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INTRODUCTION 
 

Lung cancer is a prominent global health issue and 

economic burden, with an estimated 40.9 million 

disability-adjusted life-years in 2017 [1]. Non-small cell 

lung carcinoma (NSCLC) is the most frequent tumor type 

of lung cancer, accounting for approximately 87% of lung 

cancer cases, most of which were diagnosed with 

advanced stage [2]. In recent years, NSCLC still poses a 

huge health threat to all mankind in the case of high 

morbidity and mortality as well as poor prognosis due to 

late disease diagnosis and not being eligible for curative 

surgery. Even though traditional adjuvant platinum-based  

 

chemotherapy or target therapies have been beneficial for 

advanced resected tumors, most still have a high relapse 

risk [3–5]. One potential explanation for these clinical 

phenomena could be that traditional prognosis indicators 

are not helpful in making optimal therapy strategies for 

NSCLC patients with different states of recurrence risk. It 

would be of great significance to investigate a better 

prognostic molecular signature to predict recurrence and 

determine the patients with NSCLC who might benefit 

most from adjuvant therapies.  

 

It has been well-known that DNA methylation (DNAm), 

as an epigenetic modulator, regulates gene expression in 
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ABSTRACT 
 

Epigenetic alterations are crucial to oncogenesis and regulation of gene expression in non–small-cell lung carcinoma 
(NSCLC). DNA methylation (DNAm) biomarkers may provide molecular-level prediction of relapse risk in cancer. 
Identification of optimal treatment is warranted for improving clinical management of NSCLC patients. Using 
machine learning algorithm we identified 4 recurrence predictive CpG methylation markers (cg00253681/ART4, 
cg00111503/KCNK9, cg02715629/FAM83A, cg03282991/C6orf10) and constructed a risk score model that potently 
predicted recurrence-free survival and prognosis for patients with NSCLC (P = 0.0002). Integrating genomic, 
transcriptomic, proteomic and clinical data, the DNAm-based risk score was observed to significantly associate with 
clinical stage, cell proliferation markers, somatic alterations, tumor mutation burden (TMB) as well as DNA damage 
response (DDR) genes, and potentially predict the efficacy of immunotherapy. In general, our identified DNAm 
signature shows a significant correlation to TMB and DDR pathways, and serves as an effective biomarker for 
predicting NSCLC recurrence and response to immunotherapy. These findings demonstrate the utility of 4-DNAm-
marker panel in the prognosis, treatment decision-making and evaluation of therapeutic responses for NSCLC. 
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cancer [6]. The pattern of DNAm alterations which are 

locus dependent, includes hypo- and hyper-methylation of 

oncogene and tumor suppressor genes respectively, and 

has been proved to correlate with oncogenesis, progression 

and treatment [7, 8]. Methylome profiling carries several 

benefits: lots of altered CpG sites within DNA methylation 

target region, relatively stable methylation aberrance, and 

higher clinical sensitivity in cancer detection [9]. Besides, 

epigenetic therapy (low doses of DNMTi) exerts durable 

anti-tumor effect, avoiding acute cytotoxicity [10]. Prior 

studies showed well-renowned SEPT9 in colorectal cancer 

(CRC) [11] and MGMT in CRC with metastasis [12] were 

sensitive and effective methylation markers for diagnosis 

and prognosis. DNAm locus aberrance was also proved in 

lung tumor tissues and the epigenetic alterations might 

associate with prognosis of patients with stage I lung 

cancer [13]. Nevertheless, little is known about molecular 

function of specific DNAm markers or a methylation 

panel, and few of which are with clinical utility and widely 

accepted for NSCLC patients. Therefore, investigation into 

clinically effective and reliable DNAm signature is 

warranted for evaluating relapse risk of NSCLC. 

 

Immune checkpoint blockades (ICBs) therapies in 

advanced NSCLC patients demonstrated prominent 

durable response, and higher tumor mutation burden 

(TMB) correlated to improved relapse-free survival, 

durable objective response as well as elevated clinical 

efficacy [14]. Both mutation load and methylation loss 

accumulate during mitotic cell division [15], and 

chromosome instability may arise from mutations in a 

DNA methyltransferase gene [16]. Hence, it’s 

imperative that the DNAm signature and its 

contribution to immunotherapy responding patient 

stratification in NSCLC be explored to discover routine 

and potent biomarkers for identification of potential 

responders to ICBs treatment. 

 

In this study, we initially identified 4 CpG biomarkers 

associated with recurrence of NSCLC. Base on TCGA 

NSCLC cohort comprised of lung adenocarcinomas 

(LUAD) and lung squamous cell carcinomas (LUSC), a 

promising DNAm-based risk score model predictive of 

relapse was constructed and then validated in the other 

3 datasets. We further explored molecular mechanism 

and clinical utility of the DNAm signature. At last we 

investigated the relevance of the combined DNAm 

panel with TMB and clinical response to ICBs. 

 

RESULTS 
 

Patient and clinical characteristics in NSCLC 

cohorts 
 

NSCLC patients included were mainly derived from 

TCGA LUNG Cancer cohort, GSE39279, GSE66836 

and GSE119144 cohorts with clinical characteristics 

presented in Supplementary Table 1. DNAm data for a 

total of 827 TCGA NSCLC and 60 GSE119144 tumor 

samples were available at initial analysis, whereas RFS 

information of only 662 TCGA NSCLC patients (393 

non-recurrence and 271 recurrence tumor tissue 

samples) and 59 GSE119144 NSCLC patients (10 non-

recurrence and 49 recurrence tumors) was complete and 

available for analysis in training and validation phase, 

respectively. Beyond all that, we also utilized DNAm 

data of GSE66836 (164 LUAD samples) from GEO 

repository. Work flowchart of DNAm prognostic 

marker selection was depicted in Figure 1. 

 

DNA methylation and gene expression profiles in 

NSCLC 
 

Analyses of DNAm differences between NCSLC 

tumors and normal lungs were conducted on TCGA and 

GSE66836 datasets, revealing that DNA methylation in 

11641 overlapping CpGs representing 5359 unique 

genes were of significant aberration. To keep consistent 

with loci in GSE39279 and GSE119144 datasets, DMPs 

were further filtered and 9367 consistent CpGs among 

training and validation sets were retained. For trans-

criptomic profiling, differential expression analysis on 

TCGA RNA-seq data that matched with DNAm profiles 

showed 1717 significant DEGs, including 1282 

upregulated and 435 downregulated genes, and from 

which 270 potentially hyper- and hypo-methylated 

genes nearby DMPs mentioned above were identified 

and used for further shrinking CpGs. After Spearman’s 

correlation test (r < 0, Bonferroni corrected P < 0.05) on 

association between DNAm and mRNA expression 

levels, 102 CpGs representing 87 unique DEGs finally 

yielded. These DMPs were deemed as biologically 

meaningful where DNAm changes probably 

epigenetically regulated and negatively correlated to 

reference gene expression nearby. On the basis of 

results above, unsupervised hierarchical clustering of 87 

DEGs separated 849 TCGA NSCLC samples into tumor 

and normal subgroups, revealing 53 genes were 

upregulated and 34 genes were downregulated in tumor 

tissues (Figure 2A). Unsupervised clustering analysis of 

102 significant DMPs also presented a clear distinction 

between tumor and normal samples of TCGA DNAm 

data, in which 57 DMPs were hypomethylated while 45 

were hypermethylated in NSCLC tissues (Figure 2B). 

