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INTRODUCTION 
 

Head and neck squamous cell carcinoma (HNSCC), one 

of most common cancers in the world, is an aggressive 

and frequently lethal head and neck malignancy [1]. 

Despite advances in diagnostic and therapeutic 

approaches, the 5-year survival rate of patients with 

HNSCC is only approximately 50%–60% [2]. HNSCC 
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ABSTRACT 
 

The tumor microenvironment (TME) constitutes a complex milieu of cells and cytokines that maintain 
equilibrium between tumor progression and prognosis. However, comprehensive analysis of the TME and its 
clinical significance in head and neck squamous cell carcinoma (HNSCC) remains to be unreported. In this 
study, based on large-scale RNA sequencing data pertaining to single nucleotide variants (SNVs) and copy 
number variations (CNVs) in HNSCC patients from The Cancer Genome Atlas database, we analysed 
subpopulations of infiltrating immune cells and evaluated the role of TME infiltration pattern (TME score) in 
assessing immunotherapy outcome. TME signature genes involved in several inflammation and immunity 
signalling pathways were observed in the TME score subtype, which were considered immunosuppressive 
and potentially responsible for significantly worse prognosis. In comparison with SNV- and CNV-mediated 
tumor mutation burden, TME score can significantly differentiate between high- and low-risk HNSCC and 
predict immunotherapy outcome. Our data provide clarity on the comprehensive landscape of interactions 
between clinical characteristics of HNSCC and tumor-infiltrating immune cells. TME score seems to be a 
useful biomarker that can predict immunotherapy outcome in HNSCC patients. 
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is associated with distinct clinical and biological 

heterogeneity; patients with aggressive disease are 

managed using cetuximab, an anti-EGFR antibody, but 

only around 13% metastatic patients respond to such 

treatment [3, 4]. Phase III clinical trials of programmed 

death (PD)-1 immune checkpoint inhibitors (ICIs) 

(pembrolizumab and nivolumab) and PD-ligand (L)1 

(durvalumab and avelumab) ICI immunotherapy have 

been performed in patients with recurrent and metastatic 

HNSCC. Pembrolizumab combined with platinum and 

fluorouracil was found to outperform the cetuximab-

based platinum and fluorouracil combination in terms of 

overall survival (median, 13.6 vs. 10.1 months) when 

administered as the first-line of treatment for recurrent 

and metastatic HNSCC. Nevertheless, nearly 64% 

patients still did not respond to the PD-1/PD-L1 ICI 

immunotherapy, indicating innate, adapted, or quickly 

acquired resistance to the treatment [5–8]. 

Unfortunately, little is known about mechanisms 

underlying the response of patients with HNSCC to 

immunotherapy. 
 

The tumor microenvironment (TME) is composed of 

transformed cells, infiltrating immune cells and 

stromal cellular elements. Tumor-infiltrating immune 

cells are known to substantially influence therapeutic 

responses and clinical outcomes [9]. For instance, 

tumor-associated macrophages and regulatory T cells 

are associated with pro-tumor functions [10–12], 

whereas tumor-infiltrating lymphocytes and CD8+ T 

effector cells have been associated with improved 

clinical outcomes and better response to 

immunotherapy [13–15]. However, the mechanisms 

by which immune infiltration affects immunotherapy 

outcome in patients with HNSCC remain poorly 

understood. 

 

With the application of high-throughput sequencing, a 

comprehensive landscape of genomic and 

transcriptomic alterations in HNSCC has emerged from 

The Cancer Genome Atlas (TCGA) database, 

permitting the analysis of, for instance, DNA 

methylation, single nucleotide variants (SNVs) and 

copy number variations (CNVs) [16, 17]. Several 

recurrent chromosomal region copy number alterations 

have been found to affect broad and focal chromosomal 

regions, leading to the activation of multiple candidate 

driver genes [18]. Alterations in associated pathways, 

such as p53, mitogen-activated protein kinase, 

phosphatidylinositol 3′–kinase-Akt and nuclear factor 

kappa-B signalling pathways, may elicit complementary 

or synergistic effects that are important in tumorigenesis 

[19]. However, whether genomic alterations drive 

corresponding changes in the TME in HNSCC remains 

to be comprehensively elucidated; moreover, their 

functional interactions and roles in immunotherapy 

outcome and clinical prognosis require further 

exploration. 

