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INTRODUCTION 
 

Adipocyte differentiation is an important biological 

process in the development of adipose tissue. Adipocyte 

differentiation involves clone amplification, pro-

liferation arrest, and terminal differentiation, and is 

largely controlled by a complex transcription cascade 

involving C/EBPα, C/EBPβ, C/EBPδ, PPARγ, E2F1 

and 2F4 [1, 2]. However, the mechanisms that control 

adipocyte differentiation remain not fully understand. 

The mouse 3T3-L1 cell line is a common preadipocyte 

cell line that has been widely used to explore the 

molecular mechanism of adipocyte differentiation [3]. 

3T3-L1 cells will stop growing due to contact inhibition 

and then re-enter the cell cycle under the action of the 

combinations of hormones including insulin, cAMP 

analogues and glucocorticoids [4, 5]. After clone 

expansion, the cells regain the proliferation and 

differentiate into mature adipocytes eventually [6, 7].  

   

MicroRNAs (miRNAs) are endogenous non-coding 

RNAs (20-24 nucleotides long) and play an important 

role in many processes such as cell proliferation, 

differentiation and development [8, 9]. The major 

function of miRNAs is to inhibit translation and/or 

promote mRNA decay by binding to the 3 '-un-

translation region of target gene [10–12]. Several 

studies have evaluated the expression profile of 

miRNAs during adipocyte differentiation. For example, 

Esau et al. showed that miR-143 level was elevated and 

contributed to adipocyte differentiation [13–16]. 

Kajimoto et al. cloned 65 miRNAs from pre/post-

differentiated 3T3-L1 cells and 21 miRNAs were found 

to be up- or down-regulated during differentiation [17]. 

Recently, Guo et al, reported that miR-345-5p was 

differentially expressed in undifferentiated human 

adipose-derived stem cells and differentiated adipocyte 

cells [18]. However, the role of miR-345-5p in regulat-

ing adipogenesis remains unexplored. 
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ABSTRACT 
 

Adipocyte differentiation involves a series of highly synergistic processes, including clone amplification, 
proliferation arrest, and terminal differentiation. However, the mechanisms that control these different steps 
remain unclear. Emerging studies support that miRNAs play an important role in regulating adipogenesis. In this 
study, we found that the expression of miR-345-5p decreased during adipogenic differentiation, and 
overexpression of miR-345-5p reduced lipid accumulation in adipocytes and the expression of adipocyte related 
genes essential to lipogenic transcription, fatty acid synthesis and fatty acid transport. In addition, miR-345-5p 
directly targeted the 3’UTR of vascular endothelial growth factor B, and miR-345-5p mimic inhibited the 
expression of vascular endothelial growth factor B at both mRNA and protein levels. In conclusion, our results 
demonstrate that miR-345-5p inhibits adipocyte differentiation via targeting vascular endothelial growth factor B. 
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Therefore, in this study we aimed to elucidate the 

mechanism by which miR-345-5p regulates adipogenesis 

using 3T3-L1 preadipocytes as the model. We 

demonstrated that the level of miR-345-5p was down-

regulated during adipocyte differentiation. Over-

expression of miR-345-5p in 3T3-L1 preadipocytes 

impaired adipocyte differentiation, and inhibited the 

expression of adipocytic marker genes. Furthermore, 

miR-345-5p inhibited adipocyte differentiation by 

targeting the 3’UTR of vascular endothelial growth factor 

B (VEGF-B) to suppress its expression. 

 

RESULTS 
 

Downregulation of miR-345-5p during adipocyte 

differentiation 
 

To investigate the role of miR-345-5p in adipocyte 

differentiation, we evaluated the expression of miR-

345-5p during 3T3-L1 differentiation. Lipid 

accumulation during 3T3-L1 cell differentiation into 

adipocytes was confirmed by Oil Red O staining 

(Figure 1A). The upregulation of adipocyte-specific 

genes was confirmed by real-time PCR (Figure 1B) and 

Western blotting (Figure 1C). Furthermore, quantitative 

real-time PCR showed that the level of mature miR-

345-5p significantly decreased after the induction of 

adipocyte differentiation, and maintained at low level 

during adipogenesis (Figure 1D). These results suggest 

that miR-345-5p is downregulated during 3T3-L1 

preadipocyte differentiation.  

