the 
differentiation states of GBM cells and their clinical relevance. Integrated single-cell RNA-sequencing (scRNA-seq) 
data and bulk RNA-seq data from GBM samples were used for analysis. Two subsets of GBM cells in distinct 
differentiation states were characterized, and 498 GBM cell differentiation-related genes (GDRGs) were identified. 
GDRGs were significantly correlated with immune regulation and metabolic pathways. We classified the GBM 
patients into two groups based on the expression of GDRGs in tumors and found that the cell differentiation-based 
classification successfully predicted patient overall survival (OS), immune checkpoint expression and likelihood of 
immunotherapy response in GBMs. FN1, APOE, RPL7A and GSTM2 were the 4 most significant survival-predicting 
GDRGs, and patients with different expression levels of each of these genes had distinct survival outcomes. Finally, a 
nomogram composed of the GDRG signature, age, pharmacotherapy, radiotherapy, IDH mutations and MGMT 
promoter methylation was generated and validated in two large GBM cohorts to predict GBM prognosis. This study 
highlights the significant roles of cell differentiation in predicting the clinical outcomes of GBM patients and their 
potential response to immunotherapy, suggesting promising therapeutic targets for GBM. 
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Multiple factors in the tumor microenvironment 

influence cancer cells during their differentiation from 

cancer stem cells (CSCs), leading to heterogeneous cell 

differentiation states and cell fates [10, 11]. Single-cell 

transcriptomics analysis has recently emerged as a 

powerful method to provide opportunities to 

characterize cell states and their transitions by 

simultaneously investigating the comprehensive nature 

of the genomes of an entire tumor sample at 

microscopic resolution [12]. Ordering such 

comprehensive tumor-constituting cells into trajectories 

helps us understand tumor cell subsets based on 

differentiation states and unveils the genetic cascades 

and related tumorigenic pathways accompanying cell 

fate specification [13]. Monocle 2, a recently generated 

algorithm that uses a reversed graph embedding 

strategy, is capable of accurately reconstructing single-

cell trajectories according to the features of cell 

differentiation [14]. Therefore, by combining single-cell 

genomics and trajectory analyses, the cell subsets in 

differentiation states with distinct characteristics can be 

classified, and the new classifications have been 

reported to be correlated with diagnosis, progression 

and therapeutic outcomes in several diseases and tumors 

[15–19]. However, it remains unclear whether GBM 

cells are in different differentiation states and whether a 

new classification of GBM patients based on cell 

differentiation trajectories correlates with tumor 

biological behaviors and plays a role in predicting 

patient survival and the immunotherapy response. 

 

Therefore, in this study, we included the transcriptomic 

data of human GBMs to verify our hypothesis that GBM 

cancer cells have diverse differentiation characteristics 

and that the classification of patients based on the 

differentiation features of GBM cells can predict the 

tumor immunotherapy response and patient survival. First, 

we identified two GBM cell subsets in distinct 

differentiation states by trajectory analysis using single-

cell RNA-sequencing (scRNA-seq) data and identified 

significant GBM cell differentiation-related genes 

(GDRGs). Second, we explored the biological functions 

of the GDRGs and found that they are related to tumor 

immune regulation and metabolic pathways. Third, we 

included GBM patients from The Cancer Genome Atlas 

(TCGA) database and classified them based on the 

expression patterns of GDRGs and demonstrated that this 

GBM cell differentiation state-based classification method 

revealed significantly different OS outcomes and different 

likelihoods of an immunotherapy response. Then, FN1, 

APOE, RPL7A and GSTM2 were identified as the 4 key 

OS-predicting GDRGs, and a clinically applicable 

prognostic nomogram using these 4 GDRGs and other 

clinicopathological variables was successfully developed 

for GBM patients. Finally, the above findings were 

validated using the GBM patient cohort from the Chinese 

Glioma Genome Atlas (CGGA) database. We identified 

distinct intratumoral GBM cell differentiation states and 

highlighted their essential role in predicting the clinical 

outcomes of GBM patients and tumor responses to 

immunotherapy. 

 

RESULTS 
 

Identification of 13 cell clusters in human GBMs 

using scRNA-seq data reveals high cell heterogeneity 
 

A schematic diagram of the study design and principal 

findings is shown in Figure 1. Following the quality 

control standard and the normalization of GBM scRNA-

seq data, 194 low-quality cells were excluded, and 

2,149 cells from GBM cores were included in the 

analysis (Figure 2A). The number of genes detected was 

significantly related to the sequencing depth (Figure 

2B). A total of 19,752 corresponding genes were 

included, and the variance analysis revealed 1,500 

highly variable genes (Figure 2C). Principal component 

analysis (PCA) was performed to identify available 

dimensions and screen correlated genes. The top 20 

significantly correlated genes are displayed as dot plots 

and heatmaps in Supplementary Figure 1. However, the 

PCA results did not demonstrate clear separations 

among cells in human GBMs (Figure 2D). We selected 

20 principal components (PCs) with an estimated P 

value < 0.05 for subsequent analysis (Figure 2E). 

 

Afterwards, the t-distributed stochastic neighbor 

embedding (tSNE) algorithm was applied, and cells in 

human GBMs were successfully classified into 13 separate 

clusters (Figure 2F). Differential expression analysis was 

performed, and a total of 8,025 marker genes from all 13 

clusters were identified (Figure 2G). According to the 

expression patterns of the marker genes, these clusters 

were annotated by singleR and CellMarker (Figure 3A). 

Cluster 0, containing 518 cells, was annotated as GBM 

CSCs; clusters 1, 2, 6 and 10, containing 878 cells, were 

annotated as GBM cancer cells or GBM cells; cluster 3, 

containing 196 cells, was annotated as astrocytes; cluster 

11, containing 44 cells, was annotated as oligodendrocytes; 

clusters 4, 5 and 9, containing 319 cells, were annotated as 

tumor-associated macrophages; cluster 8, containing 77 

cells, was annotated as typical M1 macrophages; cluster 7, 

containing 81 cells, was annotated as typical M2 

macrophages; and cluster 12, containing 36 cells, was 

annotated as T cells. 

 

GBM cells can be divided into two subsets with 

distinct differentiation patterns, with their GDRGs 

correlating with immune and metabolic pathways 
 

Trajectory analysis was performed to project all cells 

from GBMs onto one root and two branches, termed 
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branches I and II (Figure 3B). The results showed that 

GBM CSCs were mainly located in the root, whereas 

GBM cells were mostly located in the branches. 

Interestingly, GBM cells in branch I, defined here as 

type I GBM cells, were all from clusters 2, 6, and 10 

(434 cells), and GBM cancer cells in branch II, defined 

here as type II GBM cells, were all from cluster 1 (444 

cells). The degree of differentiation of cells in the type I 

and type II GBM subsets varied significantly. The 

branch-dependent marker genes of type I and type II 

GBM cells were determined to be GDRGs. Differential 

analysis was performed, and 265 marker genes were 

identified as type I GDRGs, and 193 marker genes were 

identified as type II GDRGs. Therefore, a total of 498 

GDRGs were ultimately identified in GBM 

(Supplemenatry Table 1). 

 

Gene set enrichment analysis (GSEA) was performed to 

identify related molecular mechanisms and pathways of 

GBM cells with distinct differentiation patterns. The 

results revealed that type I GDRGs were significantly 

negatively correlated with the regulation of immune 

processes, such as antigen processing and immune cell 

differentiation (Figure 3C), and that type II GDRGs were 

significantly positively correlated with metabolism-related 

pathways, such as carbon metabolism, amino acid 

biosynthesis, glycolysis, and gluconeogenesis (Figure 

3D). These findings from GDRGs indicate that GBM 

cells in distinct differentiation states demonstrate distinct 

tumor biology characteristics, which might provide new 

evidence for the molecular signatures of GBMs, including 

both intrinsic properties and the regulation of related 

pathways. 

 

Then, we determined whether the observed GBM cell 

subsets could be identified using bulk RNA-seq data. 

As shown in Figure 4A–4C, the correlation analyses 

demonstrated that the type I GDRGs were highly 

correlated between scRNA-seq and bulk RNA-seq data 

from both the TCGA and CGGA databases, as were the

 

 
 

Figure 1. Schematic diagram showing the study design and principal findings. 



 

www.aging-us.com 18300 AGING 

 
 

Figure 2. Identification of 13 cell clusters with diverse annotations revealing high cellular heterogeneity in GBM tumors 
based on single-cell RNA-seq data. (A) After quality control of the 2,343 cells from the tumor cores of 4 human GBM samples, 2,149 cells 
were included in the analysis. (B) The numbers of detected genes were significantly related to the sequencing depth, with a Pearson’s 
correlation coefficient of 0.61. (C) The variance diagram shows 19,752 corresponding genes throughout all cells from GBMs. The red dots 
represent highly variable genes, and the black dots represent nonvariable genes. The top 10 most variable genes are marked in the plot. (D) 
PCA did not demonstrate clear separations of cells in GBMs. (E) PCA identified the 20 PCs with an estimated P value < 0.05. (F) The tSNE 
algorithm was applied for dimensionality reduction with the 20 PCs, and 13 cell clusters were successfully classified. (G) The differential 
analysis identified 8,025 marker genes. The top 20 marker genes of each cell cluster are displayed in the heatmap. A total of 96 genes are 
listed beside of the heatmap after omitting the same top marker genes among clusters. The colors from purple to yellow indicate the gene 
expression levels from low to high. 
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type II GDRGs. These findings suggest that type I and 

type II GBM cells can also be identified by GDRG 

expression using bulk RNA-seq data, since these highly 

correlated genes could indicate a common cellular 

origin. 

