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INTRODUCTION 
 

Neuroblastoma (NBL) is a clinical heterogeneous 

malignancy of the peripheral nervous system, which 

accounts for ~15% of all childhood cancer death [1].  

 

The deregulation development of neural crest, a 

stem/progenitor cell population, is considered critical in 

NBL initiation [2, 3]. Nowadays patients with severe 

NBL still have poor survival rates (<50%) despite 

intensive multimodality therapy [4]. Therefore, there is 
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ABSTRACT 
 

RNA modifications modulate most steps of gene expression. However, little is known about its role in 
neuroblastoma (NBL) and the inhibitors targeting it. We analyzed the RNA-seq (n=122) and CNV data (n=78) 
from NBL patients in Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. 
The NBL sub-clusters (cluster1/2) were identified via consensus clustering for expression of RNA modification 
regulators (RNA-MRs). Cox regression, principle component analysis and chi-square analysis were used to 
compare differences of survival, transcriptome, and clinicopathology between clusters. Cluster1 showed 
significantly poor prognosis, of which RNA-MRs’ expression and CNV alteration were closely related to 
pathologic stage. RNA-MRs and functional related prognostic genes were obtained using spearman correlation 
analysis, and queried in CMap and L1000 FWD database to obtain 88 inhibitors. The effects of 5 inhibitors on 
RNA-MRs were confirmed in SH-SY5Y cells. The RNA-MRs exhibited two complementary regulation functions: 
one conducted by TET2 and related to translation and glycolysis; another conducted by ALYREF, NSUN2 and 
ADARB1 and related to cell cycle and DNA repair. The perturbed proteomic profile of HDAC inhibitors was 
different from that of others, thus drug combination overcame drug resistance and was potential for NBL 
therapy with RNA-MRs as therapeutic targets. 
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an urgent need to identify NBL vulnerabilities for 

potential pharmacological intervention with more 

efficiency and less toxicity. 

 

Epigenetic modification of RNA modulates most steps of 

gene expression, including DNA transcription, post-

transcriptional RNA modifications, and mRNA 

translation [5, 6]. Four RNA modifications regarding 

methylation or isomerization, have been reported 

abundant and important for differentiation of neural 

progenitor cells and neurological diseases: 5-methyl-

cytosines (m5C), 5-hydroxymethylcytosine (hm5C), 

adenosine to inosine editing (A-I editing), and N6-

methyladenosine (m6A) [7], whereas limited study reports 

their functions in NBL. RNA modification regulators 

(RNA-MRs) are three kinds of proteins involved in 

modification: methyltransferase (writer, W), demethylase 

(eraser, E), and RNA-binding protein (reader, R) [8]. The 

m5C is methylated by NSUN2 or TRDMT1 (formerly 

DNMT2), read by ALYREF, and oxidized to hm5C by 

TETs [9]. The A-I editing is catalyzed by ADAR, 

ADARB1, and ADATs [10]. The m6A is catalyzed by a 

multiprotein complex containing enzymes (METTL3 and 

METTL14) and accessory proteins (VIRMA, ZC3H13, 

WTAP, and RBM15), and demethylases by FTO and 

ALKBH5 [11]. The RNA-MRs regulate expressions of 

tumor driver/suppressor genes, and are functionally linked 

to survival, proliferation, differentiation, invasion and 

drug resistance of tumor cells. Recently the crosstalk 

between RNA modifications is also reported to provide a 

potential exquisite functional control [8, 12]. Therefore 

RNA-MRs emerge as important regulators, prognostic 

markers and therapeutic targets in cancer [8]. 

 

Currently no therapeutic target on RNA modification is 

clinically available, despite our ever-growing 

understanding of its biology. Development strategies for 

epigenetic drug targeting DNA modification support a 

reference as following: 1) inhibitors for a targetable 

enzymatic activity and associated binding pockets, 2) 

antagonists for reader proteins, and 3) inhibitors of 

downstream or upstream effectors for undruggable or 

tumor-suppressing regulators [9, 10]. However, our 

understanding of structures of RNA-MRs remains 

incomplete, and developing a brand-new drug consumes 

an enormous amount of time, money, and effort. 

Therefore, it is a cost-effective way to develop a 

computational drug repositioning approach, which 

predicts potential known drugs targeting RNA-MRs in 

NBL [13]. These drugs encompass potential enzyme 

inhibitor, reader antagonists, and inhibitors of down-

stream or upstream effectors. 

 

Many commonly used traditional drug databases, such 

as DrugBank, ChEMBL, and ZINC, are developed to 

predict potential drug–target associations on a large 

scale. Data for these databases come from the ‘one 

molecule-one target-one disease’ paradigm, which 

identify effective compounds that affect specific 

proteins [14]. However, the major limiting factor is that 

pharmaceuticals are designed to target individual factors 

in a disease system, but complex diseases are multi-

factorial in nature and vulnerable at multiple attacks. 

Thus, in this study, we use a state-of-the-art 

computational omics proximity strategy [15], which is 

recently developed for drug repositioning. We integrate 

the “omics” data at transcriptional and proteomic levels, 

which are obtained by L1000 platform and liquid 

chromatography-mass spectrometry, respectively. Due 

to a high degree of statistical dependencies between 

gene expression, the L1000 technology uses a 

computational model for 978 landmark genes to capture 

most of the information contained within the entire 

transcriptome [16]. Many databases and web servers are 

developed based on data obtained by L1000 technology, 

such as Connectivity Map (CMap) and L1000 fireworks 

display (L1000FWD) databases. L1000FWD provides 

interactive visualization of L1000 profiles of 12716 

genes from 20449 compounds in 68 cell lines [17]. It 

supplied transcriptome changes for single compound 

only. Meanwhile, CMap provides L1000 profiles of 

12328 genes from 42,080 perturbagens (19,811 small 

molecule compounds, 18,493 shRNAs, 3,462 cDNAs, 

and 314 biologics) in 77 cell lines [16]. Besides 

transcriptome changes, CMap integrates perturbagen-

induced proteomics data regarding phosphorylation 

changes (P100) and histone modifications (GCP) [15]. 

Therefore, CMap facilitates the overall functional 

mapping, whereas limits query input for optimization. 

Here we query both CMap and L1000FWD to obtain an 

optimized global profile of the drug perturbation. 

However, there is a main technical limitation for this 

study. Data in CMap and L1000FWD are generated in 

cell lines, which leads a possible different from that in 

clinic. 

 

Here, by focusing directly on human data, we firstly used 

a series of computational models to confirm a  

core prognostic gene set containing RNA-MRs and 

function-related genes. This included: 1) clustering  

in NBL patients according to RNA-MRs’ expression; 2) 

difference evaluation between sub-clusters for trans-

criptome profile, copy number variation (CNV) profile, 

gene function, survival and clinicopathology; 3) 

prognostic values of RNA-MRs and their downstream or 

upstream related genes. Then we calculated omics 

proximity between core prognostic gene set and data in 

L100FWD and CMap. This included: 1) reasonability 

evaluation of core prognostic gene set as a reduced 

representation of differentially expressed genes (DEGs); 

2) drug candidates in CMap and L1000 FWD via 

similarity query for core prognostic gene set; 3) 
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proteomic profiles and chemical structure 

characteristics of drug candidates; 4) drug response 

biomarker network for confirmation signal or 

combination repurposing of drug candidates. Finally, we 

performed biological experiments to confirm 7 predicted 

drug candidates. Further, omics proximity strategy could 

also be used for predicting drug candidates for treating 

other diseases. 