 

miR-345-5p inhibited adipocyte differentiation 

 

To confirm the role of miR-345 in adipocyte 

adipogenesis, 3T3-L1 preadipocytes were transfected 

with miR-345-5p mimic/inhibitor or negative control 

(NC) before the induction of adipocyte differentiation. 

 

 
 

Figure 1. The level of miR-345-5p was significantly downregulated during 3T3-L1 cell differentiation. (A) Oil Red O staining of 

lipid droplets of 3T3-L1 cells at day 0, 4, and 9 during adipocyte differentiation. (B) Real-time PCR analysis of adipocyte-specific genes (PPARg, 
FABP4, aP2,ADIPOQ, GLUT4 and VEGF-B) in 3T3-L1 cells during adipocyte differentiation. (C) Western blot analysis of adipocyte-specific genes 
(PPARg, FABP4, aP2, ADIPOQ, GLUT4 and VEGF-B). (D) Real-time PCR analysis of miR-345-5p during adipocyte differentiation. *P<0.05, 
**P<0.01, ***P<0.00 versus Day 0 group.  
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We found 100-fold increase in mature miR-345-5p level 

in 3T3-L1 cells transfected with miR-345-5p mimic 

(Figure 2A). miR-345-5p mimic strongly suppressed 

3T3-L1 proliferation and differentiation into mature 

adipocytes (Figure 2B). Consistently, miR-345-5p 

inhibitor dramatically enhanced the number and 

proliferation of Oil Red O positive cells (Figure 2B). 

Furthermore, real-time PCR (Figure 3A) and Western 

blot analysis (Figure 3B) showed that compared with 

NC group, the expression of PPARγ, aP2 and 

adiponectin significantly decreased in cells transfected 

with miR-345-5p mimic, but increased in cells 

transfected with miR-345-5p inhibitor. Taken together, 

these results demonstrate that miR-345-5p could 

suppress 3T3-L1 preadipocyte differentiation. 

 

miR-345-5p targeted 3′ UTR of VEGF-B and 

suppressed its expression 

 

To reveal the underlying mechanisms by which miR-

345-5p suppresses adipocyte differentiation, we went 

on to identify potential targets of miR-345. VEGF-B, a 

key component of insulin resistance signaling, was 

predicted as a potential target by Star Base, 

TargetScan, miRDB, and miRanda analysis. To verify 

that VEGF-B is a target of miR-345-5p, we 

constructed dual-luciferase report plasmids harboring 

the sequences of wild-type or binding site mutant 

(GTC to ACG) 3′ UTR of mouse VEGF-B (Figure 

4A). As shown in Figure 4B, co-transfection of miR-

345-5p mimic significantly decreased luciferase 

activity in cells transfected with wild-type VEGF-B 3′ 

UTR reporter (psiCHE-VEGF-B 3′ UTR-WT), 

compared with NC group. In contrast, no decrease in 

luciferase activity was observed in cells co-transfected 

with empty vector or mutant reporter (psiCHE-VEGF-

B 3′ UTR-mut), suggesting that VEGF-B is a direct 

target of miR-345-5p.  

 

RNA pull-down assay further revealed the enrichment 

of VEGF-B 3’UTR in miR-345-5p-captured fraction, 

compared with that of miR-345-5p mutation, in which 

the binding site of miR-345-5p for VEGF-B 3’UTR was 

disrupted (Figure 4C). Furthermore, AGO2 immuno-

precipitation showed that endogenous VEGF-B 3’UTR 

could pull-down miR-345-5p (Figure 4D). 

 

To investigate whether miR-345-5p can regulate the 

expression of VEGF-B, VEGF-B mRNA and protein 

levels were measured in 3T3-L1 cells transiently 

transfected with miR-345-5p mimic by qPCR and 

Western blotting, respectively. We found that miR-345-

5p inhibited endogenous VEGF-B mRNA (Figure 5A) 

and protein (Figure 5B) expression in 3T3-L1 pre-

adipocytes. Collectively, these results indicate that 

VEGF-B is a direct target of miR-345-5p.  