 

Herein based on large-scale RNA sequencing (RNA-

seq) data pertaining to patients with HNSCC from 

TCGA database, we investigated 22 subpopulations of 

infiltrating immune cells using the CIBERSORT 

algorithm. We analysed TME infiltration pattern (TME 

score) and systematically correlated TME phenotypes 

with genomic characteristics and clinicopathological 

features of HNSCC. We found TME score to be an 

effective prognostic biomarker and it seems useful for 

predicting immunotherapy outcome in patients with 

HNSCC. 

 

RESULTS 
 

Overview of TME characteristics in HNSCC 
 

To investigate TME characteristics in HNSCC, based 

on the RNA-seq data of 502 patients with HNSCC from 

TCGA database, we systematically investigated 22 

subpopulations of infiltrating immune cells using 

CIBERSORT. The distribution ratio of infiltrating 

immune cells among the samples showed a significant 

difference (Figure 1A), and the TME cell network 

depicted a comprehensive landscape of tumor–immune 

cell interactions, cell lineages and their effects on the 

overall survival (OS) of patients with HNSCC (Figure 

1B; Supplementary Table 1).  

 

Further, we performed unsupervised consensus 

clustering of all tumor samples for the molecular 

classification of HNSCC. The optimal number of 

clusters was determined by the K value. After 

assessing relative changes in the area under the 

cumulative distribution function curve and consensus 

matrix heatmap, we selected a three-cluster solution 

(K = 3), which showed no appreciable increase in the 

area under the cumulative distribution function curve 

(Figure 1C). To gain further insights into the 

molecular heterogeneity of HNSCC, unsupervised 

consensus clustering was performed to explore 

discernible patterns of the TME clusters. Based on the 

consensus matrix heatmap, three distinct TME-based 

molecular clusters were identified (Figure 1D). To 

further clarify the clinical implications of these 

clusters, we performed Kaplan–Meier curve analyses 

to elucidate the association between them and clinical 

prognosis. Notably, survival analysis based on the 

TME phenotypes indicated that TME cluster 3  

(n = 124) was significantly associated with better 

prognosis and that TME cluster 2 (n = 150) was 

associated with poorer prognosis (log-rank test,  

P = 0.0018). Of the 500 patients with HNSCC, 226 

belonged to TME cluster 1, which was associated with 
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intermediate prognosis (log-rank test, P > 0.05) 

(Figure 1E). 

 

Signature and functional annotation of the TME 

clusters 

 

To determine the characteristics of immune cells in the 

three TME clusters, infiltrating immune cell 

subpopulations were analysed using CIBERSORT. 

Tumor ploidy and malignant cell purity showed no 

differences among the three clusters (Supplementary 

Figure 1A and 1B), whereas the proportion of 

infiltrating immune cells among the clusters showed 

significant differences, particularly that of resting 

memory CD4+ T cells, M0 macrophages, naïve B cells 

and plasma cells (Figure 2A). Further, the clusters were 

subjected to unsupervised hierarchical clustering, and 

the obtained results revealed that the 22 subpopulations 

of infiltrating immune cells showed differential patterns 

among the clusters (Figure 2B). To identify and 

elucidate differences in infiltrating immune cells, the 

relative fraction of 22 leukocyte subpopulations in each 

sample was estimated based on the differential 

expression of 547 genes [20]. Comparing the TME 

clusters revealed several differences, including 

increased levels of naïve B cells, regulatory T cells and

 

 
 

Figure 1. Overview of TME characteristics. (A) Relative percentage of each immune cell type in 502 patients with HNSCC from TCGA 
database. (B) Tumor–immune cell interactions. The size of each cell represents the impact of each TME cell type on survival and was 
calculated using log10 (log-rank test P value). Risk factors for overall survival are indicated in pink, and favourable factors are in green. The 
lines connecting TME cell types represent cellular interactions. The thickness of the lines represents the strength of correlation, which was 
estimated using Spearman correlation analysis. Negative correlation is indicated in grey and positive correlation in black. (C) The elbow 
criterion determines the optimal number of TME clusters (K = 3). (D) Consensus clustering analysis identification of the three TME clusters 
(samples, n = 500). The white (consensus value = 0, samples never clustered together) and blue (consensus value = 1, samples always 
clustered together) heatmap display sample consensus. (E) Kaplan–Meier curves for survival probability of the three clusters. Log-rank test 
was used for data analysis. 
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eosinophils; in contrast, the levels of resting memory 

CD4+ T cells, resting NK cells and M2 macrophages 

were markedly reduced (Figure 2C).  

