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INTRODUCTION 
 

Nasopharyngeal carcinoma (NPC), which commonly 

occurs in the epithelial lining of the nasopharynx, is one 

of the most common types of head and neck tumors [1, 

2]. Currently, radio/chemo-therapy and radiotherapy are 

the primary methods for the treatment of NPC, but they 

are less efficient due to the high sensitivity of NPC [3]. 

Moreover, despite extensive studies on the radio-

resistance of cancers, the molecular mechanism for 

NPC radio-resistance remains largely unknown. Hence, 

further investigations are needed to elucidate the 

molecular mechanism of NPC radio-resistance and 

more valid therapeutic strategies are authoritatively 

required. 

 

Long non-coding RNAs (lncRNAs) are a group of RNA 

transcripts of more than 200 nucleotides that generally 

do not encode proteins [4]. Evidence has suggested that 

lncRNAs have diverse functions, such as the regulators 

of transcription; modulators of mRNA processing, post-

transcriptional control; and organization of nuclear 

domains [5, 6]. Moreover, given their sophisticated 

nature, lncRNAs have been implicated in the 
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ABSTRACT 
 

Long non-coding RNAs (lncRNAs) were found to play roles in various cancers, including nasopharyngeal 
carcinoma. In this study, we focused on the biological function of the lncRNA FAM133B-2 in the radio-resistance 
of nasopharyngeal carcinoma. The RNA-seq and qRT-PCR analysis showed that FAM133B-2 is highly expressed 
in the radio-resistant nasopharyngeal carcinoma cells. The following biochemical assays showed that FAM133B-
2 represses the nasopharyngeal carcinoma radio-resistance and also affects the apoptosis and proliferation of 
nasopharyngeal carcinoma cells. Further investigations suggested that miR-34a-5p targets FAM133B-2 and also 
regulates the cyclin-dependent kinase 6 (CDK6). All these results suggested that the lncRNA FAM133B-2 might 
function as a competitive endogenous RNA (ceRNA) for miR-34a-5p in nasopharyngeal carcinoma radio-
resistance, thus it may be regarded as a novel prognostic biomarker and therapeutic target in nasopharyngeal 
carcinoma diagnosis and treatment. 
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development of diseases. Specifically, in cancer, 

numerous studies have shown that many lncRNAs are 

closely associated with the development of various 

cancers [7–10]. To date, several lncRNAs, including 

EWSAT1 [11], LOC100129148 [12], PCAT7 [13], 

CCAT1 [14], NCK1-AS1 [15], and LINC00460 [16] 

are found to involve in NPC tumorigenesis, and some of 

them have been identified as alternative therapeutic 

targets and biomarkers for NPC. Notably, the 

lncRNA THOR was found to attenuate cisplatin 

sensitivity of NPC cells [17]. However, the fine 

molecular mechanism of lncRNA-regulated radio-

resistance of NPC remains unclear. 

 

In this study, we identified a new lncRNA, termed 

FAM133B-2, which was significantly upregulated in 

the radio-resistant NPC cells. We also found that the 

forced reversal of FAM133B-2 level is closely related 

to the NPC radio-resistance. Moreover, our data 

revealed that FAM133B-2 is a target of miR-34a-5p, 

which in return negatively regulates the expression of 

CDK6 gene. All these results suggested that the 

lncRNA FAM133B-2 might function as a competitive 

endogenous RNA (ceRNA) for miR-34a-5p in NPC 

radio-resistance, thus it may represent a feasible 

biomarker for diagnosis and treatment of NPC radio-

resistance.   

 

RESULTS 
 

Identification and characteristics of radio-resistant 

NPC cells of CNE-2R and 6-10BR 

 

To set up a platform for investigating the mechanism of 

NPC radio-resistance, we first screened the radio-

resistant NPC cells by radio treatment. The parental 

cells CNE-2 and 6-10B were subjected to X-ray 

radiation at increasing doses. After several rounds of 

screening against X-ray challenge, we successfully 

obtained two mutated NPC strains that are radio-

resistant compared to the parental strains. They can 

tolerate the X-ray radiation at a dose up to 80 and 76Gy, 

respectively. We thus termed them as CNE-2R and 6-

10BR respectively. During the X-ray challenge, the 

morphology of the cell lines was obviously altered 

(Figure 1A). Compared to the parental cells, the shape 

of CNE-2R cells became irregular, whereas the size of 

6-10BR cells were much smaller due to shrinking.  