DISCUSSION 
 

The differentiation of preadipocytes into mature fat 

cells requires a series of highly precise regulation in 

gene expression [4]. Although a transcription factor 

cascade has been identified that contributes to adipocyte 
 

 

 

Figure 2. miR-345-5p repressed 3T3-L1 preadipocytes 
differentiation. (A) CCK-8 assay of the proliferation of 3T3-L1 

cells. (B) Oil Red staining of lipid droplet formation of 3T3-L1 cells 
at day 0, 4, and 9 during adipocyte differentiation. *P<0.05 versus 
control group. 
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Figure 3. The expression of adipocyte-specific genes was repressed by miR-345-5p. (A) Real-time PCR analysis of adipocyte-specific 

genes (PPARg, FABP4, aP2, ADIPOQ, GLUT4 and VEGF-B) in 3T3-L1 cells during adipocyte differentiation. (B) Western blot analysis of 
adipocyte-specific genes (PPARg, FABP4, aP2, ADIPOQ, GLUT4 and VEGF-B). *P<0.05 versus control group. 

 

 
 

Figure 4. miR-345-5p directly targeted 3′ UTR of VEGF-B. (A) The dual-luciferase reporter assay of the binding of 3 'UTR of VEGFB and 

mir-345-5p. (B) RNA Pull-down assay of the specific binding of miR-345-5p to 3 'UTR of VEGFB. (C) AGO2 RNA-IP assay of the enrichment of 
mir-345-5p in AGO2 complex. *P<0.05 versus control group. 
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differentiation, the underlying mechanisms that control 

the different phases of adipogenesis are not completely 

understood. Herein, we demonstrated that miR-345-5p 

inhibits 3T3-L1 preadipocyte differentiation through 

targeting the 3’ UTR of VEGF-B and suppressing the 

expression of VEGF-B. 

 

VEGF-B is highly expressed in cells with metabolic 

activity, such as brown adipocytes, skeletal myocytes, 

myocardiocyte and pancreatic β-cells [19, 20]. The 

interaction of VEGF-B with VEGF receptor 1 and its 

co-receptor neuropilin induces the expression of 

vascular-specific fatty acid transport protein 3 (FATP3) 

and FATP4 [21]. VEGF-B knockout mice are healthy 

and fertile, but exhibit decreased fatty-acid uptake and 

lipid deposition in muscles [19]. In contrast, cardiac 

specific up-regulation of VEGF-B causes ceramide 

accumulation in the heart, which eventually leads to 

dysfunction of mitochondrial quality control [21].  

 

Although VEGF-B has great potential for improving 

tissue vascularization, its function is limited to cardiac 

tissue, which has the highest endogenous expression of 

VEGF-B. Hagberg et al. proposed that VEGF-B induces 

fatty acid transport across the endothelium in brown 

adipose tissue, skeletal muscle, heart, and that blockade 

of VEGF-B may be a novel treatment for type 2 

diabetes [22]. Inhibition of VEGF-B was shown to 

prevent lipid deposition, increase peripheral glucose 

uptake, maintain fasting and postprandial glucose 

levels, and improve glucose tolerance and insulin 

sensitivity [23–26]. In this study, we demonstrated that 

miR-345-5p inhibited endogenous VEGF-B expression 

via targeting its 3’UTR. Taken together, these 

observations suggest that targeting miR-345-5p/VEGF-

B axis could be a novel approach to prevent glucose 

resistance and pathological lipid deposition. 

 

In summary, our study reveals a novel mechanism that 

miR-345-5p suppresses adipocyte differentiation, at 

least in part by inhibiting the expression of VEGF-B 

and adipogenic genes. Therefore, miR-345 and its 

targets may potentially regulate pathological prog-

ression of obesity-related diseases.  

 

 
 

Figure 5. miR-345-5p suppressed the mRNA and protein levels of VEGF-B. (A) Real-time PCR analysis of VEGF-B mRNA in 3T3-L1 

cells. (B) Western blot analysis of VEGF-B protein in 3T3-L1 cells. *P<0.05 versus control group. 
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MATERIALS AND METHODS  
 

Cell culture  

 

3T3-L1 cells were cultured in high glucose with l-

glutamine DMEM (Thermo Fisher, Carlsbad, CA, USA) 

with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 

and 100 μg/ml streptomycin (all from Thermo Fisher), and 

maintained in a 5% CO2 humidified atmosphere. For 

adipocyte differentiation, cells were incubated in 

conditional medium (5 μg/ml insulin, 0.5 mM 3-isobutyl-

1-methylxanthine, and 1 μM dexamethasone) 2 d after the 

cells reached confluence. The culture medium was 

replaced with DMEM containing 10% FBS and 5 μg/ml 

insulin 48 hours later. The culture medium was replaced 

every 2 days until the preadipocytes differentiated into 

mature adipocytes around 9 days later.  