 

Identification of recurrence predictive CpGs for 

NSCLC 

 

To screen out the DNAm markers predictive of relapse 

risk for NSCLC patients, methylation values of DMPs 

in 664 TCGA tumor samples were included into 

following analyses with machine learning algorithms. 
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We firstly implemented two methods: LASSO-Logistic 

regression and Random Forest on modeling 102 

aforementioned DMPs for narrowing down markers, 

identifying 14 and 21 CpGs respectively (Figure 3A, 

3B, Supplementary Figure 1, Supplementary Table 2). 

A total of 11 CpGs were overlapped in results of two 

algorithms, and 24 CpGs unioned together were then 

incorporated into LASSO-Cox model, yielding 9 robust 

prognostic CpG markers (Figure 3C, 3D, Sup-

plementary Table 2). Plus, univariable Cox regression 

analysis was performed with relapse-free survival data 

of training set, and 8 CpGs were screened out, with 4 

most significant CpG markers identified simultaneously 

by LASSO-Cox and univariate Cox methods (Figure 

3E, Supplementary Table 2, Supplementary Figure 1). 

By combining CpGs selected from LASSO-Cox and 

univariate Cox models, 13 predictive biomarkers were 

obtained. Subsequently, multivariable analysis was 

conducted on clinicopathological factors in combination 

with the 13 CpGs (Supplementary Table 3). Using 

DNAm profile multiplied by coefficients of the 

multivariate Cox regression model, based on 4 ultimate 

CpGs (Table 1), a risk score model generated for 

prediction of recurrence in NSCLC. The median of risk 

score was set as the cutoff value and NSCLC patients 

were divided into high-risk group (risk score ≥ -0.0416) 

and low-risk group (risk score < -0.0416) 

(Supplementary Figure 2).  

 

We further investigated the potential of risk score model 

in NSCLC prognostic prediction. Survival analysis on 

the combined risk score showed that RFS probabilities 

of NSCLC patients in high- and low-risk groups were of 

salient difference, and the 4-DNAm-marker panel also 

presented favorable potential in predicting overall 

survival (OS) in TCGA NSCLC cohort (Figure 3F). 

 

 
 

Figure 1. Workflow chart of CpG marker selection. Two DNA methylation (DNAm) datasets and TCGA RNA-seq dataset were 
used for identifying 102 candidate CpG markers. Based on recurrence-free survival data of the training cohort (823 TCGA NSCLC 
patients), LASSO-Logistic and Random Forest methods were applied to identify recurrence associated CpG markers. With the incorporation of 
CpGs identified by two methods above, LASSO-Cox were implemented to select robust DNAm signatures. Using the CpGs overlapped in 
results of univariate Cox and LASSO-Cox models, the 4-DNAm-marker panel was finally identified and verified in validation cohorts. adj.P: 
Bonferroni corrected P. 
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Figure 2. (A) Hierarchical clustering of 87 unique DEGs that potentially regulated by changes in DNAm levels at 102 selected loci based on 
TCGA NSCLC gene expression data (821 tumor and 28 normal samples). Clinical and demographic features, including age, sex, pack-years 
smoked, histology, stage, lymphatic metastasis and clinical outcome (RFS, recurrence-free survival status). High expression, red; low 
expression, skyblue. (B) Hierarchical clustering of 102 significantly DMPs between NSCLC (n=827) and normal (n=74) samples. 
Hopomethylated CpGs, skyblue; hypermethylated CpGs, orange. 
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Figure 3. (A) LASSO-Logistic and (B) Random Forest methods applied to identify recurrence associated DNAm markers in training cohort. (C) 
A total of 11 overlapping CpGs and 24 combined CpGs in two algorithms. (D) LASSO-Cox analysis performed to select robust relapse 
predictive CpGs. (E) Four final identified CpGs in the intersection of univariate Cox and LASSO-Cox results. (F) The RFS curve (left) and overall 
survival curve (right) of training cohort based on 4-DNAm-maker panel. 
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Table 1. Characteristics of four prognostic CpG markers and their coefficients on the basis of multivariate Cox 
proportional hazard model. 

Marker Ref Gene Coefficient Hazard Ratio  
cg00253681 ART4 0.339 1.4 
cg00111503 KCNK9 -0.337 0.71 
cg02715629 FAM83A -0.138 0.87 
cg03282991 C6orf10 0.037 1.04 

 

Moreover, according to results of multivariable survival 

analysis, the risk score was an independent prognostic 

indicator for NSCLC patients and significantly 

associated with both RFS and OS (Supplementary 

Figure 3, Supplementary Table 4). AJCC stage system 

was extensively used for clinical prognostic evaluation, 

whereas this DNAm-based risk score was found to 

show better discriminative power of relapse status than 

clinical stage and other four separate CpGs in training 

and validation sets (Supplementary Figure 4). 

 

Clinical and molecular features, and mutations 

associated with the prognostic DNA methylation 

signature 
 

We next assessed the correlation of the DNAm 

signature with clinical characteristics and molecular 

features. The association between the risk score and 

tumor progression was found to be positive in TCGA 

NSCLC patients. Risk scores of tumors with recurrence 

were significantly higher than those without, and TCGA 

NSCLC samples at different stages had significant 

different relapse risk (Figure 4A). Besides, the similar 

results were also obtained on GSE39279 and GSE66836 

datasets (Figure 4A). Then, we sought to investigate the 

molecular implications hidden behind current 

correlations. GSEA on two TCGA NSCLC sample 

subgroups divided by predictive recurrence risk 

revealed that high-risk group endowed significant 

enrichment of gene signatures mainly related to E2F 

targets, G2M checkpoint and MYC targets V1 (Figure 

4B). According to RPPA analysis of LUAD tumors 

based upon TCGA repository, higher risk score was 

significantly correlated with higher expression of 

FOXM1 and CYCLINB1 proteins. FOXM1, a 

transcription factor upstream of CYCLINB1 (a G2/M 

transition marker), has been reported to associate with 

cell proliferation, whose overexpression is related to 

metastasis and poor prognosis in ovarian [17] and clear 

cell renal carcinoma [18], which suggested high cellular 

cycling and cell proliferation in NSCLC patients with 

high recurrence risk score. Also, epigenetic treatment of 

combining DNA-demethylating agents with histone 

deacetylase inhibitors decreased MYC signaling, 

exerting robust anti-tumor effect in NSCLC [19]. 