 

To identify biological characteristics underlying each 

TME phenotype, differentially expressed genes 

(DEGs) among the three clusters were analyzed using 

the limma package. In total, 306, 998 and 676 DEGs 

were obtained upon three comparisons (TME cluster 1 

vs. TME cluster 2, TME cluster 2 vs. TME cluster 3 

and TME cluster 1 vs. TME cluster 3). Overall, 622 

common DEGs were further screened in the 

comparisons. Next, we used random forest algorithms 

for dimension reduction to extract phenotype 

signatures. Unsupervised hierarchical clustering was 

based on the expression of the 312 most representative 

D EGs (Supplementary Table 2). Gene ontology 

enrichment analysis of TME signature genes was 

conducted using the R package. Significantly enriched 

biological processes are summarized in Supplementary 

Table 3. Analyses of TME signature mRNAs indicated 

that within the cellular component category, 

immunoglobulin complex, external side of plasma 

membrane, T cell receptor complex and receptor 

complex were significantly annotated (Figure 2D). 

Further, within the biological process category, 

antigen receptor-mediated signalling pathway, 

regulation of lymphocyte activation, positive 

regulation of cell activation and positive regulation of 

leukocyte activation were significantly annotated 

(Figure 2E), and within the molecular function 

category, pathways involved in antigen binding, 

immunoglobulin receptor binding and cytokine 

receptor activity were significantly annotated  

(Figure 2F). These findings indicated that the immune 

landscape of the three TME clusters plays a key role in 

immune regulation. 

 

Clinical characteristics of the TME phenotypes 
 

Next, we systematically classified the TME clusters 

according to the gene coefficient value and calculated 

TME score. The maxstat R package was used to identify 

TME score breakpoint. The distribution of risk scores 

and overall survival status of patients are shown in 

Figure 3A and 3B, respectively. TME score was 

calculated for all patients, and the TME score 

breakpoint was used to classify them into the high (n = 

220) and low (n = 280) TME score groups. High TME 

score and was associated with favourable outcomes, and 

low TME score and was associated with poor outcomes 

(Figure 3C). Kaplan–Meier curve and Cox regression 

analyses further suggested that patients in the high TME 

score group had significantly better OS probability than 

those in the low TME score group [HR 1.401  

(1.074–1.827), log-rank test, P = 0.013] (Figure 3D). To 

understand the pathway two TME score groups 

involved in, gene set enrichment analysis was 

performed, which indicated that allograft rejection  

(E score = −0.414; P = 0.0091), inflammatory response 

(E score = −0.388; P = 0.032), interferon-α response  

(E score = −0.495; P = 0.002), interferon-γ response  

(E score = −0.450; P = 0.001), reactive oxygen species  

(E score = −0.468; P = 0.048) and xenobiotic 

metabolism (E score = −0.390; P = 0.0343) pathways 

were significantly downregulated in the high TME score 

group (Figure 3E). 

 

Somatic mutations of the TME phenotypes 
 

To detect driver mutations in the TME, we analysed 

HNSCC-related SNP data and consequently detected 21 

putative driver genes, including TP53, TTN, CSMD3, 

CDKN2A and NOTCH1 (Figure 4A and 4B), which 

were associated with the TME, using random forest 

algorithm with 1000 iterations. The TP53 gene showed 

the highest mutation rate (74% vs. 70% in the high and 

low TME score groups, respectively), which was 

consistent with the findings of other studies [21–25]. 

The somatic mutations of TP53, TTN, CSMD3, 

CDKN2A, FRG1B, FAT1 and NOTCH1 were all >20% 

in the high and low TME score groups; in particular, 

FAT1 was significantly different between high TME 

score and low TME score groups (P < 0.05)  

(Figure 4C). We also found that several genes involved 

in the cell cycle pathway (e.g., TP53, CDKN2A, 

NOTCH1 and PIK3CA) were frequently altered. 

Clinical reports have described associations between 

individual altered genes and response or resistance to 

ICIs [26, 27]. These mutations may be associated with a 

change in the TME. Consequently, we further detected 

and classified candidate somatic mutations, which led to 

the identification of nine classifications; nonstop, in-

frame (insert and delete), frame-shift (insert and delete), 

translation start, splice, nonsense and mutations were 

the common somatic mutations (Figure 4D). Mutation 

type and spectrum analyses showed that single 

nucleotide mutations, particularly C > T transitions at 

TpCpW trinucleotide sites, were the predominant type 

of mutations (Figure 4E, 4F). 