 

We then compared the features of these two new cell 

lines to their parental cells by a series of biochemical 

assays. The sphere formation assays showed that the 

CNE-2R and 6-10BR cells possess only half number of 

the colonies compared to their parental cells (Figure 1B 

and 1C). Next, we detected the radio-sensitivity of 

CNE-2R and 6-10BR cells. Upon radio treatment at 

2Gy and 8Gy, respectively, both CNE-2R and 6-10BR 

cells showed an increased survival fraction, compared 

to their parental cells (Figure 1D and 1E). The results 

showed that CNE-2R and 6-10BR cells indeed confer 

the capability of radio-resistance, and thus has a lower 

sensitivity against radio treatment. Moreover, the cell 

proliferation assays showed that CNE-2R and 6-10BR 

cells have a lower proliferation rate compared to their 

parental cells (Figure 1F and 1G). All these results 

clearly demonstrated that the radio-resistant cells CNE-

2R and 6-10BR showed a substantial difference 

compared to the parental cells.  

 

FAM133B-2 represses the radio-resistance of NPC 

cells 

 

To find the molecular insights that involve in the radio-

resistance of NPC cells, we performed the lncRNA-seq 

analysis of radio-sensitive CNE-2 and radio-resistant 

CNE-2R cells, and compared the differentially 

expressed genes. The results gave several lncRNAs that 

differ at least 2-folds of the expression in the two cells. 

Among them, FAM133B-2 is one of the most 

significantly differentially expressed genes, which has a 

6-fold higher expression in CNE-2R compared to CNE-

2 cells (Figure 2A and 2B Supplementary Figures 1, 3). 

Moreover, the qRT-PCR analysis showed that the 

expression of FAM133B-2 is much higher in the radio-

resistant CNE-2R and 6-10BR cells, which are 15.21- 

and 2.82-folds compared to CNE-2 and 6-10B, 

respectively (Figure 2A and 2B). 

 

Next, we reversely changed the FAM133B-2 level in 

the NPC cell lines to check the effect on NPC radio-

resistance. First, we down-regulated the FAM133B-2 

level in either CNE-2R or 6-10BR cells by transfecting 

sh-FAM133B-2 in the cells. Accompanied by the 

decrease of FAM133B-2 level in either CNE-2R or 6-

10BR cells, the cell survival rate was slightly increased 

upon the radio treatment at 2, 4, 6, and 8Gy (Figure 2C 

and 2D). In contrast, we up-regulated the FAM133B-2 

level in either CNE-2 or 6-10B cells by over-expressing 

FAM133B-2 in the cells. The results showed a lower 

survival rate upon the up-regulation of FAM133B-2 in 

either CNE-2 or 6-10B cells (Figure 2E and 2F). The 

results clearly demonstrated that FAM133B-2 represses 

the radio-resistance of NPC cells. 

 

To further investigate the effects of a forced reversal of 

FAM133B-2 in CNE-2R and 6-10BR cells, we detected 

the apoptosis rate by FACS analysis. Upon the decrease of 

FAM133B-2 in either CNE-2R or 6-10BR cells, the 

number of apoptotic cells significantly decreased, with the 

apoptosis rate decreased from 36.57% to 16.80% in CNE-

2R cells, and from 48.50% to 21.80% in 6-10BR cells 

(Figure 2G). Furthermore, the colony formation assays 
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revealed that down-regulation of FAM133B-2 in CNE-2R 

and 6-10BR cells in return significantly increased the 

number of colonies to over 2-folds (Figure 2H). The 

results are also in agreement with the notion that a lower 

level of FAM133B-2 promotes the radio-resistance of 

NPC cells, which has a much higher proliferation rate, as 

shown by the colony formation assays. 