Notably, prominent correlations with risk score were 

also observed for pathways including allograft rejection, 

inflammatory response and IL2-STAT5 signaling 

(Figure 4B). Tumor microenvironment (TME) is 

deemed as intricate and dynamic in exacerbating and 

inhibiting tumor cell proliferation, migration, invasion 

and metastasis. On account that salient results of 

pathway enrichment analysis on the DNAm signature 

primarily consisted in cell cycle, proliferation and 

immune-related pathways, we were then committed to 

evaluating DNAm-based risk score in the context of 

TME. 

 

Within TME, component system activation plays an 

important role in the connection of inflammation and 

anti-tumor immune response as well as oncogenesis 

[20]. Prior studies have proposed that epigenetic 

changes can regulate inflammation and immune 

signaling [19]. We thus tried to assess cellular 

composing in NSCLC based on DNAm profiles of 

TCGA and GSE66836 cohorts. After implementing 

HEpiDISH function, we found escalating risk score was 

associated with an increased fibroblasts and a reduced 

immune-cell fraction. In Figure 4C presented significant 

correlations between the DNAm signature and 

estimated compositions of B-cells, CD4+ T-cells, CD8+ 

T-cells, eosinophils, monocytes, and fibroblasts in 

TCGA NSCLC samples. There were no significant 

correlations for recurrence risk score with assessed 

enrichments of neutrophils and NK cells (data not 

shown). We also noted that the fraction of fibroblasts 

was associated with lymphatic metastasis (Figure 4C), 

suggesting fibroblasts in TME might induce tumor 

inflammation and boost NSCLC progression as well as 

metastasis [21]. Likewise, strong associations of B-

cells, CD4+ T-cells, monocytes, eosinophils and 

fibroblasts abundance with DNAm-based risk score 

were observed in GSE66836 cohort (Supplementary 

Figure 5). These findings indicated that the higher 

fibroblasts fraction and lower infiltrating levels of 

immune cells might emerge in NSCLC patients with 

high recurrence risk, which were also consistent with 

previous reports demonstrating significant association 

between low density of CD8 +T-cells and poor RFS in 

papillary thyroid cancer [22]. 

 

Subsequently, we linked the DNAm signature to 

mutations in genes. Based on mutation profiles of 

TCGA NSCLC tumors, several SMGs identified by 
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MutsigCV v.1.41 and also correlated with DNAm-based 

risk score were presented in Figure 4D. A notable 

correlation of our risk score with somatic mutations in 

gene KRAS, KEAP1, STK11, and co-occurring 

KRAS/KEP1A mutations was found in NSCLC (Figure 

4E). Furthermore, we found a significant association of 

this DNAm signature with mRNA expression of 

KEP1A and STK11 (Figure 4F). Higher NRF2, ACC1 

and lower KEAP1, PTEN, p-AMPK, NF2 and RB 

protein abundance were observed in high-risk group 

(Figure 4F). Loss-of-function type mutation in KEAP1 

results in activation of NRF2, which accelerates lung 

cancer cell growth [23]. Combined loss of PTEN and 

KEAP1 promotes LUAD formation in mice model [24]. 

In current study, high DNAm-based risk score was 

connected to low expression of STK11, low AMPK 

activation as well as STK11 mutation, indicating the 

mTOR activation of TCGA NSCLC samples in high-

risk group [25]. Elevated ACC1 levels in patients with 

hepatocellular carcinoma were correlated to vascular 

invasion and disease recurrence [26]. The inactivation 

of NF2 in malignant Pleural Mesothelioma with mTOR 

activity aberrantly upregulated, fails to inhibit cell 

proliferation, leading to a poor prognosis [27]. Absence 

of RB in a mouse model of LUAD was demonstrated to 

drive disease progression and metastasis [28]. 

 

Methylation signature correlates to TMB and DDR 

genes 
 

In recent time, tumor mutation burden (TMB) has been 

well-reported as an emerging and promising indicator 

for clinical benefit of immunotherapy [29]. DNA 

hypomethylation was proposed to induce chromosomal 

aberrations, prompting chromosome instability [30]. 

Based upon nonsynonymous coding mutations in 

somatic mutation data matched with methylome data 

of TCGA NSCLC tumors, we then quested for the 

connection between DNAm signature and TMB. It 

turned out to be noteworthy higher TMB in high-risk 

group (Figure 5A), suggesting DNAm-based risk score 

might predict immune evasion of NSCLC to some 

extent. Methylation loss was linked to an increase in 

mutation density and cell cycle gene expression by 

mitotic cell division [31]. Methylation status of four 

selected DMPs and expression levels of nearby 

reference genes at four CpG sites in our risk score 

model were also correlated with TMB (Supplementary 

Figure 6). We further inspected the underlying 

biological structure with respect to our DNAm 

signature to inquire into interpretation for distinct 

TMB between high- and low-risk groups. GSVA were 

performed on recurrence risk status, which revealed 

that gene sets of cell cycle, DNA replication, homo-

logous recombination, nonhomologous end-joining, 

mismatch repair, base excision repair and nucleotide 

excision repair were significantly upregulated in high-

risk group (Figure 5A). All these observations implied 

relevance of cell proliferative processes activation for 

high risk status, and also implicated that this DNAm 

signature might have connection to alterations in cell 

cycle, DNA replication and DDR pathway genes. 

Increased TMB and improved efficacy of ICBs were 

proposed to independently associate with alterations in 

DDR genes [32]. In order to determine whether 

DNAm signature might underlie and account for 

differential TMB by influencing molecular 

mechanisms analyzed above, we subsequently aimed 

at figuring out the correlation of DDR-related genes 

and DNAm-based risk score.  
 

The related gene signatures involved in six of 

aforementioned DDR pathways were listed in Table 2 

and defined as BER, NER, HRR, MMR, NHEJ and 

Checkpoint genes [33], respectively. Also, six kinds of 

co-mutations in DDR genes above were analyzed in this 

study. It has been well-established that TP53 mutation 

accelerates cell cycle and DNA replication, and 

TP53/KRAS co-mutation exhibits a remarkable 

increased mutational loads and owns a potential of 

predicting response to immunotherapy in LUAD [34]. 

In this study, higher frequency of TP53 mutation in 

high-risk group was observed in patients from TCGA 

NSCLC as well as GSE66836 cohort (Figure 5B), 

indicating NSCLC tumors with higher risk score were 

more susceptible to yielding DNA replication errors. 

Additionally, the presence of TP53 alterations without 

EGFR or STK11 mutations is revealed to identify 

LUAD patients who respond to anti-PD1 therapies [35]. 