 

Mutational signatures 
 

Mutational signatures in the cancer genome might 

reflect and help trace DNA damage caused by DNA-

damaging agents to which cells have been exposed. 

Thus, we counted the number of SNVs in the matrix of 

96 possible mutations occurring in a trinucleotide 

context in each HNSCC sample and found that the 

predominant mutations were C > T and/or C > G 

transitions at TpCpW trinucleotide sites in both the high 

and low TME score groups (Figure 5A, 5B). 
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Using 1,000 iterations of non-negative matrix 

factorization [28], we then performed cosine similarity 

analyses to compare mutational signatures in HNSCC 

with current COSMIC; consequently, six independent and 

stable mutational signatures were identified. De novo 

signatures identified in the high TME score group were 

enriched in APOBEC cytidine deaminase signature 

(COSMIC Signature 13; cosine similarity: 0.842),  

 

 
 

Figure 2. Signature and functional annotation of the TME clusters. (A) Relative percentage of each immune cell type in the three 
TME clusters. (B) Unsupervised hierarchical clustering of the clusters. (C) Relative populations of TME cells present in the three clusters. 
Within each group, the scattered dots represent expression values of TME cells. We also plotted the Immunoscore for the three clusters. The 
thick line represents the median value. The lower and upper ends of the boxes are the 25th and 75th percentiles. The whiskers encompass 
1.5 times the interquartile range. Statistical differences in the three clusters were compared using the Kruskal–Wallis test. The range of P 
values are labelled above each boxplot with asterisks (* P < 0.05, ** P < 0.01, *** P < 0.001, ****P < 0.0001, ns = not significant). (D–F) Gene 
ontology enrichment analysis of TME signature genes in the cellular component (D), biological process (E) and molecular function (F) 
categories. The x-axis indicates the number of genes within each gene ontology term. 
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UV exposure (COSMIC Signature 7; cosine similarity: 

0.93), tobacco mutagens (COSMIC Signature 4; cosine 

similarity: 0.917) and spontaneous deamination of 5-

methylcytosine (COSMIC Signature 1; cosine 

similarity: 0.942) (Figure 5C–5F). In contrast, de novo 

signatures identified in the low TME score group were 

enriched in APOBEC cytidine deaminase signature 

(COSMIC Signature 13; cosine similarity: 0.809) and 

defective DNA mismatch repair (COSMIC Signature 

6; cosine similarity: 0.849) (Figure 5G, 5H). C > T and 

C > G mutations at TpCpN trinucleotides were 

attributed to the overactivity of the AID/APOBEC 

family of cytidine deaminases. These data indicate that 

the overactivity of APOBEC family genes may be 

involved in HNSCC tumorigenesis and immune 

outcome. 

 

Copy number alterations of the TME phenotypes 

 

We observed that 98% HNSCC samples had CNVs at 

the chromosome arm level, including loss at 3p, 4p, 5q, 

8p, 9p, 11q, 13q, 18q and 21q and gain at 1q, 3q, 5p, 8q, 

14q, 20p and 20q. Analyses using GISTIC indicated 

that the chromosome arm level had a significant gain at 

8q and 20q in the high TME score group (Figure 6A) 

and at 8q, 3q and 3p in the low TME score group 

 

 
 

Figure 3. Clinical characteristics of the TME phenotypes. (A) TME score distribution in patients with HNSCC. (B) Overall survival status 
of patients with HNSCC. (C) Alluvial diagram of TME gene clusters in groups with different TME clusters, DEG clusters, TME scores and survival 
outcomes. (D) Gene set enrichment analysis of hallmark gene sets between the high and low TME score groups. (E) Kaplan–Meier curves for 
the high and low TME score groups. As evident, the high TME score group was associated with better outcomes than the low TME score 
group (log-rank test, P < 0.001). 
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(Figure 6B); moreover, the chromosome arm level had a 

significant loss at 8p, 3p and 11q in the high TME score 

group and at 9p, 5q and 4p in the low TME score group 

(Figure 6C, 6D). Similar SNV and CNV profiles along 

with similar RNA expression patterns supported that 

HNSCC belongs to the “squamous” molecular subtype, 

as identified by Hoadley et al. [29]. We also identified 

13 focal regions with recurrent gain of copy number and 

20 regions with recurrent loss of copy number (both q < 

1e−4), in which many genes have previously been 

identified to be tumor-associated genes (Supplementary 

Table 4). Among them, three recurrent focal 

amplifications (11q13.3, 7p11.2 and 3q26.33) (Figure 

6E, 6F) and three recurrent focal deletions (9p21.3, 

8p23.2 and 4q35.2) (Figure 6G, 6H) were identified for 

the first time in the TME score groups. 