 

GDRGs in the two GBM cell subsets are functionally 

correlated and mostly mutated 
 

To determine whether the gene profiles originating from 

different GBM cell subsets were functionally correlated, 

we utilized metagenes to represent the overall 

expression patterns of the corresponding gene profile. 

The expression of type I and type II metagenes, 

consisting of type I and type II GDRGs, respectively, 

were derived from the weighted averages of the 

expression of the constituent genes. As shown in Figure 

4D–4F, the results demonstrated significantly strong 

correlations between type I and type II metagene 

expression in both scRNA-seq and bulk RNA-seq data, 

indicating that type I and type II GDRGs are 

functionally correlated even though they originate from 

distinct GBM subsets with different differentiation 

patterns. 

 

We also analyzed the somatic mutation statuses of the 

GDRGs in the TCGA cohort. Most GDRGs (90.8%, 

452/498) harbored mutations, and the top 9 mutated 

GDRGs with mutation frequencies ≥ 5% in GBM 

patients are shown in Figure 4G. Epidermal growth factor 

receptor (EGFR) exhibited the highest mutation 

frequency (53%), followed by CDK4 (16%) and 

TSPAN31 (16%). There were 246 genes (92.8%) 

exhibiting mutations among type I GDRGs and 262 

genes (89.4%) exhibiting mutations among type II 

GDRGs. The mutation frequencies were not significantly 

different between the two groups (P=0.183, Figure 4H). 

However, 8 of the top 9 mutated GDRGs were type II 

GDRGs, and only 1 was a type I GDRG. These findings 

demonstrate the high mutation status heterogeneity in 

GDRGs, suggesting the pivotal roles of GDRGs in the 

development and progression of GBMs. 

 

 
 

Figure 3. Cell annotation, trajectory analysis and GSEA of two GBM cell subsets with distinct differentiation patterns. (A) All 
13 clusters of cells in GBMs were annotated by singleR and CellMarker according to the composition of the marker genes. (B) Trajectory 
analysis revealed two subsets of GBM cells with distinct differentiation patterns. GBM CSCs were mainly located in the root, whereas GBM 
cells were located in either branch. Branch I GBM cells were defined by the type I GBM cell subset (434 GBM cells). Branch II GBM cells were 
defined by the type II GBM cell subset (444 GBM cells). (C and D) GSEA of type I and II GBM cell subsets was performed to identify related 
molecular mechanisms and pathways. An FDR ≤ 0.05 was considered statistically significant. 
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GDRG-based classification of GBM patients 

correlates with different OS outcomes and 

clinicopathological characteristics 
 

To establish a classification of GBMs based on the 

expression patterns of GDRGs, machine learning-based 

unsupervised consensus clustering was performed on 

151 GBM patients from the TCGA database. According 

to the relative change in the area under the cumulative 

distribution function (CDF) curve and consensus 

heatmap, the optimal number of clusters was 

determined to be two (k value = 2), and no appreciable 

increase was observed in the area under the CDF curve 

(Figure 5A–5C). Thus, all GBMs were classified into 

two groups: 80 (53.0%) in molecular cluster 1 (MC1) 

and 71 (47.0%) in molecular cluster 2 (MC2). Kaplan-

Meier survival analysis indicated that patients with 

MC1 GBMs experienced significantly poorer OS than 

patients with MC2 GBMs (log-rank P=5.65×10-3; 

Figure 5D). 

 

 
 

Figure 4. Correlation analysis and somatic mutation analysis of the two subtypes of GDRGs. The correlation heatmaps, which 
were generated to determine whether the observed GBM cell subsets could be identified using bulk RNA-seq data, demonstrated that the 
type I GDRGs were highly correlated in both scRNA-seq data (A) and bulk RNA-seq data, including the TCGA (B) and CGGA cohorts (C). The 
same result was observed for the type II GDRGs (A–C). The correlation analysis demonstrated that the expression of type I and type II 
metagenes was significantly correlated in both scRNA-seq data (D) and bulk RNA-seq data, including the TCGA (E) and CGGA cohorts (F). (G) 
OncoPlot analysis of the somatic mutation status of the GDRGs in the TCGA cohort revealed the top 9 mutated genes with mutation 
frequencies ≥ 5%. (H) Mutation frequencies of type I and type II GDRGs. A total of 246 genes (92.8%) were mutated in type I GDRGs, and 262 
genes (89.4%) were mutated in type II GDRGs (P=0.183). 
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Afterwards, we validated the GDRG-based 

classification in the CGGA cohort. As shown in Figure 

5G–5I, the optimal number of clusters was also 

determined to be two (k value = 2), and the patients 

were also classified as MC1 (265 patients, 75.7%) and 

MC2 (85 patients, 24.3%). Kaplan-Meier survival 

analysis also demonstrated that patients with MC1 

GBMs had poorer OS than patients with MC2 GBMs 

(log-rank P=1.26×10-2; Figure 5J). 

 

Additionally, we compared the expression patterns of 

the GDRGs and clinicopathological characteristics 

between two MCs of patients in the TCGA cohort. As 

shown in Figure 5E and 5F, the expression levels of the 

type I GDRG metagene were significantly higher 

(P<0.001) and the expression levels of the type II 

GDRG metagene were significantly lower (P<0.001) in 

patients with MC1 GBMs than in patients with MC2 

GBMs. The same findings were also observed in the 

CGGA validation cohort (Figure 5K and 5L). Hence, 

we hypothesize that MC1 patients correspond mostly to 

the functional properties of the type I GBM subset and 

MC2 patients correspond mostly to the functional 

properties of the type II GBM subset. 

 

The demographics and clinicopathological characteristics 

of patients with MC1 and MC2 GBMs are shown in Table 

1. Compared with MC2 patients, MC1 patients were 

significantly younger in both the TCGA cohort (P=0.007) 

and CGGA cohort (P=0.002). However, no significant 

differences were observed in other variables between the 

two MCs of patients (all P > 0.05). Overall, the above 

findings indicate that this GDRG-based classification of 

GBM patients is robust and reliable across different 

populations, and different survival outcomes can be 

clearly discriminated according to this classification. 

 

 
 

Figure 5. Identification and validation of the GDRG-based classification of GBM patients. Consensus clustering matrix for k = 2, 
which was the optimal cluster number in the TCGA training cohort (A) and CGGA validation cohort (G). (B and H) CDF curves of the consensus 
score (k = 2-9) in the TCGA and CGGA cohorts. (C and I) Relative change in the area under the CDF curve (k = 2-9) in the TCGA and CGGA 
cohorts. Kaplan-Meier survival analyses of the patients with MC1 and MC2 GBMs in the TCGA (D) and CGGA (J) cohorts, indicating that the 
patients with MC1 GBMs had poorer OS than those with MC2 GBMs. Heatmap and clinicopathological features of the two MCs in the TCGA 
(E) and CGGA (K) cohorts showing that the expression levels of the type I GDRG metagene were significantly higher and the levels of the type 
II GDRG metagene were significantly lower in patients with MC1 GBMs than in patients with MC2 GBMs. (F and L) Comparisons of the 
clinicopathological variables and type I and II metagenes between the two MCs of GBM patients in the TCGA and CGGA cohorts. 
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Table 1. Demographics and clinicopathological characteristics of GBM patients in the TCGA training cohort and CGGA 
validation cohort in the MC1 and MC2 subgroups based on the molecular classification. 

Variable 
TCGA training cohort CGGA validation cohort 

Total (n=151) MC1 (n=80) MC2 (n=71) Total (n=350) MC1 (n=265) MC2 (n=85) 

Age (years) 59.6±13.7 58.7±13.3 60.6±14.1 48.1±13.3 47.0±13.8 51.5±11.1 

Sex       

 Female 53 27 26 139 109 30 

 Male 98 53 45 211 156 55 

KPS       

 < 80 32 16 16 NA   

 ≥ 80 81 40 41 NA   

 NA 38 24 14 NA   

Pharmacotherapy      

 TMZ 64 33 31 61 (No) 51 10 

 TMZ+BEV 26 17 9 269 (Yes) 201 68 

 Others (No 

TMZ) 

19 11 8 - - - 

 No or NA 42 19 23 20 (NA) 13 7 

Radiotherapy       

 No 22 15 7 48 39 9 

 Yes 122 64 58 283 214 69 

 NA 7 1 6 19 12 7 

Surgery       

 Biopsy only 16 6 10 NA   

 Tumor resection 135 74 61 NA   

IDH mutation status       

 Wild-type 147 75 68 270 195 75 

 Mutant 8 5 3 80 70 10 

MGMT promoter status      

 Methylated 66 40 26 NA   

 Unmethylated 85 40 45 NA   

TERT status       

 Wild-type 146 78 68 NA   

 Mutant 5 2 3 NA   

BRAF status       

 Wild-type 146 76 70 NA   

 Mutant 5 4 1 NA   

ATRX status       

 Wild-type 140 72 68 NA   

 Mutant 11 8 3 NA   

EGFR status       

 Wild-type 97 56 41 NA   

 Mutant 54 24 30 NA   

G-CIMP status       

 Non G-CIMP 140 74 66 NA   

 G-CIMP 11 6 5 NA   

Molecular subtype       

 Classical 38 11 27 NA   

 Neural 26 15 11 NA   

 Mesenchymal 49 40 9 NA   

 Proneural 38 14 24 NA   
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1p/19q status       

 Noncodeletion NA   323 240 83 

 Codeletion NA   17 15 2 

 NA NA   10 10 0 

“Others (No TMZ)” in pharmacotherapy included PCV, PCV+BEV, and other drugs, including avastin, carmustine, and 
irinotecan. 
MC, molecular cluster; GBM, glioblastoma; NA, not available; KPS, Karnofsky performance status; TMZ, temozolomide; BEV, 
bevacizumab; PCV, procarbazine lomustine vincristine. 
 