Significant associations of risk scores with TP53/KRAS 

co-mutation, combination of TP53-Mut/EGFR-Wt 

mutation as well as somatic mutations in STK11 and in 

other co-analyzed DDR genes were also identified in 

this study (Figure 5B). The mTORC1-S6K pathway is 

aberrantly activated due to STK11 loss, leading to DNA 

damage response defects and prompting genome 

instability [36]. The mutated ATM is reported to 

correlate with genomic instability and ATM 

predominantly responds to DNA double-strand breaks 

(DSB) [37, 38]. What’s more, we found significant 

associations of the DNAm signature with waning 

protein abundance of ATM, PARP1, and raised 

expression of PCNA and CYCLINE1 protein (Figure 

5C). Overexpressed CCNE1, an oncogene encoding cell 

cycle protein CYCLINE, induced DNA replication 

stress by premature S phase entry, leading to genomic 

instability [39]. All analyses above suggested that 

changes of DNAm patterns in NSCLC might predispose 

epigenetically impacting on TMB by mediating 

alteration in cell-cycle regulating and DDR genes, 

resulting in more neoantigens formation and changes of 

the tumor antigenicity.  
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Figure 4. Selected clinical, molecular features and mutations associated with DNAm-based risk score. (A) Relationship of clinical 
characteristics and the DNAm signature. DNAm-based risk score stratified by different stages and recurrence status from TCGA NSCLC 
patients (left) and from GSE39279 (top right) and GSE66836 cohorts (bottom right). (B) GSEA on a set of hallmark gene signatures revealing 
the impact of the identified DNAm signature on cell cycle, proliferation and immune-related pathways (top); DNAm-based risk score strongly 
correlated to expression of FOXM1 and CYCLINB1 protein (bottom). (C) Relevance of estimated cell-type fractions with risk score (top); The 
abundance of fibroblasts in NSCLC patients relates to lymphatic metastasis status (bottom). (D) Mutation profile of TCGA NSCLC samples 
showing 13 SMGs of which mutational proportion correlated with DNAm signature. (E) Association of the DNAm signature with mutation in 
genes. DNAm-based risk score stratified by mutations in KRAS, KEAP1, STK11 and KRAS/KEAP1 co-mutations. (F) Correlation of DNAm 
signature with representative gene (top) and protein (bottom) expression. 
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Figure 5. Correlation of DNAm-based risk score with TMB, cell cycle, DNA damage response (DDR) genes. (A) Left, TMB 
estimation of TCGA NSCLC patients in high- and low-risk group; right, GSVA presenting DDR pathways significantly enriched in high risk group 
(adjusted P < 0.01). (B) Estimated frequencies of mutations in TP53 (top left), STK11 and DDR genes (top right), TP53/KRAS co-mutations and 
TP53-Mut/EGFR-Wt mutations (bottom) under different recurrence risk status. (C) Protein expression of ATM, PARP1, PCNA and CYCLINE1 
associated with DNAm-based risk score in TCGA cohort. 
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Table 2. Gene list for six related DNA damage repair response pathways. 

Pathway Genes 
BER NEIL3, PARP1, PCNA 
Checkpoint ATM, TIMELESS, TP53 
HRR BRCA1, BRCA2, XRCC2 
MMR MLH1, MSH3, MSH4 
NER ERCC1, ERCC6, TCEB3 
NHEJ DCLRE1C, PRKDC 

*BER, base excision repair; HRR, homologous recombination repair; MMR,  
mismatch repair; NER, nucleotide excision repair; NHEJ, non-homologous end-joining. 

 

NSCLC patients with high risk score present 

favorable clinical benefit to immunotherapy 

 

To go further, the relevance of DNAm-based risk score 

with response to ICBs was investigated on GSE119144 

cohort. We observed RFS of immunotherapeutic 

patients in high-risk group was significantly superior to 

that of those in low-risk group (Figure 6A). Besides, a 

greater percentage of NSCLC patients with high risk 

score owned a durable clinical benefit, while most of 

low-risk group patients had no durable clinical benefit 

(Figure 6B). Notably, the combination of DNAm 

signature and TMB saliently improved the ability to 

predict clinical responses to immunotherapy (AUC = 

0.965, Figure 6C). As was revealed in Kaplan–Meier 

curves, NSCLC patients separated by this combination 

of two variables harbored significantly different clinical 

outcomes (P = 0.01, Figure 6D). These results 

 

 
 

Figure 6. The relationship between DNA methylation signature and clinical response to immunotherapy investigated in 
GSE119144 cohort. (A) Relapse-free survival curves comparing high-risk with low-risk groups in NSCLC patients received anti-PD-1/PD-L1 
therapies, according to DNAm-based risk score from validation set. (B) Proportion of clinical benefit to immunotherapy in the indicated 
groups stratified by our DNAm signature (DCB: durable clinical benefit and NDB: no durable benefit). (C) Time-dependent ROC curves for 
DNAm-based risk score, TMB, and risk score combined with TMB. (D) RFS curves of NSCLC patients with combinations of risk score and TMB. 



 

www.aging-us.com 14659 AGING 

implicated high risk score and high mutational burden 

might represent robust biomarkers to determine best 

responders to ICBs treatments. And anyway, the clinical 

application effect deserves further research and being 

corroborated in larger cohorts with longer follow-up 

data. 

 

DISCUSSION 
 

In present study, based on methylation and trans-

criptome data as well as corresponding clinical 

information of training and validation cohort, we 

initially selected 4 DMPs predictive of NSCLC relapse 

by applying machine learning methods, and built a risk 

score model comprised of 4 CpG markers. To 

demonstrate clinical utility of the 4-DNAm-marker 

panel, training and validation NSCLC cohorts could be 

effectively divided into high-risk and low-risk groups of 

tumor relapse. In this manner, it’s convenient and 

beneficial for clinicians to conduct individualized 

medical treatment and heath management.  

 

Given that higher DNAm-based risk score linked to 

adverse clinical outcomes, we assumed our DNAm 

signature might underlie and facilitate development and 

progression in NSCLC. To better understand 

implications of DNAm signatures in clinical events of 

NSCLC, we then sought to explore the biological 

function, molecular mechanism as well as hidden 

compounding somatic variants, and also evaluated cell-

type composition from an epigenetic perspective. In this 

work, we observed the recurrence predictive risk score 

of TCGA NSCLC patients to be correlated with clinical 

characteristics, fractions of immune cell infiltrates, 

molecular features in the layers of both mRNA and 

protein expression, as well as somatic mutations in 

genes involved in specific signaling pathways. 

Interestingly, a remarkable association between the 

DNAm signature and TMB was identified in TCGA 

NSCLC cohort. Additionally, we noted DNAm-based 

risk score was connected to several DDR genes, which 

could be a favorable interpretation of high TMB in 

high-risk group. Ultimately, this DNAm signature was 

demonstrated to be a potential biomarker that predicted 

clinical response to immunotherapy and survival of 

NSCLC. 

