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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is one of the most 

common and lethal human malignant cancers 

worldwide [1, 2]. Although surgery treatment is the 

most effective treatment strategy for the early stage of 

HCC, tumors in many HCC patients are unresectable 

because they are usually diagnosed in an advanced stage. 

For these patients, the systematic chemotherapy and 

immunotherapy are irreplaceable and valuable [3–6]. 

Unfortunately, cancer cells usually develop mechanisms 

to acquire the resistance against anti-tumor drugs [7, 8]. 

Recently, studies demonstrate that drug resistance is 

partially induced by a population of CD133 positive 

cells in some cancers including HCC [9–11]. 

 

CD133 is a glycoprotein on cell surface. Previous 

studies  have  indicated  that  cancer cells which express  

 

CD133 exhibit “stem-like”, and thus they are called 

“cancer stem cells” [12–14]. These CD133 positive 

cancer cells have high self-renewal capacity and 

multilineage differentiation potential. They are important 

for tumor formation and development [15, 16]. 

Furthermore, studies indicate that CD133 positive  

cells are responsible for the high resistance to chemo-

therapeutic drugs [17, 18]. This population of cancer 

cells may represent a novel target for improving the 

chemotherapy. 

 

Previous studies have proved that some natural plants 

are a significant source of potential drugs against cancer. 

Among these natural drugs, osthole has been reported to 

inhibit the growth of some cancers [19–21]. Osthole is a 

natural coumarin that is isolated from Cnidium monnieri. 

Its chemical formula is C15H16O3. Studies indicate that 

osthole exerts a wide variety of biological effects 
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ABSTRACT 
 

The population of CD133 positive cancer cells has been reported to be responsible for drug resistance of 
hepatocellular carcinoma (HCC). However, the potential molecular mechanism by which CD133+ HCC cells 
develop drug resistance is still unclear. In this study, we found that CD133+ HepG2 and Huh7 cells were resistant 
to cisplatin treatment, compared to the CD133- HepG2 and Huh7 cells. However, treatment with osthole, a 
natural coumarin isolated from umbelliferae plant monomers, was found to resensitize CD133+ HepG2 and 
Huh7 cells to cisplatin treatment. In the mechanism research, we found that treatment with osthole increased 
the expression of PTEN. As a result, osthole inhibited the phosphorylation of AKT and Bad to decrease the 
amount of free Bcl-2 in CD133+ HepG2 and Huh7 cells. Finally, cisplatin-induced mitochondrial apoptosis was 
expanded. In conclusion, combination treatment with osthole can resensitize CD133+ HCC cells to cisplatin 
treatment via the PTEN/AKT pathway. 

mailto:jilinfangfang@yeah.net


 

www.aging-us.com 14407 AGING 

including anti-seizure, anti-osteoporosis and anti-

inflammation [22–24]. More importantly, studies have 

found that osthole can partially inhibit the epithelial-

mesenchymal transition process and induce apoptosis or 

cell cycle arrest in some cancers [25, 26]. However, 

little is known regarding to the effect of osthole on the 

chemoresistance of HCC. The aim of this study is to 

explore the effect of osthole on cisplatin treatment 

against CD133+ HCC cells which are chemoresistant. 

 

RESULTS 
 

CD133 positive HCC cells were resistant to cisplatin 

 

We first separated CD133 positive and negative 

population in Huh7 and HepG2 cell lines, the purity of 

these two populations was detected by flow cytometry 

(Figure 1A). Under the treatment of cisplatin with equal 

concentrations, we found significant resistance in 

CD133+ Huh7 and HepG2 cells compared to the CD133- 

Huh7 and HepG2 cells (P<0.05) (Figure 1B). We 

confirmed that IC50 of cisplatin to CD133+ Huh7 cells 

was 4.64 fold higher than that to CD133- Huh7 cells 

(P<0.05). Meanwhile, IC50 of cisplatin to CD133+ 

HepG2 cells was 5.32 fold higher than that to CD133- 

HepG2 cells (P<0.05) (Figure 1C). We demonstrated 

that CD133 positive HCC cells were resistant to cisplatin. 