 

RESULTS 
 

Current RNA-seq sample and CNV sample was 

suitable for information retrieval in NBL patients 
 

We used a ‘NBL severity signature—target discovery—

drug discovery—drug response biomarker’ process to 

predict repositioning drug (Figure 1A). We collected a list 

of 20 RNA-MRs regarding differentiation of neural 

progenitor cells and neurological diseases (Figure 1B), 

which had functional relationship (Figure 1C). The 

contributions of 20 RNA-MRs on NBL severity signature 

was studied as Figure 1D. 

 

The age, International Neuroblastoma Staging System 

(INSS) stage, MYCN gene amplification, DNA ploidy, 

histology, MKI (mitosis karyorrhexis index), and 

Children Oncology Group (COG) risk score were 

commonly used as prognostic indexes in clinic for 

evaluating NBL severity. Three datasets were retrieved 

from Therapeutically Applicable Research to Generate 

Effective Treatments (TARGET) program and The 

Cancer Genome Atlas (TCGA) network: (1) the clinical 

dataset containing clinicopathological information of 

834 NBL patients; (2) the RNA-seq dataset containing 

transcriptome data and clinicopathological information 

of 122 NBL patients, and (3) the CNV dataset 

containing copy number variation data (obtained by 

whole genome sequencing) and clinicopathological 

 

 
 

Figure 1. Summary for schematic diagram and RNA modification regulators (RNA-MRs) in NBL. (A) The schematic diagram of 
target mining and drug screening in this study. (B) A schematic view of location and types of predominant RNA modification. W: writer 
(methyltransferase), R: reader (RNA-binding protein), E: eraser (demethylase). TRDMT1: formerly DNMT2. (C) The protein interaction 
network among RNA-MRs using STRING analysis. KIAA1429: VIRMA. (D) The detailed schematic diagram for determination of NBL severity 
signature. 
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information of 78 NBL patients (Supplementary Figure 

1D). To test the reproducibility of patients with  

RNA-seq/CNV data for overall NBL patients, 

clinicopathological information and their association 

with overall survival for 3 datasets is compared. 

Compared with total patients, RNA-seq dataset 

contained older patients with higher mortality, COG 

risks, unfavorable histology, and advanced INSS stage, 

while CNV dataset contained patients with more 

significantly amplification of MYCN gene, (Table 1, 

P<0.05). These indexes showed similar prognostic 

patterns among three groups (Supplementary Figure 

1A–1C). Information retrieval from RNA-seq and CNV 

data was thus suitable for NBL patients. 

 

Differenced expression of RNA-MRs defined two NBL 

clusters with different survival and clinicopathology 
 

Twenty RNA-MRs had strong correlation at RNA 

expression level in NBL patients (Figure 2A). Thus, they 

shared similar functions in NBL disease course according 

to the ‘Guilt-by-Association’ principle [18]. The k-means 

clustering was a most commonly used centroid model in 

cancer study to detect subtypes, which was useful for 

prognosis prediction and personalized treatments [19]. As 

shown in Supplementary Figure 2A, RNA-seq samples 

could be clustered into 2~5 sub-clusters, with clustering 

stability increasing from k = 2 to 10. The performance of 

2/3/4/5-cluster were quantified using adjusted Rand index 

(ARI), which evaluated the similarity between the 

resulting partition and the gold standard partition [20]. 

Here, two survival state (alive or dead) were assumed to 

be gold standard partition, and ARI were 

0.136/0.076/0.086/0.059 for 2/3/4/5-cluster. Interestingly, 

the overall clustering performance for 2-cluster was high 

while the clustering stability was relatively low, 

compared with 3/4/5-cluster. This showed that a simple 

classification problem is not necessarily an easy 

clustering problem. Meanwhile, cluster1 in 2-cluster 

seemed to have a more significantly poor prognosis (P= 

8.825×10-6 vs. 9.028×10-4/1.485×10-4/6.387×10-4 in 

3/4/5-cluster), and a clear distinct transcriptional land-

scape in 2-cluster could be seen using principal 

components analysis (PCA) (Figure 2B, 2C and 

Supplementary Figure 2B). Thus, we chose 2-cluster as 

representative classification for NBL severity. As shown 

in Figure 2D, cluster1 showed upregulated A-I editing in 

tRNA modification, m5C, hm5C, and m6A, together 

with downregulated A-I editing in mRNA modification 

(P<0.01). And cluster1 was also significantly correlated 

with higher COG risks, higher MKI, unfavorable 

histology, MYCN gene amplification and advanced INSS 

stage (P < 0.05, Table 2).  

 

These results showed that dysregulated expression of 

RNA-MRs strongly reflected the changes of total 

transcriptome, and the disease severity as well. 

Dysregulated RNA-MRs predicted poor patient 

prognosis, independently of other prognostic markers 

such as MYCN amplification status, age at the time of 

diagnosis, and disease stage. 

 

CNVs of RNA-MRs were associated with their 

expression 
 

CNV samples belonging to cluster1 was also 

significantly correlated with higher COG risks, higher 

MKI, unfavorable histology, and advanced INSS stage 

(P < 0.0001, Figure 2E and Table 2). 

 

We observed high CNVs of RNA-MRs in genome level 

of NBL. In detail, the m5C “reader” ALYREF had the 

highest frequency of CNV events (85%), followed by 

the m6A “eraser” ALKBH5 (22%), both of which were 

located in chromosome 17 (Figure 2E and 3A). The 

amplification of ALYREF was the most frequent 

alteration in cluster1, and the simultaneous gain of 

ALYREF and ALKBH5 ranked first in cluster2, 

implying the importance of CNVs on dysregulated 

RNA modification network and NBL severity. 

 

The effects of CNVs of RNA-MRs on their mRNA 

expression were further confirmed. Results showed that 

copy number gain or amplification were related to 

higher mRNA expression, while deletion resulted in a 

decline of mRNA expression (Figure 3B). CNVs in 

drug targets may change their abundance and drug-

binding pocket of receptors [21], thus the high 

frequency of CNVs for RNA-MRs here made inhibitors 

for their enzymatic activity and antagonists for reader 

proteins more easily to be resistance. 

 

Differences of functional annotation in two NBL 

groups 

 

The above findings suggested that the clustering NBL 

according to gene expression of RNA-MRs was closely 

correlated to the malignancy of NBL. Then DEGs and 

functional differences between groups were evaluated. 

Altogether, 959 and 1154 genes were respectively 

upregulated and downregulated significantly (log2 (fold 

change) >1 or <-1, P < 0.05 and the false discovery rate 

(FDR) <0.05) in cluster1, which showed more severe 

disease course. In cluster1, DEGs enriching in 

biological process (BP) of GO (gene ontology) were 

predominantly associated with malignancy-related 

biological processes, including cell proliferation, 

extracellular matrix organization, angiogenesis, and 

migration (Figure 4A). The DEGs in GO cellular 

component (CC) were enriched in chromosome part, 

cytoplasmic membrane and extracellular matrix (Figure 

4B). And DEGs in GO molecular function (MF) were 
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Table 1. Clinicopathological features of patients in this study. 