 

This is, to the best of our knowledge, a comprehensive 

investigation on NSCLC by integrating TCGA NSCLC 

data for DNAm, mutations, clinical features, expression 

of mRNAs and proteins, which provides insight into 

molecular mechanism, prognostic, and therapeutic 

implications. We propose that the 4-DNAm-marker 

panel acts as an effective biomarker for predicting 

metastasis and recurrence in NSCLC. The hematogenic 

metastasis formation can be characterized by the 

extravasation of leukocytes and tumor cells [40]. In the 

context of TME, it’s of necessity to investigate 

individual cell-type enrichments for reflecting tumor-

immune interactions. Prior studies have established the 

notion that CD4+ /CD8+ T-cells are capable of 

recognizing cancer antigens and positively associated 

with favorable RFS in ovarian cancer [41]. We noted 

that higher risk score was correlated to increased 

fibroblasts and reduced leukocyte fractions, indicating 

4-DNAm-marker panel might have the potential to 

serve as an indicator of characterizing immune 

infiltration landscape in NSCLC. The combination 

epigenetic therapy (Aza + ITF-2357) induced the 

increased levels of CCL5, a secreted chemokine 

attracting functional lymphocytes, restraining tumor 

growth with increased number of CD8+ T cells in mice 

model of NSCLC [19]. Our observations also suggested 

that several immune cell subtypes in NSCLC were 

indispensable for tumor progression. 

 

Previous studies put forward that genetic 

characterization revealed by WES or targeted 

sequencing might have influence over therapeutic 

options, assessment of treatment response and patients’ 

prognosis in some solid cancers [42]. Investigations on 

targeted therapies directed towards several somatically 

altered pathways are thus essential for medical decision 

and clinical implementation. We presented that 

mutational patterns of TCGA NSCLC tumors were 

associated with the DNAm signature, in which a strong 

correlation of higher DNAm-based risk score with 

recurrently mutated driver genes KRAS, KEAP1 and 

STK11 was observed in this study. We also noted that 

high risk score was correlated to co-mutations in 

KRAS/KEAP1, and associated with expression of 

KEAP1, STK11 mRNA as well as several other key 

protein abundance. KEAP1 deletion contributes to 

tumor aggressiveness, metastasis, and increases radio-

resistance in LUSC [43]. Somatic oncogenic point 

mutations in KRAS were proposed to be crucial to 

progression and drug resistance in 90% of patients with 

pancreatic ductal adenocarcinoma, a highly metastatic 

disease with a high mortality rate [44]. A higher 

incidence of metastasis emerged in KRAS-mutated 

CRC patients, whose relapse pattern depends on the 

KRAS mutational status with down-regulation of p-

MAPK signaling prompting and forming distant lung 

metastasis [45]. Somatic KEAP1 mutation leads to 

activation of the NRF2 pathway, and NSCLC patients 

with KEAP1 mutation in addition to an activating 

KRAS mutation were demonstrated to have a shorter 

duration of platinum-based chemotherapy and a worse 

prognosis than other patients with KRAS-mutant [46]. 

We speculated that epigenetic patterns might describe 

genetic alterations in NSCLC tumors and further reflect 

tumor aggressiveness and resistance to therapy. Our 
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identified DNAm signature of TCGA NSCLC tumors 

were also observed to connect with recurrence-

associated and especially cell-cycle related gene 

signatures that induce tumor metastasis for many tumor 

types, suggesting that epigenetic changes may impact 

on activation of cell cycle and disease progression. 

 

The unmethylated status of FOXP1 indicates durable 

response to ICB therapies and improved survival of a 

subset of NSCLC patients, and could correlate to 

validated and up-to-date biomarkers such as mutational 

load [29]. Earlier studies proposed that DNA replication 

stress leads to genomic instability in cancer, which can be 

characterized by the rates of high mutation as well as 

epigenetic perturbation, especially for DNA methylation 

loss [15, 47]. TMB of TCGA NSCLC patients was found 

prominently associated with the DNAm-based risk score 

in our study. We also revealed underlying mechanisms 

hidden behind this correlation. It turned out that DNAm 

signature also interplayed with genomic alterations in 

DDR pathways, implicating NSCLC patients in high-risk 

group potentially endowed endogenous replication stress 

and genomic instability. In the light of results analyzed 

above, we speculate that DNAm-based risk score may 

contribute to the identification of those individuals who 

will be more susceptible to immunotherapy and predicting 

clinical efficacy of ICBs. More recently, several studies 

have proposed DNAm alterations might work as 

biomarkers of immune evasion with higher predictive 

power than mutation burden [48], but the more specific 

DNAm signature remained to be elucidated. The sensitive 

measure of TMB estimation demands WES or a minimum 

gene panel size of 150 [49]. Clinically, our 4-DNAm-

maker panel, by contrast, can avoid the high cost of WES 

or deep sequencing and be cost-efficient in practice. 

Combining epigenetic treatment, depletion of Myc 

reverses immune invasion of lung cancer, enhancing 

effectiveness of immune checkpoint treatment [19]. It’s 

conceivable that a promising epigenetic therapy, possibly 

coupled with immunotherapies will generate remarkable 

clinical benefit.  

 

Several limitations to our study should be noted: Firstly, 

another independent NSCLC cohort which is performed 

with DNAm assay and also received ICBs therapy with 

detailed follow-up data will be required to validate our 

observation. Second, this study was based on DNAm 

data of NSCLC tissue biopsy and it’s preferable that our 

results could be also validated by ctDNA methylation 

analysis which is relatively noninvasive and clinically 

feasible. Thirdly, more detailed biologic mechanisms of 

final selected markers remains to be investigated on 

laboratory experiments.  

 

To sum up, the combined DNAm signature (cg00253681, 

cg00111503, cg02715629, and cg03282991) is a reliable 

biomarker for predicting clinical benefit to ICBs 

treatments and recurrence in NSCLC. Our study shed 

light on the implications of epigenetic modulation in 

disease recurrence prediction, treatment strategy selection 

and evaluation of responses to immunotherapy. 

 

MATERIALS AND METHODS 
 

NSCLC patient data 

 

The Cancer Genome Atlas (TCGA) LUNG Cancer, 

GSE66836, GSE39279 and GSE119144 cohorts included 

in this study were derived from online public data 

repository, with NSCLC patients who received neo-

adjuvant chemotherapy excluded. For DNAm data, a total 

of 901 TCGA NSCLC samples were available using the 

Illumina Infinium HumanMethylation450 platform, 

including 827 tumor tissues and 74 non-tumor tissues. 