 

Downregulation of PTEN is responsible for the 

cisplatin resistance of CD133+ HCC cells 
 

Results of western blot analysis showed that expression 

of PTEN was significantly lower in CD133+ Huh7 and 

HepG2 cells compared to the CD133- Huh7 and HepG2 

cells (P<0.05) (Figure 2A). To explore whether the 

CD133 positive HCC cells exhibited significant cisplatin 

resistance was associated with downregulation of PTEN, 

we compulsively expressed the PTEN in CD133+ Huh7 

 

 
 

Figure 1. Cisplatin resistance of CD133+ HCC cells. (A) Purity of sorted CD133+ and CD133- Huh7 and HepG2 cells was tested by flow 
cytometry. (B) Sensitization of CD133+ and CD133- Huh7 and HepG2 cells to different concentrations of cisplatin (0~30 μM). *P<0.05. (C) IC50 
of cisplatin to CD133+ and CD133- Huh7 and HepG2 cells. #P<0.05 vs. CD133- population. 
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and HepG2 cells by using PTEN eukaryotic expression 

plasmid (Figure 2B). We then found that recovery of 

PTEN expression in CD133+ Huh7 and HepG2 cells 

increased their sensitivity to cisplatin treatment (P<0.05) 

(Figure 2C). On the other hand, we performed a loss-of-

function test on PTEN by using PTEN specific siRNA in 

CD133- Huh7 and HepG2 cells (Figure 2D). We then 

found that knockdown of PTEN induced significant 

cisplatin resistance in CD133- Huh7 and HepG2 cells 

(P<0.05) (Figure 2E). These data indicated that PTEN 

expression partially determined the sensitivity of 

cisplatin to HCC. Downregulation of PTEN is 

responsible for the cisplatin resistance of CD133 

positive HCC cells. 

 

Osthole decreased the cisplatin resistance of CD133 

positive HCC cells 
 

To explore whether the osthole affected the chemo-

resistance of CD133 positive HCC cells, we co-treated 

the CD133+ Huh7 and HepG2 cells with cisplatin and 

osthole. Comparing to the cisplatin single treatment 

groups, combination treatment groups with cisplatin and 

osthole showed lower cell viability (P<0.05) (Figure 3A). 

We confirmed that osthole decreased the IC50 of 

cisplatin by 84.3% to CD133+ Huh7 cells and 80.5% to 

CD133+ HepG2 cells (P<0.05) (Figure 3B). Furthermore, 

we calculated that combination index (CI) with cisplatin 

and osthole was greater than 1.15 in CD133+ Huh7 cells 

(Table 1) and CD133+ HepG2 cells (Table 2). These data 

demonstrated that osthole exhibited synergistic effect on 

cisplatin. On the other hand, we tested the effect of 

osthole on the CD133- HCC cells. We found that osthole 

decreased the IC50 of cisplatin by 47.5% to CD133- 

Huh7 cells and 40.7% to CD133- HepG2 cells (P<0.05) 

(Figure 3C). These data indicated that CD133+ HCC 

cells are more sensitive to osthole than the CD133- HCC 

cells. Treatment with osthole can decrease the cisplatin 

resistance of CD133 positive HCC cells. 

 

Osthole partially reversed the cisplatin resistance of 

CD133 positive HCC cells through upregulation of 

PTEN 

 

Results of qRT-PCR and western blot analysis showed 

that osthole treatment can increase the expression of 

PTEN at the mRNA level (Figure 4A) and the protein 

level (Figure 4B) in CD133+ Huh7 and HepG2 cells. To 

investigate whether the osthole resensitized CD133 

positive HCC cells to cisplatin was dependent on the 

 

 
 

Figure 2. Effect of PTEN on regulating the cisplatin sensitivity of CD133+ and CD133- HCC cells. (A) expression of PTEN in CD133+ 
and CD133- Huh7 and HepG2 cells. &P<0.05 vs. CD133- Huh7 cells, #P<0.05 vs. CD133- HepG2 cells. (B) Transfection with PTEN plasmid 
increased the expression of PTEN in CD133+ Huh7 and HepG2 cells. *P<0.05. (C) Transfection with PTEN plasmid increased the sensitivity of 
CD133+ Huh7 and HepG2 cells to cisplatin (5 μM) treatment. *P<0.05. (D) Transfection with PTEN siRNA decreased the expression of PTEN in 
CD133- Huh7 and HepG2 cells. *P<0.05. (E) Transfection with PTEN siRNA decreased the sensitivity of CD133- Huh7 and HepG2 cells to 
cisplatin (5 μM) treatment. *P<0.05. 
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upregulation of PTEN, we knocked down the PTEN in 

CD133+ Huh7 and HepG2 cells by using PTEN siRNA 

(Figure 4B). Results of CCK-8 assays showed that 

treatment with osthole significantly increased the 

cytotoxicity of cisplatin against CD133+ Huh7 and 

HepG2 cells (P<0.05). However, knockdown of PTEN 

abolished the effect of osthole (P<0.05) (Figure 4C). 