  
Clinical Sample RNA-seq Sample CNV Sample 

Number Percentage Number Percentage P value Number Percentage P value 

Total 
 

834 100.00% 122 100.00% 
 

78 100.00% 
 

Age (years) >10 18 2.16% 4 3.28% 0.004 2 2.56% 0.285 

 
>5 71 8.51% 21 17.21% 

 
15 19.23% 

 

 
>3 199 23.86% 33 27.05% 

 
19 24.36% 

 

 
>2 170 20.38% 22 18.03% 

 
11 14.10% 

 

 
>1 164 19.66% 19 15.57% 

 
9 11.54% 

 

 
≤1 212 25.42% 23 18.85% 

 
22 28.21% 

 
Gender female 357 42.81% 47 38.52% 0.372 28 35.90% 0.281 

 
male 477 57.19% 75 61.48% 

 
50 64.10% 

 
Fustat alive 557 66.79% 65 53.28% 0.003 50 64.10% 0.294 

 
dead 277 33.21% 57 46.72% 

 
28 35.90% 

 
Futime (years) <=3 246 29.50% 44 36.07% 0.614 20 25.64% 0.545 

 
<=5 215 25.78% 21 17.21% 

 
15 19.23% 

 

 
<=10 311 37.29% 48 39.34% 

 
40 51.28% 

 

 
>10 62 7.43% 9 7.38% 

 
3 3.85% 

 
INSS stage1 80 9.59% 0 0.00% <0.001 0 0.00% 0.132 

 
stage2 58 6.95% 1 0.82% 

 
1 1.28% 

 

 
stage3 86 10.31% 6 4.92% 

 
6 7.69% 

 

 
stage4 561 67.27% 97 79.51% 

 
54 69.23% 

 

 
stage4s 49 5.88% 18 14.75% 

 
17 21.79% 

 
COG Low 152 18.23% 12 9.84% 0.006 11 14.10% 0.541 

 
Intermediate 105 12.59% 11 9.02% 

 
11 14.10% 

 

 
High 577 69.18% 99 81.15% 

 
56 71.79% 

 
MYCN Not Amplified 597 71.58% 94 77.05% 0.208 65 83.33% 0.033 

 
Amplified 237 28.42% 28 22.95% 

 
13 16.67% 

 
Ploidy Hyperdiploid 536 64.27% 69 56.56% 0.099 49 62.82% 0.806 

 
Diploid 298 35.73% 53 43.44% 

 
29 37.18% 

 
Histology Favorable 253 30.34% 25 20.49% 0.025 22 28.21% 0.703 

 
Unfavorable 581 69.66% 97 79.51% 

 
56 71.79% 

 
Grade Differentiating 54 6.47% 10 8.20% 0.478 4 5.13% 0.81 

 
Undifferentiated 780 93.53% 112 91.80% 

 
74 94.87% 

 
MKI Low 338 40.53% 48 39.34% 0.844 30 38.46% 0.906 

 
Intermediate 251 30.10% 42 34.43% 

 
26 33.33% 

 

 
High 245 29.38% 32 26.23% 

 
22 28.21% 

 

Mann-Whitney U test was used for comparison between RNA-seq and total clinical samples, as well as between CNV and 
total clinical samples. 
Undifferentiated: Undifferentiated or Poorly Differentiated. 
 

associated with chromatin binding, catalytic activity on 

DNA, and ATPase activity (Figure 4C). Similar 

changes in corresponding signaling pathways were also 

observed in Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis (Figure 4D). 

 

Furthermore, gene set enrichment analysis (GSEA) 

revealed that the malignant hallmarks of tumors, 

including MYC targets (NES=2.13, nominal P < 

0.001), E2F targets (NES=2.09, nominal P < 0.001), 

unfolded protein response (NES=1.92, nominal P = 

0.002) and MTORC1 signaling (NES=1.64, nominal 

P=0.028), were significantly associated with cluster1 

(Figure 4E). 

 

All of these findings indicated that the dysregulated 

expression of RNA-MRs was closely correlated with 

the malignancy of NBL. 

 

Mapping the NBL signature onto drug-perturbed 

transcriptome profiles in L1000FWD 
 

To evaluate core prognostic gene set as a reduced 

representation of DEGs, the top 50 records with opposed 
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expression profiles of DEGs and core prognostic gene 

set were collected (Supplementary Figure 3). These 

records had similarity scores ranging from 0.090 to 

0.141, and from 0.303 to 0.483 (P<0.0001), respectively 

(Supplementary Tables 1 and 2). Among them 40 

records for 32 drugs were overlapped for two queries, 

implying the representativeness of core prognostic gene 

set for DEGs and disease severity (Figure 5B). And 11 

overlapped drugs were previously reported in NBL cells 

or clinic. Targets for top 50records were mainly PI3K, 

topoisomerase, mTOR, estrogen receptor, and CDK. 

Besides that, reversed expression of RNA-MRs was 

queried in L1000FWD. Topoisomerase inhibitors, such 

as amsacrine and idarubicin, were top records  

with relatively high similarity scores (Supplementary 

Table 3). 

 

Mapping the NBL signature onto drug-perturbed 

transcriptome profiles in CMap 
 

The opposed expression profile of core prognostic gene 

set was queried in CMap. There were 157 compounds 

with tau> 90 (Supplementary Table 4). Together with 

Perturbagen Class (PCL) analysis, these compounds 

 

 
 

Figure 2. Differences of gene expression and CNV profile, survival and clinicopathological features in two groups defined 
by RNA modification regulators (RNA-MRs). (A) Spearman correlation analysis of RNA-MRs. Red: positive relation of gene 
expression between two genes; blue: negative relation. Color scale: the degree of relation. Cross (×): P>0.05 (no significant difference). 
(B) Kaplan–Meier overall survival curves for NBL patients in two groups. Ordinal: the percentage of survival; abscissa: survival years. "+" 
marks in line: censoring samples. (C) Principal component analysis of the transcriptome expression profile in the space of the first two 
principal components (Comp.). (D) Heatmap comparison of RNA-MRs for two groups. Horizontal color stripe above heatmap: one 
clinicopathological feature per line. Vertical color stripes: different methylation type regulated by each RNA-MR. Heatmap: expression 
differences of RNA-MRs (gradient color from green to red in each line showed downregulated to upregulated levels of each gene). *P < 
0.05, **P < 0.01, and ***P < 0.001 between Cluster1 and Cluster2. (E) The OncoPrint of CNV pattern in two groups. Blue dot: deletion; 
green dot: gain; red dot: amplification. The upper barplot: the number of CNVs per patient; the right barplot: the number of genetic 
mutations per gene (corresponding rate was at left); the bottom color stripe: clinicopathological features for each patient.  
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Table 2. Clinicolpathological features are different between two groups in RNA-seq and CNV dataset. 