 

FAM133B-2 is a target of miR-34a-5p in NPC cells 

 

Previous reports suggested that lncRNAs could act as 

competing endogenous RNAs (ceRNAs) to sponge 

miRNAs and thus regulate cancer progression [18, 19]. 

We proposed that FAM133B-2 might be a ceRNA to 

sponge miRNA. Moreover, we previously found that 

the miRNA miR-34a-5p involves in the radio- or drug-

resistance of cancers [20, 21]. To test whether miR-34a-

5p involves in the NPC radio-resistance, we first tested 

the expression of miR-34a-5p in the NPC cells by 

RNA-seq and qRT-PCR analysis Supplementary Figure 

3. The results showed that the miR-34a-5p level is much 

higher in the radio-sensitive CNE-2 and 6-10B cells, 

compared to the radio-resistant CNE-2R and 6-10BR 

cells (Figure 3A and 3B). The expression of miR-34a-

5p is negatively correlated with the FAM133B-2 level 

in the NPC cells, indicating FAM133B-2 might be a 

target of miR-34a-5p. Sequence analysis showed that 

the 3’-UTR region of FAM133B-2 has a sequence motif 

that is complementary with miR-34a-5p (Figure 3C). 

We thus performed the luciferase reporter assays by 

constructing the wild-type or miR-34a-5p binding-site 

mutant of FAM133B-2 in the plasmid. We then tested 

the luciferase activity by transfecting the miR-34a-5p 

mimic in the CNE-2R cells or the miR-34a-5p 

antagomiR in the CNE-2 cells. Upon the up-regulation 

of miR-34a-5p in the CNE-2R cells, the luciferase 

activity was reduced to about half of the level in the 

wild-type cells, indicating a reduced expression of 

FAM133B-2 (Figure 3D). However, mutation of the 

miR-34a-5p binding site in FAM133B-2 almost 

abolished the reducing effect, which showed a 

comparable luciferase activity (Figure 3D). In contrast, 

down-regulation of miR-34a-5p in the CNE-2 cells 

increased the expression of FAM133B-2 to 1.5 folds 

 

 
 

Figure 1. Establishment, identification and biological characteristics of radiotherapy resistant strains of nasopharyngeal 
cancer cells. (A) Cell morphology identification. CNE-2R and 6-10BR cell lines were established from CNE-2 and 6-10B, respectively. The 

cumulative dose of radiation of CNE-2R and 6-10BR reached to 80 and 76Gy, respectively. Under the optical microscope, the morphology of 
the cell line was obviously changed. (B and C) CNE-2R, 6-10BR and their parental cells were subjected to a sphere formation assay. The 
sphere numbers were determined after seven days for the first generation (G1) and seven days after seeding for G2. Treatment with SCF was 
repeated when the cells were passaged. The data are mean±SD of two independent experiments. (D and E) Radiosensitivity detection assay 
showed that the sensitivity of CNE-2R and 6-10BR cells was lower than that of parental cells. (F and G) Cell proliferation assay showed that 
the proliferation of CNE-2R and 6-10BR cells was slower than that of parental cells. 
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compared to the control. As expected, mutation of the 

miR-34a-5p binding site in FAM133B-2 also has a 

minor effect on the FAM133B-2 expression in CNE-2 

cells (Figure 3E). All these results suggested that 

FAM133B-2 is a target of miR-34a-5p in NPC cells, 

which negatively regulates the expression of 

FAM133B-2. 

Next, we tested whether the reversal change of miR-

34a-5p level may affect the radio-resistance of NPC 

cells. We tested the radio-resistance capability by 

transfecting the miR-34a-5p mimic in either the CNE-

2R or 6-10BR cells, or miR-34a-5p antagomiR in either 

CNE-2 or 6-10B cells. Accompanied by the increase of 

miR-34a-5p in the CNE-2R or 6-10BR cells, the cell 

 

 
 