Moreover, results of flow cytometry showed that CD133+ 

Huh7 and HepG2 cells were resistant to cisplatin-induced 

apoptosis. However, osthole resensitized the cisplatin-

induced apoptosis (P<0.05). On the other hand, 

transfection with PTEN siRNA inhibited the apoptosis 

induced by the combination treatment with cisplatin and 

osthole (P<0.05) (Figure 4D). Taken together, these 

results indicated that osthole partially reversed the 

resistance of CD133 positive HCC cells to cisplatin-

induced apoptosis through upregulation of PTEN. 

 

Osthole sensitized the cisplatin-induced apoptosis 

through the PTEN/AKT/Bad/Bcl-2 pathway 

 

Previous study has reported that inhibition of PTEN 

leads to phosphorylation of AKT [27]. We thus 

evaluated the role of AKT in CD133+ HCC cells. 

Results of western blot analysis showed that osthole 

treatment can reduce the level of phosphorylated AKT 

(p-AKT) no matter whether the CD133+ Huh7 and 

HepG2 cells were treated with cisplatin or not. 

However, knockdown of PTEN was found to abolish 

the effect of osthole on inhibiting the AKT phos-

phorylation (Figure 5A). It indicated that osthole 

treatment reduced the phosphorylation of AKT through 

the PTEN pathway. Bad, a pro-apoptotic protein, is one 

of the substrates for AKT [28]. We next found that 

osthole treatment inhibited the phosphorylation of Bad 

through increase of PTEN expression (Figure 5A). As 

osthole decreased the phosphorylation of Bad, results of 

immunoprecipitation (IP) showed that osthole treatment 

enhanced the heterodimerization of Bad and Bcl-2 in 

CD133+ Huh7 and HepG2 cells (Figure 5B). As a result, 

osthole inactivated the Bcl-2 which is the key anti-

apoptotic protein through the PTEN/AKT/Bad pathway. 

To evaluate the function of mitochondria, we next 

tested the mitochondrial membrane potential (ΔΨm)  

and cytosolic cytochrome c in CD133+ Huh7 and 

HepG2 cells. Results of flow cytometry showed that 

 

 
 

Figure 3. Osthole partially reversed the cisplatin resistance of CD133+ HCC cells. (A) Combination treatment with osthole  
(10 μmol/L) increased the cytotoxicity of cisplatin (0~30 μM) against CD133+ Huh7 and HepG2 cells. *P<0.05. (B) Osthole (10 μmol/L) 
decreased the IC50 of cisplatin to CD133+ Huh7 and HepG2 cells. #P<0.05 vs. Control group. (C) Effect of osthole (10 μmol/L) on decreasing 
the IC50 of cisplatin to CD133- Huh7 and HepG2 cells. #P<0.05 vs. Control group. 
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Table 1. Combination index (CI) with cisplatin and osthole in CD133+ Huh7. 

Cisplatin single treatment Osthole single treatment 
Combination 

treatment 

Combination 

index (CI) 

Concentration (μM) Inhibitory rate (%) Concentration (μM) Inhibitory rate (%) Inhibitory rate (%)  

1 2.1 2 3.8 20.4 3.51 

2 4.4 4 4.9 32.6 3.59 

5 8.7 10 6.3 55.2 3.82 

10 16.5 20 8.8 62.8 2.63 

15 22.7 30 12.6 67.6 2.08 

20 28.8 40 14.5 73.4 1.88 

30 37.9 60 16.3 79.5 1.66 

 

Table 2. Combination index (CI) with cisplatin and osthole in CD133+ HepG2. 