 

 
 

Figure 4. Somatic mutations in HNSCC. (A, B) Distribution of highly variant mutated genes correlated with TME score groups. The upper 
bar plot indicates overall survival (OS), TMB and TME score for each patient, whereas the left bar plot shows the mutation frequency of each 
gene in separate TME score groups [high (A) and low (B) TME score groups]. TME score, grade, overall survival status, gender, age, smoking, 
alcohol frequency, daily alcohol, HPV P16 status and HPV ISH status are shown as patient annotations. (C) Mutation percentage of common 
mutated genes in the TME score groups. (D) Genome variant classification. (E) Genome variant type. (F) Single nucleotide variant class. 
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Integrated genomic landscape of the TME score 

phenotype 

 

To elucidate the molecular characteristics of HNSCC, 

according to information pertaining to the TME clusters 

and TME score groups, as well as tumor purity, 

malignant cell ploidy, tumor mutation burden (TMB) 

and clinical information (age, grade and OS status), a 

comprehensive genomic landscape of HNSCC samples 

was integrated and has been depicted in Supplementary 

Table 5. As shown in Figure 7A and Supplementary 

Figure 1C and 1D, no difference was present between 

the high and low TME score groups with regard to 

tumor ploidy and malignant cell purity. However, 

consistent with TMB, TME score was able to 

significantly differentiate between high- and low-risk 

HNSCC. TMB, in concert with PD-L1 expression, is 

reportedly a useful biomarker for immune checkpoint 

blockade selection in diverse cancers [30]. Herein ROC 

analysis showed that in comparison with TMB, TME 

score is a similar efficacious biomarker to determine the 

effectiveness of immunotherapy in patients with 

HNSCC (area under ROC: 0.549 vs. 0.572, P = 0.64) 

(Figure 7B). 

DISCUSSION  
 

HNSCC is a heterogeneous disease of the upper 

aerodigestive tract, encompassing distinct histological 

types, different anatomical sites and even HPV+ or 

EBV+ cancers. Dysfunctional immune cells in patients 

with recurrent/metastatic HNSCC can be repaired using 

immunotherapies in combination with conventional 

treatment methods. In this study, our findings indicated 

that assessing the immune score via the TME signature 

provided a potent predictor of survival in patients with 

HNSCC. Functional analysis of TME signature genes 

suggested that they are involved in the activation and 

inhibition of immune responses. Mutational signature 

and CNV analyses indicated that somatic mutations in 

tumor DNA or chromosome arm can give rise to 

neoantigens and mutation-derived antigens, which are 

recognized and targeted by the immune system, thereby 

activating the immune response. We report that TME 

score can act as an immunotherapy biomarker for 

HNSCC. 

 

Immune checkpoint blockade therapy that impedes the 

PD-1/PD-L1 and anti-CTLA-4 pathway can increase 

 

 
 

Figure 5. Mutational signature of the TME score groups. (A, B) Distribution of mutation type frequency in the high (A) and low (B) TME 
score groups. (C–H) Mutational signatures identified in the high (C–F) and low (G–H) TME score groups, respectively. The y-axis indicates 
exposure of 96 trinucleotide motifs to overall signature. The plot title indicates best match against validated COSMIC signatures and cosine 
similarity value along with the proposed aetiology. 
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Figure 6. CNV analysis in HNSCC. (A–D) CNV at arm level. The bar graphs show the frequency of arm-level CNV amplification (A, B) and 
deletion (C, D), the vertical axis denotes chromosome arms. (E–H) CNV at focal regions detected by GISTIC v2·0. Regions of recurrent focal 
amplifications (E, F) and focal deletions (G, H) in the high and low TME score groups are plotted by false discovery rate (x-axis) for each 
chromosome (y-axis). Dashed lines represent the centromere of each chromosome. 
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OS in patients with advanced melanoma, non-small-cell 