Figure 2. Effects of a forced reversal of FAM133B-2 level on the nasopharyngeal cancer cells. The relative FAM133B-2 level (fold) 

in CNE-2R and 6-10BR cells versus CNE-2 and 6-10B cells measured by both miR-omic and qRT-PCR analyses is shown in a table (A) and those 
measured by qRT-PCR are shown in a plot (B). “-” indicates no detection in the omic analysis. sh-FAM133B-2-transfected CNE-2R (C) and 6-
10BR (D) cells survival fraction versus the negative control (NC) cells for 24h, then cells were digested and counted according to 500 (0Gy), 
1000 (2Gy), 2000 (4Gy), 5000 (6Gy), 8000 (8Gy) cells/well and was inoculated in a 6-well plate in triplicate, the corresponding dose was 
irradiated after 24h, using a 6-MV x-ray generated by a linear accelerator Varian trilogy at a dose rate of 2Gy/min (Varian trilogy at a dose 
rate of 2Gy/min). CNE-2 (E) and 6-10B (F) cells infected with FAM133B-2-O/E versus the negative control (NC-O/E), then were digested and 
counted according to 500 (0Gy), 1000 (2Gy), 2000 (4Gy), 5000 (6Gy), 8000 (8Gy) cells/well and was inoculated in a 6-well plate in triplicate, 
the corresponding dose was irradiated after 24h, using a 6-MV x-ray generated by a linear accelerator Varian trilogy at a dose rate of 2Gy/min 
(Varian trilogy at a dose rate of 2Gy/min). (G) The effects of the forced reversal of FAM133B-2 level on the apoptosis of CNE-2R and 6-10BR 
cells by FACS analysis in plot and in the original with a graph of the analyzed data and plots of the original FACS data. (H) The effects of the 
forced reversal of FAM133B-2 level on the sphere numbers of CNE-2Rand 6-10BR cells. The sphere numbers were determined after seven 
days for the first generation (G1) and seven days after seeding for G2. Treatment with SCF was repeated when the cells were passaged. 
Colony formation numbers, relative sphere formation are shown. The sphere formation assays showed that the sphere numbers of CNE-2R 
and 6-10BR cells was fewer than that of parental cells. The data are mean±SD of two independent experiments. The surviving fraction was 
calculated using the multitarget single-hit model: Y=1-(1-exp(-k*x))^N. The data are presented as the mean±standard deviation of results 
from 3 independent experiments, and two way Anova was used to calculate statistical significance. 
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survival rate largely increased, indicating a lower 

sensitivity against the radio treatment (Figure 3F and 

3G). In contrast, the cell survival rate is somewhat 

decreased upon down-regulation of miR-34a-5p in either 

CNE-2 or 6-10B cells (Figure 3H and 3I). The results 

also negatively correlate with the effect of a forced 

change of FAM133B-2 in NPC cells. Accordingly, miR-

34a-5p negatively regulates the FAM133B-2 level in 

NPC cells, which might be a ceRNA to sponge miR-34a-

5p function on NPC radio-resistance. 

 

The cyclin-dependent kinase 6 is a target of miR-

34a-5p in NPC cells 

 

The cyclin-dependent kinase 6 (CDK6) was found to 

involve in the drug resistance [22–24]. Moreover, we 

found that CDK6 mRNA level is higher in the radio-

resistant CNE-2R and 6-10BR cells, compared to the 

radio-sensitive CNE-2 or 6-10B cells (Figure 4A and 

4B Supplementary Figure 3). The western blot analysis 

also showed a higher protein level in CNE-2R or 6-

10BR cells (Figure 4C). The CDK6 level is negatively 

correlated with the miR-34a-5p level, indicating CDK6 

might be a target of miR-34a-5p. To further validate this 

hypothesis, we tested the CDK6 protein expression by 

transfecting the miR-34a-5p antagomiR in the CNE-2R 

and 6-10BR cells, or the miR-34a-5p mimic in the 

CNE-2 and 6-10B cells. As a result, miR-34a-5p 

knockdown increased the CDK6 protein level by 2.78- 

and 1.58-folds in CNE-2R and 6-10BR cells, 

respectively (Figure 4D). Moreover, up-regulation of 

miR-34a-5p decreased the CDK6 protein level to 74% 

and 41% in CNE-2 and 6-10B cells, respectively 

(Figure 4E). 