  
RNA-seq Sample CNV Sample 

cluster1 cluster2 P value cluster1 cluster2 P value 

Total 
 

83 39 
 

53 25 
 

INSS stage1 0 0 0.0001 0 0 9.41E-05 

 
stage2 1 0 

 
1 0 

 

 
stage3 2 4 

 
2 4 

 

 
stage4 75 22 

 
45 9 

 

 
stage4s 5 13 

 
5 12 

 
COG Low 2 10 3.47E-06 2 9 4.01E-05 

 
Intermediate 5 6 

 
5 6 

 

 
High 76 23 

 
46 10 

 
MYCN Not Amplified 59 35 0.0399 42 23 0.2779 

 
Amplified 24 4 

 
11 2 

 
Histology Favorable 8 17 4.27E-05 7 15 5.92E-05 

 
Unfavorable 75 22 

 
46 10 

 
MKI Low 23 25 0.0004 14 16 0.0026 

 
Intermediate 32 10 

 
19 7 

 

 
High 28 4 

 
20 2 

 
 

were enriched in HDAC inhibitor, PI3K inhibitor, 

mTOR inhibitor, topoisomerase inhibitor, and CDK 

inhibitor (Figure 5B and Supplementary Table 5). 

 

Overlapped drugs in CMap and L1000FWD 

 

There were totally 88 potential drugs selected from 

CMap or L1000FWD for further analysis (Figure 5B). 

Seven of them were obtained in both CMap and 

L1000FWD query, namely, palbociclib, wortmannin, 

FCCP, idarubicin, aminopurvalanol-a, 7b-cis, and WZ-

3146 (Figure 6A). They belonged to the following target 

classes: CDK, PI3K, topoisomerase, EGFR, mTOR, 

exportin, and mitochondrial oxidative phosphorylation 

uncoupler (Supplementary Table 6). Palbociclib, 

wortmannin, FCCP, WZ-3146, and idarubicin were

 

 
 

Figure 3. Summary of CNV region and correlation between CNV pattern and gene expression. (A) Circos plot illustrating CNV 
regions for RNA modification regulators (RNA-MRs). Outermost circle: chromosomes; inner circle: the main type and location of CNVs (red: 
gain, blue: deletion). (B) Correlation between CNV patterns and expression levels. Ordinal: the relative gene expression levels; abscissa: CNV 
types. * P < 0.05, ** P < 0.01, and *** P < 0.001 among different CNV types. 
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reported to inhibit cell cycle and vascularization in 

clinic or neuroblastoma cells, which meant our results 

are convinced [22, 23]. Purvalanol A was used in clinic 

for NBL [24]. Aminopurvalanol A, a homolog of 

purvalanol a, reversed core prognostic gene expression, 

seemed to be a choice for NBL via targeting CDK [25]. 

Exportin 1 (XPO1) was a nuclear receptor exporter 

involved in the active transport of transcription factors, 

tumor suppressor proteins, cell-cycle regulators and 

RNA molecules [26]. The 7b-cis, inhibitor of XPO1, 

showed significant therapy potential in both CMap and 

L1000FWD, was worth for further study [27]. 

 

The MOA and structure analysis for potential 

inhibitor classes 

 

Among 88 potential predicted drugs, HDAC inhibitors 

were the largest class. There was a well-admitted 

pharmacophore model illustrating the structure of 

HDAC inhibitors (Figure 6B), which consisted of a zinc 

binding group (ZBG), a linker chain mimicking the 

lysine side chain, a connecting unit, and a terminal 

functional “cap” group interacting with the external 

surface [28]. The ZBGs of most HDAC inhibitors 

predicted here were hydroxamic acids. 

 

 
 

Figure 4. GO, KEGG pathway enrichment analysis and the gene set enrichment analysis (GSEA) of differentially expressed 
genes (DEGs) in two groups. (A) Biological process of GO analysis; (B) Cellular component of GO analysis; (C) Molecular function of GO 
analysis; (D) KEGG pathways analysis. Y-axis: name of enrichment item; X-axis: gene count in each item (positive value for cluster1 and 
negative for cluster2); gradient color of the bar chart: -Log2_Pvalue (values >0 for -Log2_Pvalue in Cluster1, and values <0 for -(-Log2_Pvalue) 
in Cluster2). (E) GSEA enrichment plots in HALLMARK datasets from left to right: MYC targets, E2F targets, unfolded protein response, and 
MTORC1 signaling. In each plot, top panels: enrichment score (ES) for each gene; bottom panels: the ranking metrics of each gene; Y-axis: 
ranking metric values; X-axis: ranks for all genes. NES: normalized ES. Norm P (nominal p value): the statistical significance of the observed ES 
for this plot. FDR q value: a significantly enriched enrichment plot if q< 0.25. 
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DNA topoisomerase inhibitors were one of the largest 

predicted classes, which adjusted DNA’s topological 

structure by cutting, transferring and re-connecting with 

DNA chains [29]. Here inhibitors for both 

Topoisomerase I and Topoisomerase II were obtained, 

which were mainly camptothecin derivatives and 

anthracyclines (Figure 6C), respectively.  

 

Protein kinases (PKs) were important for signal 

transduction from extracellular to intracellular, 

signaling cascade and finally cell response, such as 

cell proliferation, differentiation, and inflammatory 

[30]. The preserved hinge region of ATP binding site 

[31] in all kinases led to the structural similarity of 

kinase inhibitors (Figure 6D). Inhibitors usually 

contained a hinge-binding motif, such as a morpho-

linyl or purinyl substituent, to occupy the adenine 

binding site of ATP. Hydrophobic pockets were 

commonly occupied by tolyl group. Allosteric pockets 

were commonly occupied by terminal piperazinyl-

phenyl group, or long-chain such as trifluoromethyl 

group, which had a hydrophilic group exposing to the 

solvent region [32]. For kinase consists of 

“specificity” pocket, such as P-loop in JAK, the 

terminal group extended into a cleft underneath the P-

loop in the N-lobe [33].  

Two kinds of PK inhibitors, serine-threonine kinase 

inhibitors and tyrosine kinase inhibitors, were mainly 

predicted here. There were four kinds of serine-

threonine kinase inhibitors. The mTOR inhibitors were 

mainly macrolides, morpholino-pyrimidine-phenyl 

derivatives, and quinoline-imidazoquinoline-phenyl 

derivatives. The PI3K inhibitors were commonly dual 

inhibitors and shared similar structures with mTOR 

inhibitors. The CDKs inhibitors were mainly 

phenylamino-purine derivatives. Aurora kinase inhibi-

tors were commonly phenylamino-pyrimidine-phenyl 

derivatives. There were one kind of non-receptor 

tyrosine kinase (JAK) inhibitor and three kinds of 

receptor tyrosine kinase inhibitors (FLT3, EGFR and 

IGF-1) predicted here. JAK inhibitors were triterpenoid 

and indolone derivatives. FLT3 inhibitors were 

pyrimidine and staurosporine derivatives. EGFR 

inhibitors were pyrimidine, quinoline, and quinazoline 

derivatives. IGF-1 inhibitors were benzimidazole and 

pyrrolotriazine derivatives (Supplementary Table 6). 