Cisplatin single treatment Osthole single treatment 
Combination 

treatment 

Combination 

index (CI) 

Concentration (μM) Inhibitory rate (%) Concentration (μM) Inhibitory rate (%) Inhibitory rate (%)  

1 2.4 2 4.0 18.5 2.93 

2 5.2 4 4.6 33.2 3.47 

5 10.5 10 6.8 59.3 3.58 

10 19.4 20 9.4 66.3 2.46 

15 26.2 30 14.1 71.7 1.96 

20 35.9 40 15.8 77.2 1.68 

30 44.7 60 18.4 82.6 1.51 

 

 
 

Figure 4. Osthole partially reversed the cisplatin resistance of CD133+ HCC cells through the PTEN pathway. (A) QRT-PCR analysis 
was used to test the effect of osthole (10 μmol/L) on changing the expression of PTEN at the mRNA level. #P<0.05 vs. control group, &P<0.05 vs. 
cisplatin group. (B) Western blot analysis was used to evaluate the effect of osthole (10 μmol/L) and PTEN siRNA on affecting the expression of 
PTEN at the protein level. (C) Transfection with PTEN siRNA increased the cell viability of CD133+ Huh7 and HepG2 cells which were co-treated 
with osthole (10 μmol/L) and cisplatin (5 μmol/L). #P<0.05 vs. cisplatin+control siRNA group, &P<0.05 vs. cisplatin+osthole+control siRNA group. 
(D) Transfection with PTEN siRNA decreased the apoptotic rate of CD133+ Huh7 and HepG2 cells which were co-treated with osthole (10 
μmol/L) and cisplatin (5 μmol/L). #P<0.05 vs. cisplatin+control siRNA group, &P<0.05 vs. cisplatin+osthole+control siRNA group. 
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combination treatment with osthole enhanced the 

effect of cisplatin on reducing the ΔΨm of CD133+ 

Huh7 and HepG2 cells (Figure 5C). Furthermore, we 

found the obvious release of cytochrome c in osthole 

and cisplatin co-treated CD133+ Huh7 and HepG2 

cells (Figure 5D). However, transfection with PTEN 

siRNA abolished the effect of osthole. As the results 

of mitochondria dysfunction, caspase-9 and caspase-3 

were activated in CD133+ Huh7 and HepG2 cells 

which were co-treated with osthole and cisplatin 

(Figure 5E). Taken together, we demonstrated that 

osthole can sensitize the cisplatin-induced apoptosis 

through the PTEN/AKT/Bad/Bcl-2 pathway in CD133 

positive HCC cells. 

Osthole attenuated the cisplatin resistance of CD133 

positive HCC in vivo 

 

To test the effect of osthole on CD133 positive HCC in 

vivo, we inoculated the CD133+ Huh7 cells into the nude 

mice before treatment with osthole and cisplatin. We 

found that the growth of tumors which were co-treated 

with osthole and cisplatin was obviously slower than  

the tumors treated with single cisplatin or osthole 

(Figure 6A). After euthanasia of nude mice followed by 

separation of tumor tissues, we observed that the tumors 

which were co-treated with osthole and cisplatin were 

smaller and lighter than the tumors treated with single 

cisplatin or osthole (P<0.05) (Figure 6B, 6C). On the 

 

 
 

Figure 5. osthole enhanced the cisplatin-induced apoptosis through the PTEN/AKT/Bad/Bcl-2 pathway in CD133+ HCC cells. 
(A) Effect of osthole (10 μmol/L) and PTEN siRNA on affecting the phosphorylation of AKT and Bad in CD133+ Huh7 and HepG2  
cells. (B) Effect of osthole (10 μmol/L) and PTEN siRNA on affecting the interaction with Bad and Bcl-2 in CD133+ Huh7 and HepG2 cells.  
(C) Osthole (10 μmol/L) enhanced the effect of cisplatin (5 μmol/L) on reducing the mitochondrial membrane potential (ΔΨm) of CD133+ 
Huh7 and HepG2 cells. (D) Osthole (10 μmol/L) increased the cytosolic cytochrome c in CD133+ Huh7 and HepG2 cells which were treated 
with cisplatin (5 μmol/L). (E) Osthole (10 μmol/L) increased the apoptotic rate of CD133+ Huh7 and HepG2 cells which were treated with 
cisplatin (5 μmol/L). 
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other hand, results of western blot analysis showed 

obvious upregulation of PTEN expression in osthole-

treated tumors (Figure 6D). Furthermore, we found that 

osthole enhanced the effect of cisplatin on triggering the 

caspase-9 and caspase-3 which were the apoptosis 

markers (Figure 6E). Taken together, These data 

demonstrated that osthole treatment can attenuate the 

cisplatin resistance of CD133 positive HCC in vivo. 