 

Sequence analysis showed that the 3’-UTR regions of 

CDK6 and miR-34a-5p share a complementary 

sequence (Figure 4F). To further test whether CDK6 is

 

 
 

Figure 3. FAM133B-2 is a target of miR-34a-5p in nasopharyngeal cancer cells. The relative miR-34a-5p level (fold) in CNE-2R and 6-

10BR cells versus CNE-2 and 6-10B cells measured by both miR-omic and qRT-PCR analyses is shown in a table (A) and those measured by 
qRT-PCR are shown in a plot (B). “-” indicates no detection in the omic analysis. (C) Luciferase reporter constructs: WT and MUT FAM133B-2 
in the miR-34a-5p-binding sites were inserted into psiCHECK-2 vector. The red region is the binding site. The FAM133B-2 site is predicted to 
be a target of miR-34a-5p. One seed sequence mutant of miR-34a-5p was shown below. (D and E)The relative luciferase activities (fold) of the 
reporter with the wild-type (WT) or mutant-type (MUT) FAM133B-2-UTR or without the UTR (NC) were determined in the nasopharyngeal 
cancer cells transfected with the miR-34a-5p mimic (in CNE-2R) or antagomiR (in CNE-2). (F and G) MiR-34a-5p mimic (5PM)-transfected CNE-
2R and 6-10BR increases survival fraction versus the negative control (NC) cells. (H and I) MiR-34a-5p antagomiR (5PA)-transfected CNE-2 and 
6-10B decreases NC cells survival fraction versus the negative control (NC) cells. 
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a target of miR-34a-5p in NPC cells, we performed the 

luciferase reporter assays by constructing the wild-type 

or miR-34a-5p binding-site mutated CDK6 into the 

psiCHECK-2 vector. As a result, the wild-type 

construct, but not the mutant showed a much lower 

luciferase activity upon the increase of miR-34a-5p in 

CNE-2R cells, compared to the control (Figure 4G). In 

contrast, miR-34a-5p knockdown in CNE-2 cells 

increased the luciferase activity of the wild-type 

construct, but not the mutant (Figure 4F). These results 

demonstrated that CDK6 is a target of miR-34a-5p in 

NPC cells.  

 

FAM133B-2 represses the NPC radio-resistance via 

regulating miR-34a-5p/CDK6 axis  

 

As CDK6 is a target of miR-34a-5p, we thus tested 

whether CDK6 is the functional target that involves in 

the NPC radio-resistance. Similarly, we performed the 

apoptosis assays by the reversal changes of CDK6 level 

in NPC cells. The results showed that CDK6 knock-

down in CNE-2R and 6-10BR cells significantly 

increased the cell survival rate, indicating a lower 

sensitivity against radio radiation (Figure 5A and 5B). 

Moreover, up-regulation of CDK6 in CNE-2 and 6-10B 

cells decreased the cell survival rate (Figure 5C and 

5D). The results confirmed the inhibition effect of 

CDK6 on NPC radio-resistance, similar to the effect of 

FAM133B-2. These data also indicated that miR-34a-5p 

facilitates the NPC radio-resistance via targeting CDK6 

and FAM133B-2.  

 

Furthermore, we analyzed the cell cycle distribution by 

CDK6 knockdown in CNE-2R and 6-10BR cells. Most 

of the control cells are in the mitotic period, whereas 

CDK knockdown triggers half of the cells 

synchronized in the S phase (Figure 5E and 5F). The 

results indicated that CDK6 affects the cell cycle, 

which eventually might associate with the NPC radio-

resistance.  

 

DISCUSSION 
 

Increasing studies have reported that lncRNAs play 

integral and crucial roles in a variety of biological 

processes [25]. Additionally, accumulating evidences 

revealed that a dozen of lncRNAs involve in 

tumorigenesis via regulating many target genes [26–29]. 