GDRG-based classification of GBM patients 

correlates with the expression patterns of immune 

checkpoints and different likelihoods of an 

immunotherapy response 

 

The expression of 6 main immune checkpoints, namely, 

PDCD1 (PD1), CD274 (PDL1), PDCD1LG2 (PDL2), 

CTLA4, CD80 and CD86, was determined and compared 

between two GBM cell subsets and two MCs of GBM 

patients (Figure 6). In terms of scRNA-seq data, PD1, 

PDL1 and PDL2 were highly expressed in type I GBM 

cells, whereas CTLA4, CD80 and CD86 were highly 

expressed in type II GBM cells (Figure 6A). In terms of 

bulk RNA-seq data, PD1, PDL1 and PDL2 were highly 

expressed in MC1 GBM patients whereas CTLA4, CD80 

and CD86 were highly expressed in MC2 GBM patients 

in both the TCGA database (Figure 6B) and CGGA 

database (Figure 6C). 

 

Afterwards, the tumor immune dysfunction and exclusion 

(TIDE) algorithm was used to predict the likelihood of an 

immunotherapy response. According to the results from 

the TCGA training cohort, MC2 GBM patients (43.7%, 

31/71) were more likely to respond to immunotherapy than 

MC1 patients (20.0%, 16/80, P = 0.003). Similarly, in the 

CGGA validation cohort, MC2 GBM patients (45.9%, 

39/85) were more likely to respond to immunotherapy than 

MC1 patients (37.6%, 62/165, P < 0.001). 

 

Then, SubMap analysis was performed to predict the 

likelihood of a clinical response to PD1 and CTLA4 

inhibitors in the two MCs of GBM patients. MC1 GBM 

patients in both the TCGA and CGGA cohorts were 

more sensitive to anti-PD1 therapies, with Bonferroni-

corrected P values of 0.001 and 0.033, respectively, 

while MC2 GBM patients were more sensitive to anti-

CTLA4 therapies, with Bonferroni-corrected P values 

of 0.019 and 0.047, respectively (Figure 6D and 6E). 

 

FN1, APOE, RPL7A and GSTM2 are the 4 most 

significant survival-predicting GDRGs in human 

GBMs 
 

Univariate Cox analysis was performed, and 45 

prognosis-associated GDRGs were identified in the 

TCGA training set. Least absolute shrinkage and 

selection operator (LASSO) followed by multivariate 

Cox analysis was then performed, and 4 significant 

survival-predicting GDRGs were identified 

(Supplementary Figure 2): fibronectin 1 (FN1, HR=5.28, 

P<0.001), apolipoprotein E (APOE, HR=0.39, P=0.001), 

ribosomal protein L7a (RPL7A, HR=0.27, P=0.021), and 

glutathione S-transferase mu 2 (GSTM2, HR=0.41, 

P=0.042). The expression levels of the 4 most significant 

prognostic GDRGs in both the scRNA-seq and bulk 

RNA-seq profiles are shown in Supplementary Figure 3. 

FN1 was significantly upregulated in GBM cells and T 

cells (general); APOE was significantly upregulated in 

GBM cells, CSCs and macrophages; RPL7A was 

significantly upregulated in GBM cells, CSCs and 

macrophages; and GSTM2 was significantly upregulated 

in GBM cells and astrocytes (Supplementary Figure 3A). 

Furthermore, the expression of these 4 GDRGs was 

validated using the Gene Expression Profiling Interactive 

Analysis (GEPIA) database, which includes 163 GBM 

(TCGA) samples and 207 normal (GTEx) samples. We 

found that all 4 survival-predicting GDRGs were 

upregulated in GBMs compared to normal tissues 

(Supplementary Figure 3B). 

 

Kaplan-Meier survival analysis demonstrated that high 

expression of FN1 and low expression of APOE, 

GSTM2 and RPL7A were associated with poor OS in 

GBM patients (Supplementary Figure 3C). 

 

Generation and validation of the GDRG-based 

prognostic risk score model to predict GBM patient 

survival 

 

The prognostic risk score model was developed based on 

the above 4 GDRGs with the following formula: Risk 

score = ExpFN1 × 1.66 + ExpAPOE × (-0.93) + ExpRPL7A × (-

1.30) + ExpGSTM2 × (-0.90). Risk scores were calculated 

for all patients in the TCGA training set, and the patients 

were divided into either a high-risk (high score) group or 

a low-risk (low score) group using the median value of the 

risk score as the cutoff value (Figure 7C). Kaplan-Meier 

survival analysis demonstrated that patients in the high-

risk group had significantly poorer OS than those in the 

low-risk group (log-rank, P = 2.778×10-4; Figure 7A). The 
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C-index of the GDRG signature for OS prediction was 

0.781 (95% CI=0.742 to 0.820). Time-dependent receiver 

operating characteristic (ROC) analysis also indicated that 

the GDRG signature showed excellent performance in 

predicting the 0.5-, 1-, 2- and 3-year OS rates, with 

respective area under the curve (AUC) values of 0.767, 

0.712, 0.752 and 0.776 (Figure 7B). 

 

Then, the predictive formula was validated using the 

CGGA cohort in a similar manner. As shown in Figure 

7F, all GBM patients were classified into high-risk or 

low-risk groups. Consistent with the results from the 

TCGA training set, the survival analysis also 

demonstrated that patients in the high-risk group had 

significantly poorer OS than patients in the low-risk 

group (log-rank, P = 9,783×10-6; Figure 7D). The C-

index of the GDRG signature was 0.715 (95% CI=0.676 

to 0.754). Time-dependent ROC analysis also suggested 

favorable values in predicting OS in the CGGA 

validation set (Figure 7E). These results indicate that 

the GDRG-based prognostic risk score model can serve 

as a reliable prognostic predictor for different 

populations of GBM patients. 

 

Development and validation of the clinically 

applicable prognostic nomogram with the GDRG 

signature and clinicopathological parameters 
 

To investigate whether the prognostic significance of 

the GDRG signature is independent of the other 

clinicopathological variables in predicting the survival 

of GBM patients, univariate and multivariate Cox 

regression analyses were performed, and the results 

demonstrated that the GDRG signature was independently

 

 
 

Figure 6. Predictions of the immunotherapy response in GBM patients. The violin plots present the expression of 6 principal immune 
checkpoint molecules, namely, PDCD1 (PD1), CD274 (PDL1), PDCD1LG2 (PDL2), CTLA4, CD80, and CD86, in scRNA-seq data (A) and bulk RNA-seq 
data, including the TCGA (B) and CGGA cohorts (C). Subclass mapping analysis was used to predict the likelihood of the clinical response to anti-
PD1 and anti-CTLA4 therapy for MC1 and MC2 GBM patients from the TCGA (D) and CGGA (E) cohorts. R represents immunotherapy responders, 
while noR represents immunotherapy nonresponders. A Bonferroni-corrected P value < 0.05 was considered statistically significant. 
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associated with OS in both the TCGA and CGGA 

cohorts (Table 2). Finally, a prognostic nomogram was 

successfully developed to provide a clinically 

applicable quantitative approach for individual OS 

prediction. Age, pharmacotherapy, radiotherapy, IDH 

mutation status, MGMT promoter methylation status, 

and the GDRG signature were included in the final OS 

prediction model (Figure 8A). The C-index of the 

prognostic nomogram was 0.896 (95% CI=0.857 to 

0.935). Time-dependent ROC analysis revealed 

excellent predictive abilities for the 0.5-, 1-, 2- and 3-

year OS rates, with AUC values of 0.734, 0.771, 0.864 

and 0.919, respectively (Figure 8B). The calibration 

plots showed excellent agreement between the 

predicted 0.5-, 1- and 3-year OS rates and the actual 

observations in the TCGA cohort (Figure 8D–8F). 

Then, the prognostic model was validated in the 

CGGA cohort, with a C-index of 0.729 (95% CI=0.690 

to 0.768). The time-dependent AUCs for the 0.5-, 1-, 

2-, and 3-year OS rates with the prognostic nomogram 

were 0.725, 0.696, 0.694, and 0.701, respectively 

(Figure 8C). The calibration plots also showed 

excellent agreement between the OS predictions and 

the actual observations for the probabilities of the 0.5-, 

1- and 3-year survival rates in the validation set 

(Figure 8G–8I). The above findings suggest the 

appreciable reliability of the prognostic nomogram for 

OS prediction that can be applied in different 

populations of GBM patients. 

DISCUSSION 
 

Cancer cells are derived from CSCs, initiate tumor mass 

growth, and drive tumor progression and invasion forward. 