 

DISCUSSION 
 

Cisplatin is a platinum-based antineoplastic drug that 

cross-links with DNA of cancer cells. Subsequently, 

cisplatin inhibits DNA replication and induces apoptosis 

of cancer cells [29, 30]. As a broad-spectrum anti-

neoplastic drug, cisplatin is commonly used for the 

treatment of multiple malignant cancers including HCC 

[31–33]. However, the population of CD133 positive 

HCC cells showed significant resistance to cisplatin and 

is responsible for the failure of cisplatin treatment [34]. 

To improve the curative effect of cisplatin on HCC, 

CD133 positive cells are important targets. In the present 

study, we separated the CD133 positive and CD133 

negative cells from the HCC cell lines Huh7 and HepG2. 

We then found that CD133 positive HCC cells exhibited 

significant cisplatin resistance compared to the CD133 

negative HCC cells. It is urgent to overcome the drug 

resistance of CD133 positive HCC cells. 

 

Studies have reported that multiple natural drugs can be 

used as sensitizers in chemotherapy. For instance, 

imperatorin, a linear furanocoumarin compound ex-

tracted from the root of Angelica dahurica, has been 

reported to decrease the cisplatin resistance through 

 

 
 

Figure 6. Osthole attenuated the cisplatin resistance of CD133 positive HCC in vivo. (A) Growth curve of CD133+ Huh7 originated 
tumors on nude mice which were treated with cisplatin (8 mg/kg) and osthole (20 mg/kg) twice a week. (B) Separated tumor tissues from 
nude mice after euthanasia. (C) The final weight of separated tumor tissues from nude mice after euthanasia. *P<0.05 vs. osthole treatment 
group, #P<0.05 vs. cisplatin treatment group. (D) Expression of PTEN in purified tumor tissues was tested by western blot analysis.  
(E) Activation of caspase-9 and caspase-3 in purified tumor tissues was tested by western blot analysis. 
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suppression of MCL-1 [35]; Quercetin, a flavonoid that 

widely distributes in plant-based foods, has been found 

to reverse the resistance of prostate cancer to 

doxorubicin-based therapy [36]; Resveratrol, a natural 

polyphenol compound, has been proved to restore the 

sensitivity of glioma cells to temozolamide through 

inhibiting the activation of Wnt signaling pathway [37]. 

As one kind of natural drug, osthole has some anti-tumor 

activity with low toxicity and little side effects. 

Furthermore, we found the adjuvant effect of osthole on 

CD133 positive HCC cells in this study. Our results 

showed that combination index (CI) with cisplatin and 

osthole on CD133 positive HCC cells was greater than 

1.15. These results indicated that osthole can be used as 

a sensitizer and had synergistic effect on cisplatin. We 

proved that treatment with osthole can partially reverse 

the cisplatin resistance of CD133 positive HCC cells. 

 

Phosphatase and tensin homologue (PTEN) has been 

reported to act as an important tumor suppressor, because 

it inhibits tumorigenesis and cancer development. Loss of 

PTEN accumulates the phosphatidylinositol 3, 4, 5-

trisphosphate (PIP3) and thus leads to phosphorylation of 

AKT. As a result, cells develop uncontrolled cell cycle 

[38, 39]. In this study, we indicated that the drug 

resistance of CD133 positive HCC cells was associated 

with the dysfunction of PTEN/AKT-signaling pathway. 

Furthermore, our results showed that the CD133 positive 

HCC cells were more sensitive to osthole than the CD133 

negative HCC cells. We explained that the synergistic 

effect of osthole on cisplatin was dependent on the 

increase of PTEN expression, and the osthole obviously 

corrected the absence of PTEN in CD133 positive  

HCC cells.  