Several lncRNAs were also found to be involved in the 

NPC tumorigenesis. For example, MALAT1 was found 

to be upregulated and to modulate the activity of cancer 

stem cells and radio-resistance by regulating the

 

 
 

Figure 4. CDK6 is a target of miR-34a-5p in nasopharyngeal cancer cells. The relative CDK6 level (fold) in CNE-2R and 6-10BR cells 

versus CNE-2 and 6-10B cells measured by miR-omic shown in a table (A), qRT-PCR shown in a plot (B) and western analyses shown in (C). “-” 
indicates no detection in the omic analysis. CDK6 protein levels determined western blot analyses  in the miR-34a-5p antagomiR (5PA) -
transfected CNE-2R and 6-10BR cells (D) and the miR-34a-5p mimic (5PM)-transfected CNE-2 and 6-10B cells (E) versus the negative control 
(NC). (F) Luciferase reporter constructs: WT and MUT CDK6 in the miR-34a-5p-binding sites were inserted into psiCHECK-2 vector. The blue 
region is the binding site. The CDK6 site is predicted to be a target of miR-34a-5p. One seed sequence mutant of miR-34a-5p was shown 
below. The relative luciferase activities (fold) of the reporter with the wild-type (WT) or mutant-type (MUT) CDK6-UTR or without the UTR 
(NC) were determined in the nasopharyngeal cancer cells transfected with the miR-34a-5p mimic (in CNE-2R) (G) or antagomiR (in CNE-2) (H).  
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miR-1/slug axis in NPC [30]. HOTAIR knockdown was 

shown to repress cell proliferation and invasion in NPC 

cells, providing an available therapeutic agent for NPC 

[31, 32]. However, the roles and mechanisms of lncRNAs 

in NPC radio-resistance remain primarily unknown. Here, 

we showed that the level of FAM133B-2 was higher in the 

radio-resistant NPC cells than corresponding parental cells. 

We also confirmed that silencing of FAM133B-2 

repressed NPC cell apoptosis but facilitated NPC cell 

proliferation. Mechanistically, we showed that the 3’-UTR 

of FAM133B-2 directly interacts with miR-34a-5p. This is 

reminiscent of the competing endogenous RNA (ceRNA) 

hypothesis that lncRNA might function as a molecular 

sponge of miRNAs to regulate target gene expression [33]. 

We propose that FAM133B-2 exerts its inhibition function 

on NPC radio-resistance probably via functioning as a 

ceRNA for miR-34a-5p, and subsequently initiating CDK6 

signaling pathway.  

 

 
 

Figure 5. (A and B) si-CDK6-transfected CNE-2R and 6-10BR increases survival fraction versus the negative control (NC) cells. (C and D) GFP-

CDK6-transfected CNE-2 and 6-10B decreases NC cells survival fraction versus the negative control (NC) cells. The effects of the forced 
reversal of CDK6 level on the cell cycle distribution of CNE-2R and 6-10BR cells by FACS analysis in plot and in the original (E and F). 
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It has been reported that miR-34a-5p also involves in 

the tumorigenesis of various cancers [20, 34, 35]. 

Moreover, miR-34a-5p was also found to be associated 

with lncRNAs to exert their functions. For example, 

miR-34a-5p expression was reduced by the lncRNA 

XIST, which functions as an oncogene in NPC [36]. 

The lncRNA NEAT1 targets miR-34a-5p at least 

partially to drive NPC progression via Wnt/β-Catenin 

Signaling [37]. Notably, the lncRNA NEAT1 promotes 

docetaxel resistance in prostate cancer by regulating 

ACSL4 via sponging miR-34a-5p and miR-204-5p [34]. 

Our results together with previous findings supported 

the ceRNA mechanism for miRNA and lncRNA co-

regulated tumorigenesis. 

 

The cyclin-dependent kinase -4 and -6 (CDK4/6) are 

serine/threonine kinases bound to Cyclin D1, that 

function as master integrators of G1-S transition of the 

cell cycle [38–40]. Aberrant regulation of cell cycle is a 

hallmark of cancer [41, 42]. The CDK4/6 activity is 

deregulated through various genetic alterations in many 

human tumors. In agreement with previous findings, our 

results showed that miR-34a-5p-regulated CDK6 

represses the NPC radio-resistance. Moreover, CDK6 

knockdown mostly arrested the CNE-2R and 6-10BR 

cells in the S phase, further confirming the role of 

CDK6 in cell cycle transition.    