DNAm level 3 data were obtained at the website: 

https://tcga.xenahubs.net. In addition to TCGA data, we 

also analyzed GSE66836 dataset (164 LUADs, 19 normal 

lungs), GSE39279 and GSE119144 cohorts that recruited 

444 and 60 NSCLC patients respectively. Three 

methylation microarray datasets and corresponding 

clinical data were downloaded from Gene Expression 

Omnibus (GEO) database. DNAm levels of 4 datasets 

above were all measured by beta values for each CpG 

probe, which ranged from 0 (completely unmethylated) to 

1 (completely methylated). TCGA LUNG Cancer gene 

expression data consisted of 1116 samples, including 

1007 NSCLC tissues and 109 normal tissues. RNA 

sequencing (RNA-seq) level 3 expression data 

(normalized read counts) and related clinical data were 

available at https://tcga.xenahubs.net. TCGA NSCLC 

somatic mutation data comprised of somatic variant calls 

in TCGA-LUAD (n=562) and TCGA-LUSC (n=486) 

cohorts were retrieved from https://gdc. 

xenahubs.net. 

 

Analysis of epigenetic profiles 

 

Right at the beginning, we aimed at identifying significant 

differentially methylated positions (DMPs) in TCGA 

NSCLC tumor versus normal lung tissues. TCGA DNAm 

level 3 data for 485578 CpGs were parsed into the limma 

package [50] with limma function implemented to assess 

the differential DNAm. A robust DMP was defined as 

containing CpG that yielded a Benjamini-Hochberg (BH) 

adjusted P < 0.05, without “NA” for the average beta in 

each group. To obtain more reliable DMPs, the same 

analysis steps were conducted on Methylation 450K 

Beadchip data (normalized beta values) of GSE66836, 

then overlapping DMPs of 2 datasets were retained for 

subsequent analyses. The DMPs with log2 fold change < 0 

were regarded as hypomethylated and  > 0 were regarded 

as hypermethylated. To pursuit meaningful epigenetic 

https://tcga.xenahubs.net/
https://tcga.xenahubs.net/
https://gdc.xenahubs.net/
https://gdc.xenahubs.net/
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profiling, 450k data in our study were annotated by  

R package lluminaHumanMethylation450kanno.ilmn 

12.hg19. 

 

Gene expression data and reverse phase protein 

array profiling 
 

Subsequently, analysis of aberrant gene expression in 

821 TCGA NSCLC tissues compared with 28 matched 

normal lung tissues (consistent with samples in DNAm 

data) was performed by edgeR package. A threshold 

value of false discovery rate (FDR) < 0.05 and |log2 fold 

change| > 1 was used for screening significant 

differentially expressed genes (DEGs). The upregulated 

genes (FDR < 0.05, log2 fold change >1) and 

downregulated genes (FDR < 0.05, log2 fold change < -

1) were further utilized for screening hypomethylated 

CpGs showing higher expression and hypermethylated 

CpGs showing lower expression, respectively. To 

integrate mRNA expression and epigenetic profile, the 

associations between DEGs and differentially 

methylated loci located within 2 kb of transcript start 

site were then assessed by Spearman correlation. The 

Bonferroni corrected P < 0.05 and r < 0 were used as 

cut-off criteria for further filtration.  

 

As is described in previous researches, it’s preferable 

that we performed analysis of mRNA expression 

incorporated with protein expression profiles for 

reflecting biological complexity more systematically 

and comprehensively [51]. To assess protein levels of 

TCGA cohort, we downloaded the reverse phase protein 

array (RPPA) profiles of 687 NSCLC samples 

(including 362 LUAD and 325 LUSC samples) from 

MD Anderson (http://app1.bioinformatics.mdanderson. 

org/tcpa/_design/basic/index.html).  

 

Clinical data and predictive modeling 

 

To identify potential recurrence predictive methylation 

markers for NSCLC patients, four aforementioned 

cohorts were included for prognostic prediction using 

candidate CpGs in combination with corresponding 

clinical characteristics (adjuvant radiation and 

chemotherapy, histology, sex, age, stage, pack-years 

smoked, lymphatic and distant metastasis). 

 

In training phase, TCGA LUNG Cancer cohort was 

used as the training dataset, in which 664 NSCLC 

specimens have detailed recurrence-free survival (RFS) 

information. First, Random Forest and Least Absolute 

Shrinkage and Selection Operator (LASSO) Logistic 

models were applied to select recurrence-related DNAm 

markers. Meanwhile, univariate cox regression was 

performed to identify CpG markers associated with RFS 

of NSCLC patients. According to theoretical basis of 

LASSO method, Cox proportional hazards regression 

model with LASSO penalty generates regression 

coefficients that strictly equal to 0, removing some of 

variables with lower weights on the purpose of data 

dimension reduction, and preventing overfitting 

resulting from collinearity of the covariates [52]. To 

further identify more significant markers, LASSO-

Cox method was subsequently implemented on the 

incorporation of CpGs selected by LASSO-Logistic and 

Random Forest algorithms. Next, the consistent CpGs 

identified by univariate Cox and LASSO-Cox methods 

were retained and then incorporated into a multivariable 

Cox regression model. Eventually, GSE39279, 

GSE66836 and GSE119144 were taken as validation 

datasets, in which GSE119144 cohort was consisted of 

60 NSCLC patients who underwent anti-PD-1/PD-L1 

ICBs treatments, with complete follow-up information 

available about 59 samples.  

 

Gene set enrichment analysis and gene set variation 

analysis 
 

To investigate the association between NSCLC 

recurrence risk status predicted by the DNAm-based 

risk score and gene signatures, using R package 

“clusterprofiler” [53] we implemented gene set 

enrichment analysis (GSEA) on TCGA mRNA 

expression data. Two NSCLC subgroups (High risk vs. 

Low risk) were divided according to median risk score, 

on which fold change values were calculated and used 

for GSEA on a set of 50 hallmark signatures [54]. 

Additionally, the “GSVA” package [55] was utilized for 

identifying pathways most related to the DNAm 

signature. The gene set variation analysis (GSVA) was 

performed with a set of 186 KEGG pathway signatures. 

Gene signatures with adjusted P < 0.05 were considered 

significant differentially enriched. Two reference gene 

sets above were downloaded from the Molecular 

Signature Database (MSigDB): http://software. 

broadinstitute.org/gsea/msigdb/index.jsp. 

 

Somatic mutation profiling and cell-type fraction 

estimating 
 

Highly confident somatic variants, including single 

nucleotide variation and short insertion/deletion poly-

morphism, from a total of 1048 TCGA NSCLC samples 

were integrated in this study. Using MutsigCV v.1.41 [56] 

somatic variant calls from TCGA NSCLC tumors were 

analyzed for significantly mutated genes (SMGs); among 

them, SMGs with FDR value below 0.05 were retained. 

The visualized part and summarization for MAF files of 

TCGA NSCLC whole-exome sequencing (WES) data 

were implemented by R package maftools [57]. To 

evaluate the tumor mutation burden (TMB), we computed 

the number of non-synonymous somatic mutations in 

http://app1.bioinformatics.mdanderson.org/tcpa/_design/basic/index.html
http://app1.bioinformatics.mdanderson.org/tcpa/_design/basic/index.html
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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coding region for each tumor sample. Based on a primary 

reference containing fibroblasts and a secondary reference 

that contains 7 immune cells subtypes (B-cells, NK cells, 

CD4+ and CD8+ T-cells, monocytes, neutrophils and 

eosinophils) [58], we applied the HEpiDISH method on 

DNAm profiles of TCGA and GSE66836 datasets by R 

package “EpiDISH” to infer individual cell-type fractions 

for NSCLC patients included. The correlations between 

the DNAm signature and estimated enrichments of cell 

types were subsequently investigated. 