 

Proteomic profile of drugs targeting different targets 

in CMap 
 

Fifteen compounds with tau> 95 could be find in P100 

and GCP Proteomics Connectivity Hubs, and their 

 

 
 

Figure 5. Detailed chart for therapeutic targets discovery (A) and drug discovery (B). (A) The prognostic potential of differentially expressed 
genes (DEGs) and RNA modification regulators (RNA-MRs) in cluster1 (severe NBL) were analyzed. Genes correlated to survival formed 
prognostic DEGs set and prognostic RNA-MRs set, respectively. Then function-related prognostic DEGs were identified from prognostic DEGs 
as genes positively related to prognostic RNA-MRs. The function-related prognostic DEGs and prognostic RNA-MRs together formed core 
prognostic gene set. (B) The reversed similarities of gene expression pattern in DEGs and core prognostic gene set were calculated in 
L1000FWD respectively. The same records in two searches were integrated according to target type. The reversed similarities of core 
prognostic gene set only was calculated in CMap. Then inhibitors from L1000FWD and CMap were summarized according to target type. PR: 
progesterone receptor; SFU: sodium fluorescein uptake; MR: Mineralocorticoid receptor; MOP: Mitochondrial oxidative phosphorylation; 
RNAP: RNA polymerase. 
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genomic and proteomic connectivity were shown as 

similarity matrix (Figure 7A–7C). There were strong 

expression connections between CDK inhibitors, 

MTOR inhibitors and topoisomerase inhibitors, and 

negative connections between them and HDAC 

inhibitors in genomic and proteomic perturbed profiles. 

 

The relationship between targets, function-related 

prognostic genes and RNA modification regulators 

 

The drug-perturbed profiles at gene and protein levels 

were clustered into two groups by their connections, 

which implied there were not only one potential role 

for RNA-MRs. To confirm this hypothesis, we 

construct network between drugs, targets, prognostic 

genes and RNA-MRs (Figure 7D, 7E). Figure 7D 

showed these genes were clustered into two groups. 

One cluster was mainly regulated by TET2 and 

enriched in JAK and PI3K signaling pathways. The 

other cluster was mainly regulated by 

NSUN2/ALYREF/ADAR regulators, and enriched in 

cell cycle and DNA replication process. In Figure 7E, 

sub-cluster at left was genes enriched in CDK, 

topoisomerase, MTOR related signaling. They had 

connections with ALYREF, NSUN2, and ADARB1 

via PLK1, BIRC5, CDK1, AURKA. These genes were 

both drug targets and prognostic genes, which had 

closely relationship with RNA-MRs. The other sub-

cluster at right showed genes enriched in HDAC, JAK, 

MEK related signaling. They had connections with 

TET2 via JAK2 and FLT3. Thus, there were two 

enriched functions of core prognostic genes, and 

combined use of different inhibitors may be better to 

reverse expression profile and block disease course. 

 

 
 

Figure 6. Structures for different kinds of inhibitors. (A) The structure of 7 overlapped drugs in CMap and L1000FWD. (B) Core 
structures for HDAC inhibitors. (C) Core structures for topoisomerase inhibitors. (D) Core structures for kinase inhibitors. 
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Experimental validation of the predicted drugs in 

neuroblastoma SH-SY5Y cells 

 

To experimentally validate the antitumor activities of 

predicted drugs, as well as their possible regulatory 

effects on RNA-MRs, we tested 5 of the 7 overlapped 

drugs in CMap and L1000FWD. Treatments with drugs 

for 24h inhibited cellular viability of SH-SY5Y cells in 

a dose-dependent manner (Figure 8A–8E). The IC50 

were 1.26×10-4, 2.65×10-7, 6.39×10-6, 9.13×10-7, 

1.92×10-6 mol/L for purvalanol A, idarubicin, WZ3146, 

AZD-8055, TG-101348, respectively. These drugs 

induced decreased expressions of ALYREF, ADAT1, 

ADAT3, and NSUN2. They also induced increased 

expressions of ALKBH5 and TET2 (Figure 8F). The 

validated 5 drugs had no previous report on regulation 

of RNA-MRs. Here the method was a relatively high 

accuracy model to predict inhibitors for RNA-MRs. 

 

DISCUSSION 
 

Recently RNA-MRs emerged as important regulator in 

cancer [8]. In this study, it was found that the core 

prognostic gene set, consisted of RNA-MRs and their 

function-related genes, characterized NBL severity 

signature. They were rationally selected as potential 

drug target set for NBL. Then a promising ‘omics 

proximity strategy’ was used to analyze potential 

repositioning drugs for the target set. Inhibitors of 

HDAC, topoisomerase and CDK blocked upstream 

effectors of RNA modification, while mTOR and PI3K 

inhibitors blocked downstream effectors. HDAC 

inhibitors shared distinct drug-perturbed proteomic 

profiles with other kinds of inhibitors, which made us to 

conclude drug combination as an effective treatment. 

Finally, 5 out of 7 predicted drugs were experimentally 

confirmed. They had significantly inhibitory effects on 

neuroblastoma cells and regulated gene expressions of 

prognostic RNA-MRs. 

 

The definition of drug target was important for linking 

drug response to genetic variation, understanding 

stratified clinical efficacy and safety, and predicting 

drug utility in patient subgroups [34]. Traditionally 

drugs were designed to target a single biological entity, 

usually a protein (the so-called “on-target”), with high 

selectivity to avoid mis-targeting (“off-targets”) [35]. 

However, the complexity of causative factors made 

 

 
 

Figure 7. The relationships among drugs, core prognostic genes, and targets. (A–C) The similarity matrix of genomic, proteomic 
connectivity for compounds with tau >95 in CMap (A), GCP (B) and P100 (C) database. The map was sorted with the strongest perturbagen 
connections at the top in red. (D) Schematic representation of the association between RNA modification regulators (RNA-MRs), function-
related prognostic DEGs and target of compounds with tau>95. Pink squares: RNA-MRs; green cycles: targets; blue diamond: prognostic 
DEGs; green diamond: prognostic genes as targets. (E) Schematic representation of targets with a direction relationship with RNA-MRs, 
together with corresponding inhibitors. 
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such single-target drugs inadequate to achieve a 

therapeutic effect. Further, oncology was a therapeutic 

area which needed a substantial proportion of drug 

discovery efforts on the rational selection of mechanistic 

cancer drivers to be targeted [36]. Many of cancer drivers 

were newly discovered cancer-associated genes with little 

historical biological investigation and thus need a lot of 

time to yield useful targets for drug discovery [34]. 

Therefore, strategy for target identification and drug 

prediction here gave consideration for above issues, 

which also constituted the success factors of the strategy 

here. First, the prognostic gene set was identified based 

on transcriptome of NBL patients. The gene set was a 

rational reduced representation of DEGs, genes of which 

had closely functional relationship and co-expression 

patterns. Thus, the strategy here shortened the 

identification time of a novel clinically validated target 

set. Secondly, omics proximity strategy was used to 

predict drugs with reversed gene expressions of target set, 

which facilitated discovery of multi-target drugs. More 

importantly, we not only developed computational 

models to quantitatively identify potential targets and 

drugs, but also implemented experimental validations. 