 

In conclusion, our study demonstrated that FAM133B-2 

is up-regulated in the radio-resistant NPC cells. 

Furthermore, we found that FAM133B-2 is targeted by 

miR-34a-5p, which also negatively regulates the CDK6 

expression. All these results provide new insights into 

NPC radio-resistance, and thus FAM133B-2 might be a 

potential prognostic and diagnostic marker for NPC 

treatment. 

 

MATERIALS AND METHODS 
 

Cells and culture 

 

The human nasopharyngeal carcinoma cells lines CNE-

2 and 6-10B were kindly provided by the Cancer Center 

of Sun Yat-sen University. CNE-2R and 6-10BR were 

obtained from their parental strains of CNE-2 and 6-

10B, respectively. Four cells were cultured and 

maintained in RPMI medium 1640 (BI) supplemented 

with 10% fetal bovine serum (PAN), 1% glutamine 

(WISENT), 100U/ml penicillin (WISENT), and 

100mg/ml streptomycin (WISENT) in humidified air at 

37°C with 5% CO2. 

 

Radiation exposure and clonogenic assays 

 

All cells were pretreated by NC, miR-34a-5p mimic, 

antagomiR, sh-FAM133B-2, FAM133B-2-O/E and si-

CDK6 for 24h, then were digested and counted 

according to 500 (0Gy), 1000 (2Gy), 2000 (4Gy), 5000 

(6Gy), 8000 (8Gy) cells/well and was inoculated in a 6-

well plate in triplicate, the corresponding dose was 

irradiated after 24h, using a 6-MV x-ray generated by a 

linear accelerator (Varian trilogy at a dose rate of 

2Gy/min). And the 1640 medium was continued for 15 

days, then washed and fixed with 10% formaldehyde, 

and stained with Giemsa. Only clones with more than 

50 cells can be used as the cloned spheres. The number 

of cloned spheres with>50 cells was counted, and the 

number of cells inoculated with 50 to 200 cloned 

spheres was selected as the appropriate number of 

colonies for colony formation experiments, all 

experiment repeated 3 times and taken the mean. 

Calculate the cell clone formation rate and cell survival 

fraction, using the multi-target click model of GraphPad 

Prism 6 software. 

 

Transient transfection assays 

 

The Homo sapiens miR-34a-5p mimic, antagomiR, sh-

FAM133B-2, si-CDK6 and corresponding scrambled 

negative control (NC) were obtained from Guangzhou 

Ribobio, China. All the transfection experiments were 

performed using riboFECT CP transfection kit were 

supplied by Guangzhou Ribobio, China. qRT-PCR and 

western blot assays were performed to confirm the 

effect of transfection.  

 

Lentivirus production and infection 

 

HEK293T cells, lentivirus packaging cells or 

comparable cells were examined and plated so that the 

cells are 70-80% confluent at the moment of 

transfection. 2.5μg of lentiviral expression plasmid and 

5.0μl of Lenti-Pac HIV were mixed into 200μl of Opti-

MEM® I (Invitrogen). 15μl of EndoFectin Lenti was 

diluted into 200μl of Opti-MEM I. The diluted 

EndoFectin Lenti reagent was added drop wise to the 

DNA solution while gently vortexing the DNA-

containing tube. The mixture was then incubated for 

15min at room temperature to allow DNA-EndoFectin 

complexes to form. The DNA-EndoFectin Lenti 

complexes were added directly to each dish, which was 

gently swirled to distribute the complexes.  

 

Cell proliferation assay 

 

The capacity for cellular proliferation was measured by 

CCK8-based cell proliferation assay. Cells were seeded 

in 96-well plates at a density of 5x103 cells per well, 

and cell proliferation assays were performed every 24h 

using CCK8. The number of viable cells was measured 

by their absorbance at 450nm at the indicated time 

points. 
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Transient transfection assays and reagents  

 

siRNA and scrambled (negative control, NC) sequences 

as well as a riboFECT CP transfection kit were supplied 

by Guangzhou RiboBio, China. Transfections of the 

above mentioned ribonucleic acid reagents were 

performed according to the manufacturer’s instructions.  