 

Statistical analyses 

 

All statistical analyses were implemented using R 

version 3.6.2. Unsupervised hierarchical clustering was 

conducted by package ComplexHeatmap in R using the 

DNA methylation levels of selected DMPs as well as 

the mRNA expression levels of DEGs nearby those 

CpGs. The R package “randomForest” and “glmnet” 

were used for Random Forest and LASSO model. The 

10-fold cross validation was performed on two 

algorithms to optimize Random Forest model with 

minimum misclassification rate and obtain the optimal 

lambda values (the minimum lambda value) in LASSO 

models. Kaplan-Meier curves analyses and log-rank 

tests were performed by the survminer package. 

Furthermore, the survival package was used for survival 

analysis with DNAm signature and clinicopathological 

parameters combined in a multivariable Cox pro-

portional hazards regression model. To estimate the 

performance of CpG markers in training and validation 

sets, we conducted receiver operating characteristic 

(ROC) curve analyses using pROC package. In 

addition, time depended ROC analysis was performed 

by the survival ROC package. We performed the 

Wilcoxon test followed by multiple testing using the 

BH correction approach to figure out difference of 

DNAm-based risk score between mutant subgroups, 

between related clinical-factor groups, and difference of 

TMB estimation in high-risk vs. low-risk group. 

Spearman correlation analysis was used to assess the 

relationship of DNAm signature with estimated cell-

type fractions, DNA damage response (DDR) genes and 

proteins. The mutation frequencies in DDR genes 

between high- and low-risk groups were compared 

using Chi-square (χ2) test. For all statistical tests, two-

tailed P < 0.05 denoted statistical significance, which is 

indicated by *, P < 0.05, **, P < 0.01, ***, P < 0.001, 

****, P < 0.0001. 

 

Data accessibility 

 

The methylation chip data for NSCLC samples included 

in our study are accessible through GEO accession 

number GSE66836, GSE119144 and GSE39279. RPPA 

data are available on MD Anderson TCGA database. 

All TCGA NSCLC data can be accessed at 

https://tcga.xenahubs.net. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. (A) Ten-fold cross validations performed for obtaining optimal parameter lambda (λ) in LASSO-Logistic (left) and 
LASSO-Cox analysis (right). The dotted vertical lines were plotted at values of log (λ) by minimum criteria and 1-Standard Error criteria in two 
LASSO models, respectively. The optimal values of λ were determined by minimum criteria where two dotted vertical lines were drawn in 
Figure 3A and Figure3D, and thus 14 and 9 CpG markers with nonzero coefficients were screened out. (B) Kaplan-Meier curves of four final 
selected CpGs present their correlation with recurrence and prognostic prediction of NSCLC patients in training cohort. 
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Supplementary Figure 2. Association chart of relapse risk factors. (A, B) Distribution of risk score and RFS of TCGA NSCLC patients in 
high- and low-risk groups. (C) The heatmap of DNAm profile of 4 final selected CpGs. 
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Supplementary Figure 3. Multivariate Cox regression analysis for RFS of TCGA NSCLC patients with combinations of DNAm-
based risk score and clinical factors. 
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Supplementary Figure 4. Receiver operating characteristic (ROC) curves of the combined risk score, clinical stage and 4 separate CpGs 
demonstrate their performance of discrimination for relapse status in training (A) and validation (B) cohorts. 
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Supplementary Figure 5. Estimated compositions of B-cells (A), CD4+ T-cells (B), fibroblasts (C), monocytes (D) and eosinophils (E) were 
significantly correlated with DNAm-based risk score in GSE66836 cohort. (F) Fraction of fibroblasts in NSCLC samples at late stage was 
significantly higher than those at early stage. 
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Supplementary Figure 6. The correlation of TMB with four CpGs methylation status and expression of four nearby genes. (A) 
Methylation levels of 4 identified DMPs in high TMB compared with low TMB group. (B) Differential expression of 4 reference genes in high 
and low TMB. 
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Supplementary Tables 
 

 

Supplementary Table 1. Clinical characteristics of patients for included study cohorts. 

Characteristics  
Training 

cohort (TCGA) 

Validation 
cohort 

(GSE39279) 

Validation 
cohort 

(GSE66836) 

Validation 
cohort 

(GSE119144) 

Total  n=823 n=444 n=164 n=60 

Sex Female 340 190 91  

 Male 483 254 73  

Age <65 318 200   

 >=65 466 243   

 Unknown 39 1   

Pack-years smoked <30 94 124   

 >=30 228 237   

 Unknown 501 83   

Histology Adenocarcinoma 455 322 164  

 
Squamous cell 

carcinoma 
368 122 0  

Stage I 420 237 93  

 II 244 94 40  

 III 127 102 29  

 IV 24 11 2  

 Unknown 8    

Lymphatic metastasis Absent 534 239   

 Present 273 116   

 Unknown 16 89   

Distant metastasis Absent 577 344   

 Present 23 11   

 Unknown 223 89   

Adjuvant radiation 
therapy 

Yes 129 235   

 No 90 39   

 Unknown 604 170   

Adjuvant 
chemotherapy 

Yes 136 250   

 No 79 24   

 Unknown 608 170   

Outcome(RFS) Recurrence-free 399 150  10 

 Recurrence 269 161  49 

 Unknown 155 133  1 

Outcome(OS) Alive 502    

 Dead 321    

Follow up 
time(year/month) 

Available(PFS) 662   59 

 Unknown(PFS) 161   1 

 Available(OS) 808    

 Unknown(OS) 15    

*RFS : recurrence-free survival status; OS : overall survival status. 
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Supplementary Table 2. Recurrence associated CpG markers identified by Univariate Cox, Random Forest and LASSO 
methods in training cohort.  