 

BCL2 associated agonist of cell death (Bad) is a key 

substrate of AKT. Non-phosphorylated Bad inactivates 

the key anti-apoptotic protein of Bcl-2 through 

conjugation with it. However, Bad can be phospho-

rylated by AKT and then releases the Bcl-2. Free Bcl-2 

shows powerful antiapoptotic activity and thus inhibits 

the apoptosis pathway [40, 41]. In the present study, we 

found that treatment with the natural drug of osthole can 

increase the expression of PTEN and thus inhibits the 

phosphorylation of AKT and Bad in CD133 positive 

HCC cells. As a result, osthole decreased the free Bcl-2 

and obviously promoted the mitochondrial apoptosis 

induced cisplatin. 

 

CONCLUSIONS 

 

We demonstrated the effect of osthole on partially 

reversing the cisplatin resistance of CD133 positive 

HCC cells in vitro and in vivo. Combination treatment 

with osthole and cisplatin may represent a novel strategy 

for the treatment of HCC. 

MATERIALS AND METHODS 
 

Cell lines 

 

The human HCC cell lines Huh7 and HepG2 were 

purchased from the Cell Bank of the Type Culture 

Collection of the Chinese Academy of Sciences 

(Shanghai, China). Cells were cultured in RPMI-1640 

medium (Gibco, Carlsbad, CA, USA) supplemented 

with 10% fetal bovine serum (Gibco). The cells were 

cultured at 37°C in a humidified incubator with 5% CO2. 

To obtain the CD133+ and CD133- Huh7 and HepG2 

cells, the cultured cells were stained with anti-CD133-

FITC antibody (Miltenyi Biotec, Germany) for 20 min at 

room temperature. The population of CD133+ and 

CD133- Huh7 and HepG2 cells were analyzed and 

sorted by using the fluorescent-activated cell sorting 

equipment (Beckman Coulter, USA). 

 

Gain-of-function and Loss-of-function of PTEN 
 

To knockdown the gene of phosphatase and tensin 

homologue (PTEN), PTEN small interfering RNA 

(PTEN siRNA, Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) was used. To overexpress PTEN, the PTEN 

eukaryotic expression plasmid was generated by cloning 

the open reading frame of the PTEN gene into the 

pcDNA3.1 plasmid (Life Technologies, Carlsbad, CA, 

USA). For transfection, cells were plated at 30-50% 

confluence. 24 h later, 50 pmol/ml RNA oligonucleotides 

or 2 μg/mL plasmids were transfected by using the 

Lipofectamine™ 2000 reagent (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer’s instruction. 

 

Quantitative real-time polymerase chain reaction 

(qRT-PCR) 
 

Total RNA was extracted from cell lines by using Trizol 

reagent (Thermo Fisher Scientific, Inc., Waltham, MA, 

USA). cDNA was synthesized by using M-MLV 

Reverse Transcriptase (Thermo Fisher Scientific, Inc.) 

following the manufacturer's instruction. Polymerase 

chain reaction was performed by using a standard 

protocol from the SYBR Green PCR kit (TaKaRa, 

Dalian, China). GAPDH gene was used as the internal 

reference to determine the relative expression of PTEN 

through the 2-ΔΔCT method. 
 

Cell viability assay 
 

Transfected cells were seeded into 96-well culture plates 

at a density of 5,000 cells/well overnight. Cells were 

then treated with osthole (10 μmol/L) (Sigma-Aldrich, 

St. Louis, MO, USA) and different concentrations of 

cisplatin (0~30 μmol/L) (Sigma-Aldrich) for 48 h. 

Subsequently, CCK-8 (10 µl) (Beyotime, Shanghai, 
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China) was added to each well and incubated for 2 h at 

37°C. The absorbance of the plates was measured at 450 

nm by using a microplate reader (Bio-Tek Instruments, 

Inc., Norcross, GA, USA). Half maximal inhibitory 

concentration (IC50) of cisplatin was calculated 

according to the cell viability curve. Combination index 

(CI) with cisplatin and osthole was calculated via the 

following formula: CI=E(A+B)/(EA+EB-EA×EB). EA 

represents as the inhibitory rate caused by cisplatin; EB 

represents as the inhibitory rate caused by osthole; 

E(A+B) represents as the inhibitory rate caused by 

Combination treatment with cisplatin and osthole. It is 

considered as simple addition of the two drugs when CI 

ranges from 0.85 to 1.15; It is considered as simple 

addition of the two drugs when CI ranges from 0.85 to 

1.15; It is considered as the synergistic effect of the two 

drugs when CI is greater than 1.15; It is considered as 

the antagonistic effect of the two drugs when CI is less 

than 0.85. 