Furthermore, the strategy here had a reliable and robust 

performance in all the validation schemas, thus it could 

be effectively applied to drugs prediction for other 

disease. 

 

However, some limitations of this study should be 

mentioned. First, deep sequencing technologies would 

rapidly become cheaper while providing more accuracy 

and comprehensiveness. The performance of target 

identification method here could be further improved by 

more accuracy transcriptome data. Secondly, a more 

reliable measure of drug similarity would improve drug 

prediction. To do this, more omics data, including 

genome, transcriptome, proteomics and metabolomics, 

should be integrated to measure drug similarity. Besides, 

miRNAs regulated RNA-MRs and were possible targets 

for compounds. Computed models like HSSMMA or 

SNMFSMMA [37, 38] could be integrated to explain 

potential MOA for predicted drugs. Thirdly, all 

computational and experimental data were based on in 

vitro study, in vivo study could give more comprehensive 

data for further clinical trials. Finally, MOA of potential 

drug combinations and their experimental confirmation 

could be considered for the integrity of drug prediction. 

In future work, we will develop new tools and methods to 

overcome the current limitations. 
 

RNA modification had important effects on many 

neuropsychiatric disorders [12]. The overexpressed 

m6A modification was a prognostic indicator for 

glioblastoma [39]. Genetic defects in m5C were linked 

to intellectual disability via regulating tRNA [40]. Here 

overexpressed m6A and m5C regulators were also 

closely associated with the malignancy of NBL, which 

confirmed their important role in tumor of peripheral 

nerve. RNA modification often occurred on cell-state-

specific key regulatory transcripts for the gene-region- 

 

 
 

Figure 8. The cellular viability and dysregulation of RNA modification regulators (RNA-MRs) in human neuroblastoma cell 
line SH-SY5Y cells. (A–E) Concentration-dependent inhibition of cellular viability by purvalanol A, idarubicin, WZ3146, AZD-8055, TG-
101348 (10-8~10-5 mol/L) at 24 h, measured by CCK8 assay. (F) The expression levels of ALYREF, ADAT1, ADAT3, NSUN2, ALKBH5, TET2 
detected by quantitative real-time PCR. *p < 0.05, **p < 0.01 versus control group. 
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specific modifications [41]. Recent studies showed 

m6A modification regulated most aspects of RNA 

processing [8], and was regulated by miRNAs in neural 

stem cells [42, 43]. The deposition of m5C to tRNA 

stabilized RNA secondary structure and affected 

translational fidelity [44]. Here in severe NBL with 

significantly dysregulated RNA-MRs in cluster1, DEGs 

were mainly enriched in genetic information process 

(i.e., cell cycle and DNA replication), and glycolysis for 

energy supply (mTOR and PI3K-AKT signaling) [45]. 

Therefore RNA-MRs probably regulated the above 

process. Considering prognostic RNA-MRs had little 

structure information to characterize the druggability 

sites, inhibitors of upstream or downstream effectors of 

RNA-MRs may be potential multi-targets drugs. 

 

NBL was characterized by frequent CNVs, such as 

chromosome 17 gain [1]. High-risk NBL contained 

segmental chromosomal aberrations, while low-risk 

NBL often presented with whole chromosomal gains 

[3]. Here in cluster1, ALYREF (Reader) amplified 

frequently, whereas simultaneous gain of ALYREF and 

ALKBH5 (Earser) ranked first in cluster2. Meanwhile 

aberrant expression of prognostic RNA-MRs was highly 

associated with their CNVs. Therefore, inhibitors 

regulating DNA methylation, histone modifications and 

RNA-associated silencing were good choices to block 

RNA-MRs via upstream effectors and avoid “off-target” 

induced by CNVs. 

 

The computational omics proximity by query omics-

based drug repurposing database could identify multi-

target drugs reversing the omics profile induced by a 

biological state of interest [16]. Here the core 

prognostic gene set reproduced most significant features 

of total DEGs, namely, 80% drug overlap in 

L1000FWD database. There were 157 potential drugs 

predicted in CMap database, and 88 merging drugs 

targeting 13 kinds of targets in CMap and L1000FWD. 

Results reflected the following findings: a) biological 

functions related to RNA-MRs regulated overall DEG 

profile, and thus core prognostic genes supported 

possibility to find drugs to reverse overall DEG profile; 

b) the core prognostic genes were potential therapeutic 

targets for NBL; c) topoisomerase and mTOR inhibitors 

were studied well. Here we successfully rediscovered 

these known drugs and targets without using any prior 

drug information. Therefore, our method could give 

convinced identification of drugs with high therapy 

potential. The predicted CDK, PI3K, and HDAC 

inhibitors were promising, though with limited previous 

report for NBL therapy. 

 

Here inhibitors of HDAC shared distinct drug-perturbed 

proteomic profile with kinase inhibitors. This was in 

line with previous studies, that combination of CDK 

and HDAC inhibitor could synergistically reduce 

oncogene expression [1]. Drug combinations overcame 

drug resistance and off-target effects, increased 

treatment efficacy and decrease drug dosage to avoid 

toxicity [46]. In Figure 7D, topoisomerase and exportin 

targeted were related to PLK, CDK, and aurora kinase. 

ALYREF, NSUN2, and ADARB1 were their 

therapeutic targets. HDAC and CDKs were related to 

RNA polymerase, and ALYREF was their therapeutic 

targets. TET2 regulated JAK and FLT3 and further 

regulating PI3K and MAPK signaling. This confirmed 

the cross-talk between RNA modifications provided an 

exquisite level of functional control [8, 12]. Two or 

more targets inhibiting RNA modification network 

together were more potential strategy for NBL therapy. 

 

To summarize, this study provides an unbiased 

identification of drugs that can target NBL. We first 

compile the core prognostic gene set of RNA-MRs and 

their function-related prognostic genes. This set 

characterizes NBL severity signature. Drugs are 

collected and analyzed, which alter the expression of 

this set. Potential drugs are mainly HDAC, mTOR, 

PI3K, topoisomerase, and CDK inhibitors. Inhibitors of 

HDAC, topoisomerase and CDK block upstream 

effectors of RNA modification, while mTOR and PI3K 

inhibitors block downstream effectors. On the basis of 

the literature research, some of the drugs identified here 

were effective in neuroblastoma cells or NBL patients. 

Our experimental data also confirm the regulation 

effects of predicting drugs on RNA-MRs. We hope the 

information presented in this study will guide research 

community to further test and identify inhibitors for 

NBL in humans. 

 

MATERIALS AND METHODS 
 

Evaluation of the role of RNA-MRs in NBL disease 

course 
 

The mRNA expression data were calculated from 

HTSeq-FPKM release of RNA-seq data. The log scale 

was applied for analyzing. The interaction and correlation 

among RNA-MRs were firstly analyzed by STRING 

(http://www.string-db.org/) and spearman correlation 

analysis, respectively. Consensus clustering was a 

popular algorithm for unsupervised classing in cancer 

research [47]. RNA-seq sample was then clustered into 

two groups (cluster1 and cluster2) by analyzing 

expression of RNA-MRs with “ConsensusClusterPlus” 

(K-means, 50 iterations, resample rate of 80%, and 

Pearson correlation) for R v3.6.0. 
 