Marker ID Chr Pos Ref Gene Location logFC adj.P Method 

cg00017489 chr7 153583318 DPP6 TSS1500 0.291 5.61E-39 LASSO-Logistic/Random Forest 

cg00253681 chr12 14996583 ART4 TSS200 0.119 2.50E-21 
LASSO-Logistic/Random 

Forest/Univariate Cox/LASSO-Cox 

cg00682263 chr15 66188803 MEGF11 3'UTR 0.382 2.88E-87 LASSO-Logistic 

cg02382109 chr8 22785456 PEBP4 TSS200 0.064 2.43E-06 
LASSO-Logistic/Random 

Forest/LASSO-Cox 

cg03389538 chr3 128779498 GP9 TSS200 0.043 7.37E-07 LASSO-Logistic/Random Forest 

cg03502002 chr18 74962133 GALR1 1stExon;5'UTR 0.463 7.43E-52 
LASSO-Logistic/Random 

Forest/LASSO-Cox 

cg00111503 chr8 140631116 KCNK9 Body -0.169 7.35E-20 
LASSO-Logistic/Random 

Forest/Univariate Cox/LASSO-Cox 

cg00814751 chr5 176072170 EIF4E1B Body -0.095 1.19E-10 LASSO-Logistic 

cg01522296 chr22 50452415 IL17REL TSS1500 -0.107 2.26E-13 LASSO-Logistic/Random Forest 

cg02310286 chr8 88886432 DCAF4L2 TSS200 -0.141 9.58E-11 
LASSO-Logistic/Random 

Forest/Univariate Cox 

cg02407493 chr16 2068942 NPW TSS1500 -0.148 5.53E-19 
LASSO-Logistic/Random 

Forest/Univariate Cox 

cg02715629 chr8 124193817 FAM83A TSS1500;TSS1500 -0.247 1.75E-35 
LASSO-Logistic/Random 

Forest/Univariate Cox/LASSO-Cox 

cg02901006 chr19 8117024 CCL25 TSS1500 -0.117 1.57E-10 LASSO-Logistic/Random Forest 

cg03282991 chr6 32294260 C6orf10 Body -0.166 1.03E-17 
LASSO-Logistic/Univariate 

Cox/LASSO-Cox 

cg00446413 chr7 153749206 DPP6 TSS1500;Body 0.264 1.41E-50 Random Forest 

cg02263813 chr16 56672640 MT1A 1stExon;5'UTR 0.233 2.38E-28 Random Forest 

cg02099194 chr13 43149689 TNFSF11 Body;5'UTR -0.153 6.42E-19 Random Forest 

cg00914726 chr1 60539400 C1orf87 1stExon;5'UTR 0.233 3.82E-17 Random Forest 

cg00472801 chr6 62995876 KHDRBS2 1stExon;5'UTR 0.132 8.77E-13 Random Forest 

cg02096663 chr4 178650141 LOC285501 Body -0.147 2.55E-10 Random Forest 

cg00174500 chr14 23846479 CMTM5 1stExon;1stExon 0.045 0.000975951 Random Forest/LASSO-Cox 

cg02062418 chr16 1494677 CCDC154 TSS200 -0.036 7.32E-06 Random Forest/LASSO-Cox 

cg03322234 chr7 1022643 CYP2W1 TSS200 -0.033 0.046378826 Random Forest/LASSO-Cox 

cg02992224 chr11 93822294 HEPHL1 Body -0.123 1.25E-11 Random Forest 

cg01466017 chr10 17496720 ST8SIA6 TSS1500 0.095 1.55E-07 Univariate Cox 

cg03377767 chr2 17997138 MSGN1 TSS1500 -0.249 5.44E-47 Univariate Cox 

*logFC: log2 fold change; adj.P: Benjamini-Hochberg adjusted P value. 
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Supplementary Table 3. Multivariable regression analysis for PFS of TCGA NSCLC patients conducted on clinical 
factors in combination with 13 biomarkers identified by LASSO-Cox and univariate Cox models. 

Characteristics  Coefficient Hazard Ratio 

Yes vs. No 0.461 1.59 

Unknown vs. No -0.514 0.6 

Yes vs. No 0.206 1.23 

Unknown vs. No -1.13 0.32 

Histology Squamous cell carcinoma vs. Adenocarcinoma 0.098 1.1 

Sex Male vs. Female 0.062 1.06 

Age >=65 vs. <65 0.17 1.19 

 Unknown vs. <65 -0.552 0.58 

Pack-years smoked >=30 vs. <30 0.091 1.1 

 Unknown vs. <30 -0.037 0.96 

Lymphatic metastasis Present vs. Absent 0.373 1.45 

 Unknown vs. Absent 0.009 1.01 

Stage III/IV vs. I/II 0.347 1.41 

 Unknown vs. I/II -0.872 0.42 

Distant metastasis Present vs. Absent -0.422 0.66 

 Unknown vs. Absent 0.049 1.05 

cg00253681 Hypermethylation vs. Hypomethylation 0.339 1.4 

cg02382109 Hypermethylation vs. Hypomethylation 0.057 1.06 

cg03502002 Hypermethylation vs. Hypomethylation -0.27 0.76 

cg00111503 Hypermethylation vs. Hypomethylation -0.337 0.71 

cg02715629 Hypermethylation vs. Hypomethylation -0.138 0.87 

cg03282991 Hypermethylation vs. Hypomethylation 0.037 1.04 

cg00174500 Hypermethylation vs. Hypomethylation -0.389 0.68 

cg02062418 Hypermethylation vs. Hypomethylation 0.261 1.3 

cg03322234 Hypermethylation vs. Hypomethylation 0.302 1.35 

cg01466017 Hypermethylation vs. Hypomethylation 0.249 1.28 

cg02310286 Hypermethylation vs. Hypomethylation -0.18 0.84 

cg02407493 Hypermethylation vs. Hypomethylation 0.064 1.07 

cg03377767 Hypermethylation vs. Hypomethylation -0.044 0.96 
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Supplementary Table 4. Multivariate Cox regression analysis for OS of TCGA NSCLC patients with combinations of 
DNAm-based risk score and clinical factors. 

Characteristics  Hazard Ratio CI P Value 
Adjuvant chemotherapy Yes vs. No 0.71 0.48-1.06 0.094 
 Unknown vs. No 0.43 0.2-0.93 0.032 
Adjuvant radiation therapy Yes vs. No 1.28 0.86-1.89 0.218 
 Unknown vs. No 1.26 0.58-2.77 0.557 
Age >=65 vs. <65 1.23 0.96-1.57 0.095 
 Unknown vs. <65 0.55 0.26-1.14 0.11 
Distant metastasis Present vs. Absent 1.72 0.96-3.09 0.069 
 Unknown vs. Absent 1.17 0.88-1.56 0.278 

Histology 
Squamous cell carcinoma 

vs. Adenocarcinoma 
1.17 0.9-1.52 0.232 

Lymphatic metastasis Present vs. Absent 1.53 1.17-2.02 0.002 
 Unknown vs. Absent 1.58 0.69-3.61 0.279 
Pack-years smoked >=30 vs. <30 1.1 0.72-1.69 0.652 
 Unknown vs. <30 1.08 0.73-1.6 0.707 
Risk Model High risk vs. Low risk 1.4 1.11-1.77 0.004 
Sex Male vs. Female 0.99 0.78-1.27 0.963 
Stage III/IV vs. I/II 1.41 1.02-1.96 0.04 
 Unknown vs. I/II 0.95 0.3-3.03 0.935 

*CI: 95% confidence interval. 
 

 

 