They differentiate into diverse subpopulations during 

differentiation due to hyperproliferation and increased 

genetic instability [20]. As a result, one group of cells can 

express heterogeneous phenotypes within a tumor and stay 

in distinct differentiation states [19, 21]. GBM, the most 

common and lethal CNS neoplasm, has a highly 

heterogeneous intratumoral cell composition [22]. Since 

intratumoral heterogeneity is increasingly considered to be 

one of the main causes of treatment resistance, there is an 

urgent need to harness new technologies, including single-

cell analysis, to explore cell heterogeneity in GBMs [23]. 

Several studies have researched the differentiation of 

GBM CSCs [24–26]. However, to date, studies on the 

differentiation states of GBM cancer cells are limited. 

Whether GBM cell differentiation states are correlated 

with clinical outcomes and the treatment response remains 

unknown. In this study, we demonstrated that GBM cells 

could be divided into two subsets with distinct 

differentiation characteristics, and the classification of 

patients based on GBM cell differentiation patterns was 

correlated with patient OS after treatment and the tumor 

response to immunotherapy. These findings were initially 

obtained based on scRNA-seq data and then validated 

using the bulk RNA-seq data of GBM patients from two 

large databases. 

 

 
 

Figure 7. Survival analysis, prognostic performance and risk score analysis of the GDRG-based risk score model in GBM 
patients. Kaplan-Meier survival analysis was performed to estimate the OS of high-risk and low-risk patients in the TCGA training cohort (A) 
and CGGA validation cohort (D). The high-risk groups had significantly poorer OS than the low-risk groups. Time-dependent ROC curve 
analysis was performed to evaluate the prognostic performance of the GDRG signature for predicting the 0.5-, 1-, 2-, and 3-year OS rates in 
the TCGA (B) and CGGA cohorts (E). Risk score analysis of the GDRG signatures in the TCGA (C) and CGGA (F) cohorts were calculated, and the 
patients were divided into either a high-risk group or a low-risk group using the median value of the risk score as the cutoff value. Upper 
panel: Patient survival status and time distributed by the risk score. Middle panel: Risk score curves of the GDRG signatures. Bottom panel: 
Heatmaps of the expression levels of the 4 GDRGs in the GBM samples. The colors from green to red indicate the gene expression levels from 
low to high. 



 

www.aging-us.com 18308 AGING 

Table 2. Univariate and multivariate Cox proportional hazards analyses of clinicopathological variables and GDRG 
signatures in the TCGA GBM training cohort and CGGA GBM validation cohort. 

Variable 

TCGA training cohort (n=151) CGGA validation cohort (n=350) 

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis 

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value 

Age 
1.028  

(1.013-1.044) 
1.98e-04 

1.017  

(1.000-1.035) 
4.59e-02 

1.078  

(1.048-1.108) 
8.35e-05 

1.006  

(1.001-1.011) 
1.90e-02 

Sex (Female/Male) 
0.916  

(0.626-1.341) 
0.65 - - 

1.063  

(0.837-1.350) 
0.61 - - 

KPS (<80/≥80/NA) 
0.926  

(0.696-1.233) 
0.59 - - NA  NA  

Pharmacotherapy 

(TMZ/TMZ+BEV/Others 

(No TMZ)/No or NA) 

0.883  

(0.852-0.913) 
1.06e-04 

0.918  

(0.879-0.958) 
2.87e-02 

0.573  

(0.432-0.759) 
1.04e-04 

0.663  

(0.487-0.901) 
8.80e-03 

Radiotherapy (No/Yes/NA) 
0.433  

(0.262-0.714) 
1.04e-03 

0.273  

(0.156-0.476) 
4.69e-06 

0.668  

(0.492-0.908) 
9.96e-03 

0.722  

(0.682-0.762) 
4.11e-02 

Surgery (Biopsy only/Tumor 

resection) 

0.934  

(0.523-1.667) 
0.82 - - NA  NA  

IDH mutation status (Wild-

type/Mutant) 

0.262  

(0.096-0.715) 
8.91e-03 

0.279  

(0.240-0.318) 
3.24e-02 

0.752  

(0.566-0.988) 
3.89e-02 

0.807  

(0.767-0.847) 
5.68e-03 

MGMT promoter status 

(Methylated/Unmethylated) 

1.434  

(1.133-1.733) 
6.84e-03 

1.365  

(1.325-1.404) 
1.31e-02 NA  NA  

TERT promoter status 

(Wild-type/Mutant) 

0.906  

(0.287-2.861) 
0.87 - - NA  NA  

BRAF status 

(Wild-type/Mutant) 

1.973  

(0.720-5.410) 
0.19 - - NA  NA  

ATRX status 

(Wild-type/Mutant) 

0.426  

(0.187-0.973) 
4.28e-02 

0.899  

(0.703-2.095) 
0.32 NA  NA  

EGFR status 

(Wild-type/Mutant) 

1.273  

(0.873-1.857) 
0.21 - - NA  NA  

G-CIMP status 

(Non- or G-CIMP) 

0.241  

(0.088-0.655) 
5.32e-03 

1.474  

(0.912-2.043) 
0.29     

Molecular subtype 

(Classical/Neural/Mesenchy

mal/Proneural) 

0.971  

(0.831-1.133) 
0.71 - -     

1p/19q status 

(Noncodeletion/Codeletion/N

A) 

NA  NA  
0.913  

(0.662-1.259) 
0.58 - - 

GDRG signature 
1.332  

(1.153-1.540) 
1.05e-04 

1.297  

(1.109-1.517) 
1.17e-03 

2.558  

(1.815-3.606) 
8.07e-08 

2.609  

(1.744-3.902) 
3.03e-06 

GDRG, GBM cell differentiation-related gene; GBM, glioblastoma; NA, not available; HR, hazard ratio; CI, confidence interval; 
KPS, Karnofsky performance status; TMZ, temozolomide; BEV, bevacizumab; PCV, procarbazine lomustine vincristine. 
“Others (no TMZ)” in pharmacotherapy included PCV, PCV+BEV, and other drugs, including avastin, carmustine, and 
irinotecan. 
All statistical tests were two-sided. Bold type indicates P<0.05. 
 

Intratumoral heterogeneity refers to the different 

features of cells in a single tumor, and these cells 

manifest as a diverse collection of cells with distinct 

molecular signatures or differentiation states [27]. In 

this study, we identified 13 cell clusters in GBMs. Four 

of them were GBM cells, and 1 cluster was GBM CSCs. 

One cluster was annotated as astrocytes, one was 

annotated as oligodendrocytes, and the other 6 clusters 

were annotated as immune cells, mostly macrophages, 

which is consistent with the previous literature [28]. 

According to the trajectory analysis, GBM cells were 

projected into two subsets with remarkably distinct 

differentiation features, and subset-dependent GDRGs 

were identified. Using GSEA and correlation analysis, 

we found that this differentiation model was associated 

with immune regulation and metabolic pathways in 

GBMs, implying that intrinsic correlations between 

GBM cell differentiation and intratumoral immune and 

metabolic biology exist. 

 
EGFR, observed in approximately 57% of GBMs, acts 

as a major driver of tumor invasion, progression, and 

angiogenesis [29–31]. As shown in this study, EGFR, 

identified as a type II GDRG, was the top mutated 

GDRG, with a mutation frequency of 53%. This finding 

unveils the role of EGFR in regulating GBM cell 

differentiation and its subsequent role in interacting 

with tumor immunity and cell fate. 
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One hallmark of uncontrolled cancer progression and 

invasion is immune escape [20]. Immunotherapy can 

relieve the intratumoral immunosuppression status and 

acts as a promising treatment strategy for GBM 

patients; it has been previously shown to remarkably 

improve the survival of patients with several other 

tumors [5]. Unfortunately, the outcomes of almost all 

trials for GBMs, including those on immune checkpoint 

inhibitors, vaccinations, and adoptive T cell therapy, 

have not been as effective as expected. The low 

immunogenicity of GBM, the immune privilege of the 

CNS and the immunosuppressive microenvironment are 

considered key pathophysiologies underlying the 

immunotherapy resistance of GBMs [32]. We revealed 

in this study that type I GDRGs are correlated with 

intratumoral immunosuppression, disturbing the 

processes of antigen processing and presentation and T 

cell differentiation in GBMs. TIDE analysis showed 

that patients with MC1 GBMs, namely, those harboring 

more type I GDRGs, were less likely to respond to 

immunotherapy than patients with MC2 GBMs. The 

expression of immunotherapy-targeted molecules 

differed in GBMs with different cell differentiation 

patterns. Our results showed that MC1 GBMs expressed 

more PD1/PDL1/PDL2 molecules, while MC2 GBMs 

expressed more CTLA4/CD80/CD86 molecules. 

Moreover, the SubMap analysis confirmed that the 

immunoreaction was related to cell differentiation, 

predicting that patients with MC1 GBMs were more 

sensitive to anti-PD1 therapies, while patients with 

MC2 GBMs were more sensitive to anti-CTLA4 

therapies. Therefore, based on these findings, we 

propose that the features of GBM cell differentiation 

states can be referred to as a good predictor for the 

GBM immunotherapy response. 