 

Immunoprecipitation 
 

Cells were lysed in NP-40 buffer (Beyotime) and 

centrifuged at 12000g for 10 min. The resulting 

supernatants were incubated with primary antibody of 

Bad (Santa Cruz) overnight at 4 °C. Subsequently, 

supernatants were incubated with Protein A/G PLUS-

Agarose (Santa Cruz) for 2 h. Next, the resulting 

supernatants were washed with cold NP-40 buffer. The 

co-precipitated proteins were removed from the agarose 

beads by boiling in sodium dodecyl sulfate (SDS) sample 

buffer. 

 

Western blot analysis 
 

Total protein was extracted from cell samples by using 

RIPA buffer (Beyotime). 50 μg of the extracted and the 

co-precipitated proteins were separated by 10 % sodium 

dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) and transferred to a PVDF membrane 

(Millipore, Billerica, MA, USA). After blocking in 5% 

nonfat milk for 2 h at room temperature, the membranes 

were incubated with anti-p-Bad (1:200, Santa Cruz), 

anti-p-AKT (1:200, Santa Cruz), anti-PTEN (1:200, 

Santa Cruz), anti-Bad (1:200, Santa Cruz), anti-AKT 

(1:200, Santa Cruz), anti-Bcl-2 (1:200, Santa Cruz), 

anti-cytochrome c (1:200, Santa Cruz), anti-caspase-9 

(1:200, Santa Cruz) and anti-caspase-3 (1:200, Santa 

Cruz). After incubation with primary antibodies, 

membranes were washed and incubated with a 

horseradish peroxidase-conjugated secondary antibody 

(Santa Cruz) for 2 h at room temperature. Proteins on 

the membrane were visualized by using an enhanced 

chemiluminescence detection kit (Pierce, Rockford, IL, 

USA). Glyceraldehyde-3-phosphate (GAPDH) was 

used as an internal control to ensure equal protein 

loading. Mitochondria/Cytosol Fraction Kit (BioVision, 

Milpitas, CA, USA) was used to separate the 

mitochondria fraction and cytosol fraction before 

detection of cytochrome c. 

 

Mitochondrial membrane potential (ΔΨm) and cell 

apoptosis 
 

For detection of mitochondrial membrane potential 

(ΔΨm), cells were collected and washed with PBS. 

Subsequently, cells were stained with 5,5′,6,6′-

tetrachloro-1,1′,3,3′-tetraethyl imidacarbo cyanine 

iodide (JC-1, Molecular Probes, Carlsbad, CA, USA) in 

a 5% CO2 incubator at 37 °C for 20 min away from 

light. The samples were then analyzed by flow 

cytometry. Cells emitting red fluorescence were 

considered as cells with high ΔΨm. For measurement of 

cell apoptotic rate, cells were collected and washed with 

PBS. Subsequently, Annexin V-FITC Apoptosis 

Detection Kit (Sigma-Aldrich) was used to measure the 

apoptotic rate. 
 

In vivo experiment 
 

CD133 positive Huh7 cells were inoculated 

subcutaneously into the BALB/c nude mice (Shanghai 

Super-B&K Laboratory Animal Corp., Ltd., Shanghai, 

China). Cisplatin (8 mg/kg) and osthole (20 mg/kg) 

were administrated by intraperitoneal injection twice a 

week after xenografts reached 0.5 cm in diameter. 

Tumor size was measured every three days. Animals 

were killed 28 days post-injection. The animal care  

and experimental protocols were approved by the 

Animal Care Committee of The First Hospital, Jilin 

University. 
 

Statistical analysis 
 

All data are represented as the mean ± standard 

deviation (SD) and carried out by at least three 

independent experiments. Differences between two 

groups were analyzed by two-tailed Student’s t-tests. 

Differences among multiple groups were analyzed by 

one-way analysis of variance and Bonferroni’s post hoc 

test. Statistical analysis was performed by using SPSS 

15.0 software (SPSS Inc., Chicago, IL, USA). P < 0.05 

was considered to be statistically significant. 
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