The Kaplan–Meier method with a two-sided log-rank 

test was used to compare the overall survival of the 

patients in two groups. The transcriptome differences 

http://www.string-db.org/
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between two groups were analyzed using PCA analysis 

(prcomp function in R). The DEGs between groups 

were calculated using limma in R. The consensus 

expression of RNA-MRs and the distribution of 

clinicopathological features in two groups were shown 

by pheatmap in R. 

 

Evaluation of CNVs for RNA-MRs and its 

relationship with their expression profile 

 

When genes are drug targets, their CNVs affected gene 

expression abundance and protein structure, thus altered 

drug-binding pocket of receptors, therapeutic efficacy 

and safety of drugs [21]. Here CNVs were identified 

using segmentation analysis and GISTIC algorithm. The 

CNV patterns for each patient, as well as corresponding 

clinicopathological features were shown by Complex-

Heatmap in R. The chromosome structure, location of 

CNV were represented using RCircos in R. To evaluate 

effects of CNVs on expressions of RNA-MRs, the 

expression levels were compared using One-way 

ANOVA or t-tests among NBLs with different CNV 

patterns. 

Functional differences in two NBL clusters defined 

by RNA-MRs 

 

To functionally annotate DEGs, GO for BP, MF, and CC, 

together with KEGG pathway analysis were performed 

using the clusterProfiler, org.Hs.eg.db genome-wide 

annotation, and the enrichplot package in R. The top ten 

items were visualized by ggplot2 package. 

 

To investigate the functional difference of whole 

transcriptome between clusters, GSEA (Broad Institute) 

was performed with hallmark gene set (v7.0). Gene sets 

with nominal P-value <0.05, and FDR <0.25 were 

considered to be significantly enriched. 

 

Evaluation of prognostic RNA-MRs 
 

The prognostic values of RNA-MRs were evaluated by 

univariate Cox regression and LASSO analyses (Figure 

9). ADAR, ADARB1, ADAT1, ADAT3, NSUN2, 

ALYREF, TET2, and ALKBH5 were associated with 

survival significantly (P<0.05). Because L1000 high-

throughput gene expression assay directly measured 978

 

 
 

Figure 9. Prognostic RNA modification regulators (RNA-MRs) and their prognostic values. Prognostic RNA-MRs had a P<0.05 in 
univariate Cox regression analyses (A) and LASSO analysis (B, C). The riskScore calculated using prognostic RNA-MRs generated a convinced 
ROC curve (D, E). 
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genes and calculated related 12 000 genes instead of all 

transcriptome, there were only 10 RNA-MRs containing 

in CMap and L1000FWD. And 3 of them were 

prognostic regulators (ADAR, ADARB1, ADAT1), 

most of which were tumor suppressors and unsuitable 

for inhibitor design. Therefore, query by only RNA-

MRs could not get convinced information retrieval of 

drugs targeting RNA-MRs, and this query result was 

used just as a reference. 

 

Preparation a core prognostic gene set for drug-

perturbed expression profile analysis 

 

Because the degree of co-expression was extremely high 

if genes were related to the same function [48], we then 

calculated co-expression correlation coefficient to obtain 

downstream or upstream related genes for prognostic 

RNA-MRs. Firstly, the association between overall 

survival and DEGs was evaluated by univariate Cox 

regression analyses, and 515 DEGs (P < 0.05) from total 

2113 DEGs were considered as prognostic genes. 

Secondly, correlation between prognostic genes and 

prognostic RNA-MRs was evaluated by spearman 

correlation analysis (correlation coefficient >0.5 and 

p<0.001), and 213 genes from 515 DEGs were 

considered as function-related prognostic genes. Finally, 

core prognostic gene set consisted of 213 function-related 

prognostic genes and 8 prognostic RNA-MRs (Figure 5A). 

 

Transcriptome proximity analysis in L1000 FWD 
 

To evaluate the importance of RNA-MRs and their 

downstream or upstream related genes, information 

retrieval of core prognostic gene set was analyzed as a 

reasonable reduced representation of total DEGs. The 

reversed expression profile of total 2113 DEGs and core 

prognostic gene set were used separately to query 

L1000 FWD (http://amp.pharm.mssm.edu/L1000FWD). 

The similarity scores of predicted drugs were given to 

quantify the similarity (i.e. overlap) between the input 

pair of up/down gene sets and the signature up/down 

genes in L1000FWD. Fisher exact test and subsequent 

Benjamini-Hochberg procedure were used to assess the 

statistical significance (P value). Then Z-score (z) was 

calculated for quantifying the deviation of the observed 

rank from the expected rank. The combined score (c) 

was calculated as “c=z∙log10(P)”. Drugs with higher 

similarity scores (ranging from 0 to 1, P<0.05) were 

considered mimicking reversed expression profile of 

total DEGs or core prognostic gene set, and as potential 

therapeutically treatments. 

 

Transcriptome proximity analysis in CMap 
 

The CMap (https://clue.io) was a large-scale 

compendium of functional perturbations (compounds, 

shRNAs, cDNAs, and biologics) coupled to an 

information-rich omics profile, which supplied a 

comprehensive analysis for perturbational class as well. 

However, there was a technical limit for input gene set 

(150 up/down-regulated genes). As a complementary of 

query in L1000FWD, the core prognostic gene set were 

used to query CMap. 

 

The similarity of the query to each CMap signature was 

computed and yielded a rank-ordered list of the 

signatures. Three connectivity score metrics constituted 

a statistical framework to provide a holistic 

quantification of the similarity: (1) a nominal P value 

using the Kolmogorov-Smirnov enrichment statistic; (2) 

a FDR accounting for multiple hypothesis testing; (3) a 

connectivity score (tau) comparing reversed core 

prognostic gene set to perturbagen set (named 

“Touchstone”, TS) via weighted Kolmogorov-Smirnov 

enrichment statistical analysis. A tau>90 was used as 

convinced strong scores. To assess the universal targets 

of drugs, PCL describing compounds with the same 

mechanism of action (MOA) or biological functions 

was used to cluster perturbagens. 

 

Evaluation of merging drugs in CMap and 

L1000FWD 
 

Firstly, structure and MOAs of drugs retrieved from 

both CMap and L1000FWD were analyzed. Then, 

structure and MOAs of drugs were analyzed when they 

shared same targets: 1) targets retrieved from both 

CMap and L1000FWD, or 2) drugs with similarity>0.3 

in L1000FWD, or 3) PCLs with tau>99 or drug count>5 

in CMap. A literature research for these drugs and 

targets were used to query their use in clinic or 

experiment for NBL. 

 

Proteomics proximity analysis in CMap 

 

In CMap, two Proteomics Connectivity Hubs, P100 and 

GCP were queried to evaluate MOA similarities of 

potential drugs (tau>95). Drugs with different targets 

induced different protein change profiles, which 

represented different signaling pathways being affected. 