 

We explored and validated the prognostic predictive 

value of the GDRGs and their correlations with patient  

 

 
 

Figure 8. Prognostic nomogram to predict the 0.5-, 1‐, and 3‐year OS of GBM patients. (A) Nomogram model to predict the 
prognosis of GBM patients based on the TCGA training cohort. Age, pharmacotherapy, radiotherapy, IDH mutation status, MGMT promoter 
methylation status, and the GDRG signature were included in the prediction model. The prognostic performance of the nomogram 
demonstrated by the time-dependent ROC curve for predicting the 0.5-, 1‐, and 3‐year OS rates in the TCGA training cohort (B) and CGGA 
validation cohort (C). Calibration plots of the prognostic nomogram for predicting OS at 0.5, 1, and 3 years in the TCGA (D–F) and CGGA (G–I) 
cohorts. Actual survival is plotted on the y-axis, and nomogram-predicted probability is plotted on the x-axis. 
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clinical outcomes. The machine learning-based 

unsupervised clustering method was used in this study 

to classify GBM patients into two groups based on the 

cell differentiation states, namely, the GDRG features, 

of GBM cells. Two large GBM databases of different 

origins, the TCGA and CGGA, were used, and the 

survival analysis showed that patients with MC1 GBMs 

had poorer OS than patients with MC2 GBMs, 

indicating that the GDRG-based patient classification 

can be used to predict patient survival. 

 

A nomogram is a multivariable regression model that is 

widely used in studies to predict clinical outcomes with 

intuitive visual presentations [33]. In this study, FN1, 

APOE, RPL7A and GSTM2 were identified as the 4 

most significant survival-predicting GDRGs in human 

GBMs. We successfully established a risk score formula 

based on these GDRGs and generated a clinically 

applicable nomogram with GDRG signatures and 

clinicopathological parameters to predict GBM patient 

outcome. We then validated this nomogram in two large 

GBM cohorts with long-term follow-up examinations, 

showing the high reliability of this nomogram. To our 

knowledge, this nomogram is the first to incorporate a 

cell differentiation-related signature for predicting 

GBM patient survival. This visualized scoring system 

may assist neurosurgeons and oncologists in performing 

survival predictions according to clinicopathological 

and cell differentiation information and in further 

proposing better treatment options. 

 

The current study has some limitations. We conducted 

this analysis and made conclusions using data from 

published databases, and the prediction model was 

validated using TCGA and CGGA cohorts but not our 

own cohort. Additionally, detailed patient information 

was incomplete, and some clinical parameters, e.g., 

tumor imaging results, medical records and history, and 

operation note details, were not available for download 

and thus were not input into the nomogram. The 

predictive model needs to be further validated in 

prospective large-scale cohorts. 

 

CONCLUSIONS 
 

We used scRNA-seq and bulk RNA-seq data and found 

that GBM cells follow a two-dimensional differentiation 

trajectory and that their differentiation states correlate 

with several immune regulation and metabolic 

pathways. The classification of GBM patients based on 

GBM cell differentiation patterns can reliably predict 

patient survival, immune checkpoint expression, and the 

tumor immunotherapy response. We identified the key 

prognosis-predicting GDRGs and established a 

nomogram composed of patient clinicopathological 

variables and these GDRGs to predict GBM prognosis. 

This study highlights the distinct cell differentiation 

trajectories of GBM cells and their essential roles in 

predicting the clinical outcome of GBM patients and the 

tumor immunotherapy response. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 
 

The scRNA-seq data and bulk RNA-seq data of human 

GBM samples were included in this study for analysis. 

The scRNA-seq data of a total of 3,589 cells of 4 human 

primary GBM samples, accession number GSE84465 

[34], were obtained from the Gene Expression Omnibus 

(GEO, http://www.ncbi.nlm.nih.gov/geo/) database, 

containing 2,343 cells from tumor cores and 1,246 cells 

from peripheral regions, with a reading depth of 10× 

genomics based on Illumina NextSeq 500. The bulk 

RNA-seq profiles of GBM samples were obtained from 

the TCGA database (https://portal.gdc.cancer.gov/) and 

the CGGA database (http://www.cgga.org.cn). We 

excluded samples with unavailable clinical information 

and ultimately included 151 GBMs from the TCGA 

cohort as the training set and 350 GBMs from the 

CGGA cohort as the validation set. 

 

Processing of the GBM scRNA-seq data 
 

In total, 2,343 cells from tumor cores were included in 

this analysis. The Seurat package in R 3.5.1 was used for 

quality control, statistical analysis, and exploration of the 

scRNA-seq data [35]. First, 194 low-quality cells were 

excluded based on the following quality control 

standards: 1) genes detected in < 3 cells were excluded; 

2) cells with < 50 total detected genes were excluded; and 

3) cells with ≥ 5% of mitochondria-expressed genes were 

excluded. Then, the gene expression of the remaining 

2,149 cells was normalized using a linear regression 

model. PCA was performed to identify significantly 

available dimensions with a P value < 0.05 [36]. Then, 

the t-distributed stochastic neighbor embedding (tSNE) 

algorithm was applied for dimensionality reduction with 

20 initial PCs and for performing cluster classification 

analysis across all cells [37]. The differential expression 

analysis among all genes within cell clusters was 

performed using the limma package in R to identify the 

marker genes of each cluster. An adjusted P value < 0.05 

and | log2[fold change (FC)] | > 0.5 were considered the 

cutoff criteria for identifying marker genes. Afterwards, 

different cell clusters were determined and annotated by 

the singleR package according to the composition 

patterns of the marker genes and were then manually 

verified and corrected with the CellMarker database [38, 

39]. The corresponding genes of cell surface markers for 

the annotation of cell clusters are listed in Supplementary 

Table 2. 

http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/


 

www.aging-us.com 18311 AGING 

Trajectory analysis and GDRG identification 
 

Single-cell pseudotime trajectories of the GBM scRNA-

seq data were constructed using the Monocle 2 

algorithm [14]. This algorithm adopts a machine 

learning technique, learning a parsimonious principal 

graph to reduce the given high-dimensional expression 

profiles to a low-dimensional space. Single cells were 

projected onto this space and ordered into a trajectory 

with branch points. For data interpretation, the cells in 

the same branch were generally considered to be in the 

same differentiation state, while cells located in 

different branches were considered to have different cell 

differentiation characteristics. In addition, differential 

expression analysis was performed between branches, 

and genes that showed differential expression levels 

were defined as branch-dependent or state-specific 

genes or marker genes. These marker genes of GBM 

cells located in different branches were defined as 

GDRGs. 

 

GSEA, correlation analysis, and somatic mutation 

analysis of branch-dependent GDRGs 
 

GSEA (http://software.broadinstitute.org/gsea/index. 

jsp) was performed to identify the related molecular 

mechanisms and pathways of GBM cells in different 

differentiation states [40]. The adjusted P value was used 

to correct the false positive results by using the default 

Benjamini-Hochberg false discovery rate (FDR) method. 

An FDR value ≤ 0.05 of the enrichment gene sets was 

considered statistically significant. Then, we determined 

whether the observed cell subtypes generated from the 

scRNA-seq GBM data could also be identified in the 

bulk RNA-seq data. Because the coregulation of 

transcriptional programs in bulk RNA-seq data would 

indicate a common cellular origin, we believed that cell 

populations would be best identified by distinguishing 

gene expression profiles consisting of highly correlated 

genes [15]. Thus, correlation analyses of the expression 

of GDRGs were performed using Pearson’s correlation 

test, and the results were visualized as a heatmap. A P 

value < 0.05 and |correlation coefficient| > 0.3 were 

considered significantly correlative. To determine 

whether the gene profiles originating from different cell 

populations were functionally correlated, we utilized 

metagenes to represent the overall expression patterns of 

the corresponding gene profiles. The relative expression 

values of metagenes, an assembly of multiple genes, 

were derived as the weighted averages of the expression 

levels of the constituent genes using a logistic regression 

model [15]. Correlation analysis between branch-

dependent GBM differentiation-related metagenes was 

performed by Pearson’s correlation test in both the 

scRNA-seq data and bulk RNA-seq data. Moreover, we 

performed somatic mutation analysis to identify the 

mutation statuses of the GDRGs. The cBioPortal 

database (https://www.cbioportal.org/) was used to 

download the somatic mutation data of GBM patients. 

The numbers of variant types and classifications were 

visualized with OncoPlot. 

 

GDRG-based classifications of GBM patients in the 

TCGA and CGGA cohorts 
 

Unsupervised consensus clustering, an algorithm based 

on k-means machine learning, was utilized to explore a 

molecular classification of both the TCGA and CGGA 

GBM cohorts based on the expression patterns of 

GDRGs using the ‘ConsensusClusterPlus’ package in R 

[41]. The clustering procedure, with 1,000 iterations, 

was performed by sampling 80% of the data in each 

iteration. The optimal number of clusters was 

determined by the relative change in the area under the 

CDF curves of the consensus score and consensus 

heatmap. Then, Kaplan-Meier survival analysis was 

performed to evaluate the prognosis of patients in 

different MCs. We also performed comparisons of the 

clinicopathological variables between different clusters 

of patients to further explore the associations between 

the GDRG-based MCs and the clinical features of GBM 

patients. 

 

Immunotherapy response predictions 

 

TIDE (http://tide.dfci.harvard.edu/) is a computational 

method that integrates the expression signatures of T 

cell dysfunction and exclusion to model tumor immune 

evasion [42]. We used the TIDE algorithm to predict  

the clinical response to immune checkpoint blockade 

(ICB) in GBM patients based on pretreatment 

genomics. The unsupervised subclass mapping method 

(SubMap; https://cloud.genepattern.org/gp/) was further 

applied to predict the response of GBM patients  

in different MCs to immunotherapy, including  

anti-PD1 and anti-CTLA4 therapy [43]. A Bonferroni-

corrected P value < 0.05 was considered statistically 

significant. 