 

Cells viability assay 

 

Differentiated 3T3-L1 cells were seeded in poly-D-

lysine coated 96-well culture plates at and cultured for 

24 h. At the end of treatment, cells were incubated with 

WST-8 (5 mg/ml, Abcam, Cambridge, MA,, USA) at 

37°C for 3 h. Absorbance at 450 nm wave length was 

measured using a VICTOR3 spectrophotometer (Perkin 

Elmer Italia, Milano, Italy).  

 

Oil red O staining 

 

3T3-L1 cells were fixed with 10% formaldehyde in PBS 

at 37°C for 90 min, washed with sterile water and 

stained with 200 μL of oil red O solution at 37°C for 2 

h. After the staining, cells were incubated with 200 μL 

of isopropanol, and the absorbance at 520 nm wave 

length was measured using a VICTOR3 

spectrophotometer (Perkin Elmer Italia, Milano, Italy). 

 

Quantitative real-time PCR 

 

RNAs were extracted from cells and quantified by RT-

qPCR using SYBR green assay on an ABI 7900HT 

system. All primers were designed and synthesized by 

Sangon Biotech (Shanghai, China): PPARg CAAGAA 

TACCAAAGTGCGATCAA, GAGCTGGGTCTTTTC 

AGAATAATAAG; FABP4 CCTGGTGATGTCCG 

ACCTG, TCCTCCATTAGGAACTCTCACAC; ADIP 

OQ TATTCGGACAAATACGACGACG, GGTTCCT 

CCATTCAGATTCAGAC; GLUT4 CAGCTCTCAG 

GCATCAAT, TCTACTAAGAGCACCGAG; VEGFB 

ACCAGAAGAAAGTGGTGCCATG, TGAGGATCT 

GCATTCGGACTTG; GAPDH TGCTGAGTATGTC 

GTGGAGTCT, ATGCATTGCTGACAATCTTGAG. 

miR-345-5p levels were measured by real-time PCR 

using the TaqMan MicroRNA Assay Kit (Applied 

Biosystems, Foster City, CA, USA).  

Quantification of the expression of target genes in the 

samples was presented as the difference of reaction cycle 

thresholds (Ct) between GAPHD and each of the target 

genes (2-ΔCt). 
 

Western blot analysis 
 

Cells were lysed in RIPA solution (Beyotime, China), and 

proteins isolated from cells were quantitated by bovine 

serum albumin method. Total 20 µg protein samples were 

separated by 12% sodium dodecyl sulfate-polyacrylamide 

gel and transferred to polyvinylidene difluoride membrane 

(Millipore, USA). The membrane was blocked at 4°C for 

2 h with 5% goat serum, incubated with antibodies 

(1:1,000) against PPARg (Abcam, USA), FABP4 

(Abcam, USA), ADIPOQ (Abcam, USA), GLUT4 

(Abcam, USA), VEGF-B (Abcam, USA) and GAPDH 

(Simo Biotech, Shanghai, China) for 2 h at 25°C, 

followed by incubation with secondary antibody (Cell 

Signaling, Danvers, MA, USA) for 1 h at 25°C. The ECL 

Chemiluminescence reagents (Millipore, USA) were used 

to visualize the protein bands and the quantity-one 

software was used to quantify them. 
 

Luciferase reporter assay 
 

The wild-type and miR-345-5p binding site mutant (GTC 

to CAG) of 3′UTR of VEGF-B were sub-cloned into 

psiCHECK-2 vector (Promega, USA). 3T3-L1 cells were 

seeded in 24-well plates and transfected with miR-345-5p 

mimic or NC along with psiCHECK-2 vector by using 

Lipofectamine 3000 Transfection Reagent. Dual-Glo 

Luciferase Assay System (Promega, USA) was used to 

measure luciferase activity 48 h after transfection. 
 

Statistical analysis 
 

Quantitative results were represented as mean ± SEM 

and analyzed by GraphPad Prism 6 software. Statistical 

differences between two groups were assessed by 

Student’s multiple t-tests. Significant difference was 

considered at P < 0.05.  
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