A similarity matrix of proteomic connectivity in 

available drugs was calculated by Pearson correlation. 

 

Network analysis for inhibitors of downstream or 

upstream effectors 
 

The network analysis was used to analyze relationship 

between drug and targets, as well as between drug 

response biomarkers and prognostic RNA-MRs. All 

targets of drugs (tau>90 in CMap, or merging drugs in 

L1000FWD) were searched in STRING, and their basic 

interaction were downloaded. Interaction between 

http://amp.pharm.mssm.edu/L1000FWD
https://clue.io/


 

www.aging-us.com 19037 AGING 

Table 3. Primers sequences used for Quantitative real-time PCR (Human). 

Gene Primer sequence 

GAPDH forward: 5′-CAAGGCTGTGGGCAAGGTCATC-3′ 

 reverse: 5 ′-GTGTCGCTGTTGAAGTCAGAGGAG-3′ 

AlyREF forward: 5′-CCGACAAGTGGCAGCACGATC-3′ 

 reverse: 5 ′-GCCTCCACCACCACCAAAACC-3′ 

ADAT1 forward: 5′-CCAATCTCACCAGGCATCCACAG-3′ 

 reverse: 5 ′-GGCACTTCCCAATGACCACAGC-3′ 

ADAT3 forward: 5′-CGCCCTGGAGATGCTGCTTTG-3′ 

 reverse: 5 ′-CGCTGGTCACCTGCTTGTCC-3′ 

NSUN2 forward: 5′-GCAGAGACCAGAGAAAGCACACAG-3′ 

 reverse: 5 ′-TCAGCAGCACATTCCGCAACTC-3′ 

ALKBH5 forward: 5′-CGTGTCCGTGTCCTTCTTTAGCG-3′ 

 reverse: 5 ′-CTGACAGGCGATCTGAAGCATAGC-3′ 

TET2 forward: 5′-CGTGGATGAGTTTGGGAGTGTGG-3′ 

 reverse: 5 ′-GCTGTGGTGGCTGCTTCTGTAG-3′ 

 

function-related prognostic genes and RNA-MRs, and 

between RNA-MR themselves, were merged together 

using spearman correlation scores calculated above 

(score>0.5). Cytoscape was used to construct the 

network. 

 

Antitumor bioassay 
 

CCK8 assay 
The human neuroblastoma cell line SH-SY5Y was 

cultured in RMPI 1640 medium containing 15% fetal 

bovine serum (FBS). Cells were seeded into 96-well 

plates (10 000 per well), treated for 24 h with different 

concentration of purvalanol A, idarubicin, WZ3146, 

AZD-8055, TG-101348 (10-8~10-5 mol/L, all purchased 

from Selleck, Shanghai, China). The cells were 

incubated at 37 °C for 2 h with CCK-8 Kit (Dojindo, 

Tokyo, Japan). Medium without cells was incubated 

with CCK8 as blank well. The optical densities (ODs) 

were checked at 450 nm using a microplate reader. The 

inhibition rate was calculated as following: (ODdrug-

ODblank)/(ODcontrol-ODblank) × 100%. 

 

Quantitative real-time PCR 

The mRNA expression of AlyREF, ADAT1, ADAT3, 

NSUN2, ALKBH5, TET2 and GAPDH were detected 

with qRT-PCR. Cells were seeded into 6-well plates 

(300 000 per well), treated with purvalanol A, 

idarubicin, WZ3146, AZD-8055, TG-101348 (5×10-6, 

7×10-8, 5×10-6, 3×10-7, and 5×10-6 mol/L) for 24 h. The 

total RNA was extracted with TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA) and the cDNA was 

reverse transcribed using ReverTra Ace (Toyobo, 

Osaka, Japan). The data were detected using SYBR 

Green PCR Master Mix (Toyobo) by ABI 7500 Fast 

(Applied Biosystems). Relative quantification of mRNA 

ratio of the target gene to GAPDH was calculated using 

the 2−ΔΔCt method. The primers were in Table 3. 

 

Statistical analysis 
 

The chi-square tests were used to compare the 

distribution of gender, age, INSS, MYCN, ploidy, 

histology, grade, MKI, and COG risks. 

 

The association between expression of RNA-MRs and 

clinicopathological characteristics, as well as CNVs and 

clinicopathological characteristics, were analyzed with 

chi-square test or Mann-Whitney U test. 

 

All statistical analyses and figures were conducted 

using R v3.6.0 (https://www.r-project.org/), SPSS 20.0 

(IBM, Chicago, USA) and GraphPad Prism 6.0 

(GraphPad Software, La Jolla, CA, USA). All 

statistical results with a P <0.05 were considered to be 

significant. 

 

Ethics statement and dataset collection 
 

Three datasets, clinical dataset, RNA-seq dataset, and 

CNV dataset were retrieved from TARGET and TCGA 

databases (Supplementary Figure 1D). The data was 

accessed according to open access guidelines where 

written informed consents were obtained in accordance 

with the local institutional review boards. 

Clinicopathological information was summarized in 

Table 1. To evaluate the information retrieval of 

patients with RNA-seq and CNV data for overall NBL 

patients, univariate and multivariate Cox regression 

analyses were performed, and the association between 

clinicopathological factors and overall survival of 

patients in 3 datasets was determined. 

https://www.r-project.org/
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Univariate (left) and multivariate Cox (right) regression analyses for the association between clinicopathology 
and overall survival in clinical sample (A), RNA-seq sample (B), and CNV sample (C) datasets. (D) Relationship among three datasets. 
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Supplementary Figure 2. Identification of consensus clusters by RNA modification regulators (RNA-MRs). (A) The tracking plot, 
cumulative distribution function (CDF), relative change in area under CDF curve (delta area) for k=2 to k=10. (B) Kaplan–Meier overall survival 
curves, and principal component analysis for k=2 to k=5. 
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Supplementary Figure 3. L1000FWD visualization of the signature similarity mapped to all reference drugs. (A) L1000FWD 
visualization of overlap drugs with reversed expression profile of total DEGs and function-related prognostic DEGs. Pink ring in map 
represented the most convinced drugs overlapped in two queries. (B) Drug-perturbed expression profiles similar to the reversed profiles of 
total DEGs, core prognostic gene set, and RNA modification regulators. Score scale (blue to red) represents opposite to similar results. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 6. 

 

Supplementary Table 1. The top 50 drugs with opposed expression profiles of total DEGs in L1000FWD. 

 

Supplementary Table 2. The top 50 drugs with opposed expression profiles of core prognostic gene set in L1000FWD. 

 

Supplementary Table 3. The merging drugs with opposed expression profiles of total DEGs (T), core prognostic gene 
set (C), and RNA modification regulators (R) in L1000FWD (Top 50). 

 

Supplementary Table 4. Drugs with opposed expression profiles of core prognostic gene set in CMap (Score>90). 

 

Supplementary Table 5. Perturbagen Class analysis of drugs with opposed expression profiles for core prognostic 
gene set in CMap (count of all predicted drugs1 or count of drugs with score>952). 

 

Supplementary Table 6. Mechanism of action (MOA) and Structures of overlapped drugs in both Cmap1 and 
L1000FWD2. 