 

Generation and validation of the GDRG-based 

prognostic risk score model 
 

The associations between the expression levels of 

GDRGs and patient survival were first evaluated by 

univariate Cox regression analysis in the TCGA training 

cohort. The prognosis-related genes with a P value < 

0.05 identified by the analysis were further screened by 

LASSO and multivariate Cox regression analyses. 

Consequently, a risk score model based on the key 

prognosis-related GDRGs was constructed to predict the 

prognosis of GBM patients [44]. We calculated the risk 

score of each patient by referring to our previously 

http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://www.cbioportal.org/
http://tide.dfci.harvard.edu/
https://cloud.genepattern.org/gp/
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constructed formula, Risk score = ExpGENE1 × β1 + 

ExpGENE2 × β2 +…+ ExpGENEn × βn, in which “Exp” 

represents the expression level of the corresponding 

gene, and “β” represents the regression coefficient 

calculated by the multivariate Cox analysis [9]. 

Accordingly, all GBM patients in the TCGA database 

were stratified into either the low-risk (low score) group 

or the high-risk (high score) group. Kaplan-Meier 

survival analysis was performed to estimate the OS of 

these two groups, and survival differences were 

evaluated by a two-sided log-rank test. The predictive 

accuracy of the GDRG-based prognostic model was 

evaluated by Harrell's concordance index (C-index) and 

time-dependent ROC curve analysis within 0.5, 1 and 3 

years by utilizing the survcomp and survivalROC 

packages in R [33, 45]. Both the C-index and AUC 

ranged from 0.5 to 1, with 1 indicating perfect 

discrimination and 0.5 indicating no discrimination. 

Finally, the prognostic model generated by the TCGA 

training cohort was verified in the CGGA validation 

cohort. 

 

Afterwards, univariate and multivariate Cox regression 

analyses were performed in both GBM cohorts to 

determine whether the predictive performance of the 

GDRG signatures could be independent of the 

clinicopathological variables. These variables included 

age, sex, Karnofsky performance status score, 

pharmacotherapy, radiotherapy, surgery, isocitrate 

dehydrogenase (IDH) mutation status, O6-

methylguanine-DNA-methyltransferase (MGMT) 

promoter methylation status, telomerase reverse 

transcriptase (TERT) promoter mutation status, B-Raf 

proto-oncogene (BRAF) mutation status, X-linked alpha 

thalassemia mental retardation syndrome gene (ATRX) 

mutation status, EGFR mutation status, glioma CpG 

island methylator phenotype (G-CIMP) status, 

molecular subtype (classical, neural, mesenchymal, and 

proneural), and 1p/19q status. 

 

Development and validation of the prognostic 

nomogram with the GDRG signature and 

clinicopathological parameters 
 

Following univariate and multivariate Cox regression 

analyses, all the identified independent prognostic 

parameters were utilized to develop a prognostic 

nomogram for predicting the 0.5-, 1-, and 3-year survival 

outcomes of GBM patients using the rms package in R. 

Calibration plots at 0.5, 1, and 3 years were constructed to 

graphically evaluate the discriminative ability of the 

nomogram [45]. Then, the discrimination performance of 

the nomogram was quantitatively assessed by the C-index 

and ROC curve [33]. Finally, the nomogram constructed 

using the data from the TCGA cohort was validated in the 

CGGA cohort. 

Data accessibility 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1. The top 20 significantly correlated genes in PC_1 to PC_4 are displayed using dot plots and 
heatmaps. (A) The dot plots show the top 20 significantly correlated genes in each component. The X axis represents the correlation 
coefficient. (B) The heatmaps show the expression patterns of the top 20 significantly correlated genes in each component. The colors from 
purple to yellow indicate the gene expression levels from low to high. 
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Supplementary Figure 2. The prognosis-related GDRGs were screened with LASSO and multivariate Cox regression analyses. 
(A) The coefficient profile plot was produced against the log(lambda) sequence. A vertical line was drawn at the value selected using ten-fold 
cross-validation, where an optimal lambda value resulted in ten features with nonzero coefficients. (B) Optimal parameter (lambda) selection 
in the LASSO model used ten-fold cross-validation via minimum criteria. The partial likelihood deviance (binomial deviance) curve was plotted 
versus the log(lambda) value. Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the I standard error 
of the minimum criteria. (C) Following LASSO regression analysis, 4 GDRGs were identified with multivariate Cox regression analysis. 
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Supplementary Figure 3. Expression and survival analyses of the four GDRGs in the prediction model. (A) The expression of the 
four GDRGs in scRNA-seq data is shown. The colors from gray to blue indicate the gene expression levels from low to high. (B) The expression 
of the four GDRGs in bulk RNA-seq data, including 163 GBM (TCGA) and 207 normal (GTEx) samples, is shown. Asterisks indicate p < 0.05. (C) 
K-M survival analyses demonstrated that the expression of GDRGs was associated with OS in TCGA GBM patients. 
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Supplementary Tables 
 

Supplementary Table 1. The marker genes of type I and type II GBM cell subsets. 

GBM cell 

subsets 
GBM cell differentiation-related genes (GDRGs) 

Type I 

GDRGs 

(n=265) 

A2M, ABL2, ACSL1, ADAM28, ADAP2, ADORA3, AIF1, AKAP13, ALOX5, ALOX5AP, ANXA1, APBB1IP, APOC1, APOE, 

ARAP1, ARHGAP18, ARHGAP4, ARHGDIB, ARNT2, ARPC1B, ARPC2, ATP6V0E2, B3GNT5, B4GALT1, BAALC, BCL2A1, 

C10orf54, C1orf162, C1orf38, C1QA, C1QB, C1QC, C3, C3AR1, C5AR1, CAPG, CCL3, CCL4, CD14, CD163, CD300A, CD4, CD53, 

CD68, CD74, CD83, CD84, CD86, CD93, CDKN1A, CHL1, CLEC7A, CORO1A, CPE, CSF1R, CSF3R, CTSB, CTSC, CTSH, CTSL1, 

CTSS, CXCR4, CYBA, CYBB, CYTH4, DAG1, DDR1, DENND3, DKK3, DOCK2, DOCK8, DSE, ELL2, ENG, ETS2, ETV1, EVI2B, 

F13A1, FCER1G, FCGBP, FCGR1A, FCGR2A, FCGR3A, FCGRT, FERMT3, FGD4, FGL2, FHL1, FPR1, FTH1, FTL, FXYD5, FYB, 

FYN, GATM, GK, GMFG, GNA13, GOLM1, GPM6B, GPNMB, GPR183, GPRC5B, GPX1, HAMP, HAVCR2, HCK, HCLS1, HLA-B, 

HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HMHA1, IER3, 

IFI30, IFNGR1, IL10RA, IL13RA1, IL18, IL8, INPP5D, IRF8, ITGAM, ITGAX, ITGB2, ITGB8, ITM2C, ITPRIP, KCTD12, KLF6, 

LAIR1, LAPTM5, LAT2, LCP1, LCP2, LGALS9, LILRB4, LIMS1, LPCAT2, LST1, LY86, LYN, LYZ, MAGED1, MANBA, MAP3K8, 

MEF2C, MERTK, METRNL, MGAT1, MPP1, MS4A4A, MS4A6A, MS4A7, MSR1, MYO1F, MYO9B, NAV2, NCF4, NFKBID, NINJ1, 

NPC2, NR4A2, NR4A3, NRCAM, NTRK2, OLR1, OTUD1, PABPC1, PABPC4, PARVG, PFN1, PIK3AP1, PIK3R5, PLAUR, PLCB2, 

PLEK, PLIN2, PLXDC2, PMP2, PTAFR, PTGER4, PTPN6, PTPRC, PTPRZ1, RANBP2, RAPGEF1, REL, RGS1, RGS10, RHBDF2, 

RHOG, RILPL2, RIN3, RNASE6, RNASET2, RNF144B, RNF149, RPL23, RPS23, RPS24, RPS3, RPS6, S100A11, S100A4, SAMSN1, 

SAT1, SCIN, SCRG1, SDC3, SELPLG, SERPINA1, SERPINB9, SERPINE2, SH3BGRL3, SH3TC1, SIGLEC10, SLA, SLC11A1, 

SLC1A2, SLC22A17, SLC2A5, SLC31A2, SLCO2B1, SOD2, SORBS1, SPARCL1, SPP1, SRGN, STAB1, STAT6, SYK, SYNGR2, 

SYT11, TBXAS1, TCIRG1, TFRC, TGFBI, THBS2, TLR2, TNFRSF1B, TPM3, TPT1, TREM1, TREM2, TRIM9, TRO, TSPAN3, 

TSPAN7, TYMP, TYROBP, UCHL1, UCP2, UPP1, USP36, VAMP8, VSIG4, ZBTB20, ZNF331 

Type II 

GDRGs 

(n=193) 