 

RNA analysis  

 

Total RNA was isolated from the cultured cells with the 

Trizol (Tiangen). For mRNA analysis, a cDNA primed 

by an oligo-dT was constructed using HiScript® RII 1st 

Strand cDNA Synthesis Kit (Vazyme). The RNA level 

was quantified using duplex-qRT-PCR analysis, Either 

U6 small nuclear RNA (HmiRQP9001) or β-actin 

(ShingGene) was used as an internal control used in a 

FTC-3000P PCR instrument (Funglyn). Using the 2-

ΔΔCt method, target gene expression levels were 

normalized to the β-actin expression level before the 

relative levels of the target genes were compared.  

 

Flow cytometry cell apoptosis and cycle analysis 

 

The CNE-2R and 6-10BR cells transfected with sh-

FAM133B-2 or control siRNA were seeded into 6-well 

plates, harvested after 48h and rinsed with PBS twice. 

Cells were treated with 200μl binding buffer, 5μl Annexin 

V-FITC and 5μl propidium iodide (PI). After incubation 

in the dark for 30min at room temperature, the cell 

apoptotic rate was measured. The CNE-2R and 6-10BR 

cells transfected with CDK6 siRNA or control siRNA 

were seeded into 6-well plates, harvested after 48h and 

rinsed with PBS twice. Cells were treated with 200μl 

propidium iodide (PI). After incubation in the dark for 

30min at room temperature, the cell apoptotic rate was 

measured by flow cytometry (Beckman) and analyzed by 

Flowjo Software. The experiments were performed 

independently three times, and a representative is shown. 

 

The experiments were performed independently three 

times, and a representative is shown. 

 

Western blot protein analysis  

 

Cells were lysed and heated at 95°C for 10min before 

electrophoresis/western blot analysis. The primary anti-

CDK6 (14052-1-AP, Proteintech) antibodies and anti-

GAPDH (60004-1-lg, Proteintech) antibodies were 

purchased from Proteintech and were recognized with anti-

rabbit IgG peroxidase-conjugated antibody (10285-1-AP, 

Proteintech), followed by an enhanced chemiluminescence 

reaction (Thermo). Relative levels of proteins were 

quantified using densitometry with a Gel-Pro Analyzer 

(Media). The target bands over the GAPDH band were 

densitometrically quantified, as indicated under each band. 

All full-length unprocessed gels of immunoblots were 

provided in Supplementary Figure 2. 
 

Luciferase reporter assay 

 

Luciferase reporters were generated based on the 

psiCHECK2 vector. To construct psiCHECK-

FAM133B-2 or CDK6-WT or MUT, the part-length 

sequences of FAM133B-2 or CDK6-WT or MUT 

containing the putative miR-34a-5p binding site, were 

synthetized and cloned into the psiCHECK2 vector. The 

luciferase reporter was co-transfected with miR-34a-5p 

mimic, miR-34a-5p-MUT mimic, miR-34a-5p 

antagomiR, miR-34a-5p-MUT antagomiR or miR-NC 

into NPC cells by Lipofectamine 2000 according to the 

manufacturer’s guidelines. The relative luciferase 

activity was measured with the Dual-Luciferase 

Reporter Assay System (Promega) using Promega 

GloMax 20/20 luminometer. The relative luciferase 

activities were analyzed as reported previously.  
 

Statistical analysis 

 

Quantitative RT-PCR, cell viability and luciferase 

reporter assays were performed in triplicate, the data are 

presented as the means, and the error bars indicate the 

S.D. Excel was used to process the data. Two way 

Anova was used to calculate statistical significance. 
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Supplementary Figure 1. The RNA-seq data of lnc-FAM133B-2, miR-34a-5p and CDK6. 
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Supplementary Figure 2. The full-length gels of the Figure 4C western analyses used in the revised manuscript. The full-length 

gels of the Figure 4D western analyses used in the revised manuscript. The full-length gels of the Figure 4E western analyses used in the 
revised manuscript. 
 

 

 
 

Supplementary Figure 3. The expression data of lnc-FAM133B-2, miR-34a-5p and CDK6. 