ANPEP, RNASE1, ADAM8, GPNMB, MARCO, FTL, FCGR2B, C15orf48, LSP1, EGR1, TGFBI, S100A10, S100A4, LYZ, TMSB10, 

LGALS1, S100A9, CD109, SLC16A10, FTH1, ANXA2, VIM, TPT1, CSTB, IFI30, CYTIP, FBP1, BCAT1, GAPDH, SH3BGRL3, LCP1, 

GPR56, LDHA, RPS18, NDRG1, FLNB, TGM2, ERO1L, PLIN2, VCAN, TNFRSF14, SLC1A3, PAPSS2, RPS24, ENO1, NCF2, 

TCIRG1, BTG1, TXNIP, LGALS3, AHNAK, CTSD, S100A6, UPP1, ALOX5AP, BRI3, HK2, TYROBP, CLEC5A, TREM1, CD163, 

RPS6, DBI, FN1, PKM2, FOS, ANXA1, LAPTM5, CD44, S100A11, RPS2, RPL37, TUBGCP2, RPS9, TAGLN2, YBX1, METRNL, 

RPL37A, RPS3, TRIM25, RPL27A, ALDOA, RPL31, C1orf61, CNN3, ST14, CXCL2, PTN, CLU, CD68, RPL23, CKB, RPS4Y1, 

TYMP, PTK2B, EEF1A1, MGAT1, RPL9, RPL13, JARID2, S100A8, NFIA, MAP1B, ARHGAP18, RPS12, MAPK13, RPL32, MMP19, 

NCF1, ITGAM, RPL12, CAPG, PTPRZ1, PON2, GPM6B, UBA52, SPP1, BNIP3, TBC1D2, TJP1, EIF4EBP1, NFIB, PGK1, OAZ1, 

GFAP, GSTO1, RPLP0, ATP1B2, EEF1G, RPS23, ID2, GPM6A, G0S2, CALM2, HMOX1, FNDC3B, TUBB2B, EGFR, DMXL2, 

GSTM2, BNIP3L, CALD1, TNS1, RPS8, CTSB, H2AFY, C3, LRRFIP1, BTG2, PMP2, FEZ1, ITGB8, CHL1, ARPC2, P4HB, NRCAM, 

GPI, SLC39A8, RIPK2, FGR, ANGPTL4, AASS, CTSL1, ITM2C, ITGAX, SLC11A1, RPSA, SRI, RPL8, SCD5, GPRC5B, EGR3, 

RPL7A, SLCO4A1, RPL13A, GRB2, SCRG1, CX3CR1, GLUL, BCAN, ZBTB20, DDX5, DTNA, DHRS3, SDS, MEST, F3, IL4I1, MT3, 

FHL1, DDR1, TCF4, COTL1, FXYD6, PFN2, ABCA1, XIST, TUBA1A, CBX5, IER2, MAGED1, RAMP1, PIM1, SDC2, GSTM3, 

HTRA1, CRYAB, SLC2A1, MARCKSL1, SPRY2, MDK, KIAA1274, CHD7, GATM, CH25H, OLFML3, DDX41, TSPAN3, LONP1, 

PADI2, SPTBN1, TMEM9, HSPA6, NDUFA4, RCN2, NDRG2, WRB, ZFP36, LIMA1, STMN1, DPYSL2, SBDS, NGFRAP1, FAM46A, 

JUNB, SPARC, SKP1, SERPING1, FOSB, SRGAP1, SYT11, GADD45A, SDC3, GABARAPL2, AHCYL1, NUPR1, METTL9, DUSP1, 

EGR2, ITPR2, CBR1, PGRMC1, S100B, CCND2, TUBA1B, TSPAN31, PRDX2, TSC22D4, LPL, MLF2, TMX2, 7-Sep, RBBP4, 

PEBP1, RHBDD2, EIF4E, NR4A3, SPARCL1, ST6GAL1, RTN3, CCL4, EID1, CASC4, ATP5A1, TSC22D1, LDHB, SOD1, CCT6A, 

CCL2, CDK4, KPNA2, RASSF4, CLDND1, A2M, SORL1, LGALS3BP, CNP, CREB5, GBAS, HSPB1, IL1B, CLIC4, NR4A1 

Total 

GDRGs 

(n=498) 

ANPEP, RNASE1, ADAM8, GPNMB, MARCO, FTL, FCGR2B, C15orf48, LSP1, EGR1, TGFBI, S100A10, S100A4, LYZ, TMSB10, 

LGALS1, S100A9, CD109, SLC16A10, FTH1, ANXA2, VIM, TPT1, CSTB, IFI30, CYTIP, FBP1, BCAT1, GAPDH, SH3BGRL3, LCP1, 

GPR56, LDHA, RPS18, NDRG1, FLNB, TGM2, ERO1L, PLIN2, VCAN, TNFRSF14, SLC1A3, PAPSS2, RPS24, ENO1, NCF2, 

TCIRG1, BTG1, TXNIP, LGALS3, AHNAK, CTSD, S100A6, UPP1, ALOX5AP, BRI3, HK2, TYROBP, CLEC5A, TREM1, CD163, 

RPS6, DBI, FN1, PKM2, FOS, ANXA1, LAPTM5, CD44, S100A11, RPS2, RPL37, TUBGCP2, RPS9, TAGLN2, YBX1, METRNL, 

RPL37A, RPS3, TRIM25, RPL27A, ALDOA, RPL31, C1orf61, CNN3, ST14, CXCL2, PTN, CLU, CD68, RPL23, CKB, RPS4Y1, 

TYMP, PTK2B, EEF1A1, MGAT1, RPL9, RPL13, JARID2, S100A8, NFIA, MAP1B, ARHGAP18, RPS12, MAPK13, RPL32, MMP19, 

NCF1, ITGAM, RPL12, CAPG, PTPRZ1, PON2, GPM6B, UBA52, SPP1, BNIP3, TBC1D2, TJP1, EIF4EBP1, NFIB, PGK1, OAZ1, 

GFAP, GSTO1, RPLP0, ATP1B2, EEF1G, RPS23, ID2, GPM6A, G0S2, CALM2, HMOX1, FNDC3B, TUBB2B, EGFR, DMXL2, 

GSTM2, BNIP3L, CALD1, TNS1, RPS8, CTSB, H2AFY, C3, LRRFIP1, BTG2, PMP2, FEZ1, ITGB8, CHL1, ARPC2, P4HB, NRCAM, 

GPI, SLC39A8, RIPK2, FGR, ANGPTL4, AASS, CTSL1, ITM2C, ITGAX, SLC11A1, RPSA, SRI, RPL8, SCD5, GPRC5B, EGR3, 

RPL7A, SLCO4A1, RPL13A, GRB2, SCRG1, CX3CR1, GLUL, BCAN, ZBTB20, DDX5, DTNA, DHRS3, SDS, MEST, F3, IL4I1, MT3, 

FHL1, DDR1, TCF4, COTL1, FXYD6, PFN2, ABCA1, XIST, TUBA1A, CBX5, IER2, MAGED1, RAMP1, PIM1, SDC2, GSTM3, 
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HTRA1, CRYAB, SLC2A1, MARCKSL1, SPRY2, MDK, KIAA1274, CHD7, GATM, CH25H, OLFML3, DDX41, TSPAN3, LONP1, 

PADI2, SPTBN1, TMEM9, HSPA6, NDUFA4, RCN2, NDRG2, WRB, ZFP36, LIMA1, STMN1, DPYSL2, SBDS, NGFRAP1, FAM46A, 

JUNB, SPARC, SKP1, SERPING1, FOSB, SRGAP1, SYT11, GADD45A, SDC3, GABARAPL2, AHCYL1, NUPR1, METTL9, DUSP1, 

EGR2, ITPR2, CBR1, PGRMC1, S100B, CCND2, TUBA1B, TSPAN31, PRDX2, TSC22D4, LPL, MLF2, TMX2, 7-Sep, RBBP4, 

PEBP1, RHBDD2, EIF4E, NR4A3, SPARCL1, ST6GAL1, RTN3, CCL4, EID1, CASC4, ATP5A1, TSC22D1, LDHB, SOD1, CCT6A, 

CCL2, CDK4, KPNA2, RASSF4, CLDND1, A2M, SORL1, LGALS3BP, CNP, CREB5, GBAS, HSPB1, IL1B, CLIC4, NR4A1, ABL2, 

ACSL1, ADAM28, ADAP2, ADORA3, AIF1, AKAP13, ALOX5, APBB1IP, APOC1, APOE, ARAP1, ARHGAP4, ARHGDIB, ARNT2, 

ARPC1B, ATP6V0E2, B3GNT5, B4GALT1, BAALC, BCL2A1, C10orf54, C1orf162, C1orf38, C1QA, C1QB, C1QC, C3AR1, C5AR1, 

CCL3, CD14, CD300A, CD4, CD53, CD74, CD83, CD84, CD86, CD93, CDKN1A, CLEC7A, CORO1A, CPE, CSF1R, CSF3R, CTSC, 

CTSH, CTSS, CXCR4, CYBA, CYBB, CYTH4, DAG1, DENND3, DKK3, DOCK2, DOCK8, DSE, ELL2, ENG, ETS2, ETV1, EVI2B, 

F13A1, FCER1G, FCGBP, FCGR1A, FCGR2A, FCGR3A, FCGRT, FERMT3, FGD4, FGL2, FPR1, FXYD5, FYB, FYN, GK, GMFG, 

GNA13, GOLM1, GPR183, GPX1, HAMP, HAVCR2, HCK, HCLS1, HLA-B, HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-

DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, HMHA1, IER3, IFNGR1, IL10RA, IL13RA1, IL18, IL8, INPP5D, IRF8, 

ITGB2, ITPRIP, KCTD12, KLF6, LAIR1, LAT2, LCP2, LGALS9, LILRB4, LIMS1, LPCAT2, LST1, LY86, LYN, MANBA, MAP3K8, 

MEF2C, MERTK, MPP1, MS4A4A, MS4A6A, MS4A7, MSR1, MYO1F, MYO9B, NAV2, NCF4, NFKBID, NINJ1, NPC2, NR4A2, 

NTRK2, OLR1, OTUD1, PABPC1, PABPC4, PARVG, PFN1, PIK3AP1, PIK3R5, PLAUR, PLCB2, PLEK, PLXDC2, PTAFR, PTGER4, 

PTPN6, PTPRC, RANBP2, RAPGEF1, REL, RGS1, RGS10, RHBDF2, RHOG, RILPL2, RIN3, RNASE6, RNASET2, RNF144B, 

RNF149, SAMSN1, SAT1, SCIN, SELPLG, SERPINA1, SERPINB9, SERPINE2, SH3TC1, SIGLEC10, SLA, SLC1A2, SLC22A17, 

SLC2A5, SLC31A2, SLCO2B1, SOD2, SORBS1, SRGN, STAB1, STAT6, SYK, SYNGR2, TBXAS1, TFRC, THBS2, TLR2, 

TNFRSF1B, TPM3, TREM2, TRIM9, TRO, TSPAN7, UCHL1, UCP2, USP36, VAMP8, VSIG4, ZNF331 
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Supplementary Table 2. The corresponding genes of cell surface markers (CellMarker database) for identifying cell 
types of the 13 cell clusters. 

Cell populations Gene symbols of cell surface markers 

Astrocyte ALDH1L1, WIF1, NTSR2, GFAP, SOX9, CD40, CD80, CD86, ABCA1, NFIA, S100B, C5AR1, ACSL6, ADCYAP1R1, AGT, 

ALDOC, ANLN, APOE, ARHGEF26, ATF3, ATP13A4, ATP1B2, BBOX1, BTG2, C1orf61, CA12, CASQ1, CBS, CDC42EP4, 

CHST9, CLU, CPE, CPNE5, CPVL, CRYAB, CST3, DAND5, DGKG, DKK3, DNJB1, DNASE2, DOK5, DTNA, EDNRB, 

EEPD1, EFEMP1, EGLN3, EPAS1, EZR, F3, FOS, FOSB, FTH1, FXYD7, GABRB1, GADD45B, CASTOR1, GLUL, GPR75, 

GRAMD2B, GRIA1, HEPACAM, HEPN1, HEY1, HIF1A, HIF3A, HLA-E, HNMT, HSPB8, ID1, ID4, IER2, IGFBP7, IL11RA, 

IL33, JUN, JUNB, JUND, KCNH7, KCNIP2, KIF21A, L1CAM, LCAT, LHFPL6, LIX1, LPL, LRIG1, LRRC8A, LYPD1, MAFB, 

METTL7A, MLC1, MMD2, MT1X, MT2A, MTHFD2, NDRG2, NFKBIA, NHSL1, NANOG, NRP1, NTRK2, P2RY1, PAPLN, 

PEA15, PER1, PFKFB3, PLTP, PON2, PRLHR, PRRT2, PSAP, RASL10A, RASSF4, RFX4, RGMA, RHOB, RND3, SCG2, 

SCG3, SEMA6A, SERPINA3, SF3A1, SLC1A2, SLC1A3, SLC39A11, SORL1, SPARCL1, SPOCK1, SPON1, SRPX, SSTR2, 

ST6GAL2, TACR1, TBC1D10A, TIMP3, TMEM151B, TNS1, TOB2, TPCN1, TRIL, TSC22D4, TSPAN12, ZFAND5, ZFP36, 

ZFP36L1, ZFP36L2, AQP4, BMPR1B, C16orf89, CHRDL1, CTH, CYBRD1, FGFR3, GLI3, GLIS3, HGF, ITGA7, ITGB4, 

NWD1, PAQR6, PPP1R3C, RNF43, SLC14A1, SLC30A10, SLC4A4, SORCS2, TRIM66 

Oligodendrocyte MBP, OPALIN, RTN4, CSPG4, PDGFRA, OLIG2, ACAT2, ADAMTS4, LHFPL3, ACTG1, AFAP1L2, AMOTL2, ANGPTL2, 

APOD, ARL4A, ASIC1, ATCAY, ATP5F1E, BIN1, LRRC75A, C2orf27A, CDH13, CDHR1, CNP, COX7C, CRB1, CXADR, 

DHCR24, DHCR7, DLL1, DLL3, EBP, EEF1B2, EEF2, EIF3E, EIF3L, EPN2, FA2H, FABP7, FAU, FDPS, FERMT1, FGFBP3, 

FXYD6, GAP43, RACK1, GPR17, GPR37L1, GRIA2, GRIA4, GRIK2, HIP1, HIPK2, IFITM10, KCNIP3, KLRC2, LDHB, 

LIMA1, LIMS2, LMF1, PLPPR1, LRRN1, MAML2, MAP1A, MAP2, MARCKSL1, MEST, MICAL1, MIF, MTSS1, MYT1, 

NACA, NAP1L1, NEU4, NME1, NME2, NPM1, NPPA, NXPH1, OLIG1, OMG, OPCML, P2RX7, PGRMC1, PHACTR3, 

PHLDA1, PHLDB1, PID1, POLR2F, RAB2A, RAB33A, RGMB, RGR, RPL13A, RPL31, RPS17, RPS2, RPS23, RPSAP58, 

RTKN, SCD, SERINC5, SGK1, SHD, SHISA4, SIRT2, SLC1A1, SNX1, SNX22, SOX8, TAGLN3, TCF12, THY1, TM7SF2, 

TMEFF2, TMEM97, TMSB10, TMSB4X, TNK2, TRAF4, TUBB, TUBB3, TUBB4A, UGT8, UQCRB, VIPR2, WSCD1, 

ZCCHC24, ZDHHC9, ZEB2, ASPA, CDK18, CLDN11, DAAM2, DPYD, ERMN, GJB1, GPR37, GRM3, GSN, KCNH8, KLK6, 

LGI3, LPAR1, MAG, MAL, MAP6D1, MOBP, PLEKHB1, PLP1, PPP1R14A, SEC14L5, SHC4, MEGF11, PCDH15  

Neuron L1CAM, DCLK3, RBFOX3, GFAP, MAP2, NES, MARK4, ENO2, SYP, ARMH4, CDO1, CNTN4, COBL, DCN, DLX1, DLX2, 

DLX5, DLX6, DPYSL5, KDR, GLRA2, GRIA3, KCNK1, KIAA1324, LNX1, LRRTM3, NELL1, NFASC, NXPH1, PNOC, 

RELN, SLC10A4, SLITRK1, SST, TMEM130 

Glial cell GFAP, S100 family 

GBM stem cell (GSC) PROM1, CADM1, CLCC1, HMOX1, SCAMP3, SLC16A1, FUT4, CDH5, NANOG, NES, SOX2, THY1, MSI1, CD133, CD15, 

L1CAM, CD90, A2B5, POU3F2, OLIG2, SALL2 

GBM cell PARP1, MBTPS2, CD44 

Endothelial cell PECAM1, CDH5, VWF, VCAM1, A2M, APOLD1, FLT1, TM4SF1 

B cell MS4A1, CD19, CD79A 

T cell (general) CD3D, CD3E, CD3G, CD2 

Regulatory T (Treg) 

cell 

IL2RA, CD4, FOXP3, CCR8, STAT5B, TGFB1 

T helper-1 (Th1) cell CCR6, CXCR3, TBX21, STAT4, STAT1, IFNG, TNF 

T helper-2 (Th2) cell GATA3, STAT6, STAT5A, IL13, CCR6, CXCR3, TNFRSF8 

T helper-17 (Th17) 

cell 

STAT3, IL17A, CCR6, CXCR3 

Tumor-associated 

macrophage (TAM) 

CD68, CCL2, IL10, AIF1, ARG2, BHLHE40, CD74, CD93, CIB1, CIITA, CREM, CYBB, CYTH1, DOK3, DSE, EMB, 

FAM49A, FGR, FOSL2, FPR3, FXYD5, GPR132, GPR65, HLA-DMB, HLA-DQA1, HLA-DRB5, IFITM2, IL1RN, IQGAP1, 

ITGA4, KYNU, LYZ, METRNL, MS4A6A, MS4A7, MXD1, NFIL3, PDE4B, PIM1, PLAC8, PLBD1, PLTP, PQLC3, PTPN7, 

S100A11, SAMHD1, SH3BGRL, SPINT2, SYNGR2, TGFBI, THBD, TMEM123, TNFSF13, TREM1, VOPP1 

M1 macrophage TSPO, IRF5, PTGS2, NOS2 

M2 macrophage CD163, VSIG4, MS4A4A 

Monocyte CD86, CSF1R 

Neutrophil MPO, CEACAM8, ITGAM, CCR7 

Natural killer (NK) 

cell 

KIR2DL1, KIR2DL3, KIR2DL4, KIR3DL1, KIR3DL2, KIR3DL3, KIR2DS4 

Dendritic cell (DC) HLA-DPB1, HLA-DQB1, HLA-DRA, HLA-DPA1, CD1C, NRP1, ITGAX 

 

 

 