lung cancer, urothelial cancer, renal cell carcinoma and 

other cancer types [31–35]. However, such a response is 

observed in only a minority of patients. Several studies 

have reported that PD-1 and PD-L1 expression, 

microsatellite instability status and mutation load are 

not robust biomarkers for predicting the benefits of 

immune checkpoint blockade [36–38]. Thus, it is of 

utmost importance to screen effective biomarkers for 

checkpoint immunotherapy. HNSCC, similar to all 

other cancers, results from a stepwise accumulation of 

genomic instability, chromosomal aberrations and 

genetic mutations [39]. Within cancer tissues, arising 

mutant cells strive for metabolism, avoid immune 

surveillance and in collaboration with the extracellular 

matrix, tumor stroma, immune cells, vessel remodelling 

and diverse immunoinhibitory soluble or membrane-

bound cytokines, establish a unique TME [40]. Tekpli  

et al. reported an independent poor-prognosis subtype of 

breast cancer defined by a distinct TME [41]. Zeng  

et al. also reported that TME characteristics could be 

used to interpret the response of gastric tumors to 

immunotherapies [42]. Herein our findings provide 

clarity on the comprehensive landscape of the 

interactions between the clinical characteristics of 

HNSCC and tumor-infiltrating immune cells. With the 

application of computational algorithms, a methodology 

was established to determine TME score. 

Herein we used CIBERSORT to evaluate differential 

immune cell infiltration in paired HNSCC and adjacent 

normal tissues, and the results revealed considerable 

differences in the immune cell fraction in both the intra- 

and intergroups. Our results also uncover details 

pertaining to the infiltration of LM22 immune cell 

subpopulations in HNSCC, with the proportion of 

macrophages being >45% (M0 = 27%, M2 = 9% and 

M1 = 9%). CD4+ memory activated T cells, resting NK 

cells, regulatory T cells, CD8+ T cells, follicular T 

cells, monocytes, resting mast cells, plasma cells, naïve 

B cells and memory B cells were risk factors for OS, 

while neutrophils, activated mast cells, activated NK 

cells, resting memory CD4+ T cells, naïve CD4+ T 

cells, M0 macrophages, M2 macrophages and 

eosinophils were favourable factors for OS. HNSCC 

samples were clustered into three main clusters: low, 

intermediate and high immune infiltration. Patients in 

the high immune infiltration cluster showed the best 

survival probability than those in the other two clusters. 

 

Integrated analyses revealed that TME score is a 

prognostic biomarker for HNSCC; in particular, naïve B 

cells, regulatory T cells and follicular T cells in the high 

TME score group were associated with an improved 

outcome, whereas neutrophils and activated mast cells 

in the low TME score group were associated with 

poorer outcome. Further, the involvement of several 

 

 
 

Figure 7. Clinical and integrated genomic landscape of HNSCC with the TME score phenotype. (A) Comprehensive genomic 
landscape of HNSCC. (B) Prediction immunotherapy effect of TME score by ROC analysis. 
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immune activation pathways suggested that TME score is 

a predictive biomarker to further advance precision 

immunotherapy of HNSCC. Higher non-synonymous 

mutational burden has been associated with an improved 

overall response rate, durable clinical benefits and 

progression-free survival in patients treated with ICIs [43]. 

C > T and/or C > G mutations at TpCpN trinucleotides 

were attributed to the overactivity of the AID/APOBEC 

family of cytidine deaminases. Although the APOBEC 

family of proteins might serve as endogenous carcinogenic 

mutagens [44], they also play crucial roles in the innate 

immune response to viral infections by modifying the viral 

genome [45, 46]. Through ROC analysis, we found that 

TME score showed a predictive value similar to that of 

TMB, which indicates that it may act as an independent 

biomarker for immunotherapy. 

 

To summarize, our results provide a comprehensive 

view of the cellular, molecular and genetic factors 

associated with TME infiltration patterns and define a 

potential mechanism by which tumors respond to 

immunotherapy. We believe that TME score is a useful 

biomarker that can effectively predict immunotherapy 

outcome in patients with HNSCC. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 
 

RNA-seq data (N = 546) and survival data (N = 530) 

were obtained from TCGA database (https://portal. 

gdc.cancer.gov/projects/TCGA-HNSC). Patients 

diagnosed with HNSCC and with clinicopathological 

and survival information (N = 500) were transformed as 

original read counts. Next, genes with low expression 

levels were removed using the filterByExpr function of 

edgeR. The expression data were then transformed 

using voom to facilitate the evaluation of immune cell 

subpopulations by CIBERSORT. 

 

Evaluation of tumor-infiltrating immune cells 
 

To evaluate the number of each type of tumor-infiltrating 

immune cells, we applied the original CIBERSORT gene 

signature file LM22, which defines 22 immune cell 

subpopulations, to analyse datasets pertaining to HNSCC. 

Gene expression datasets were prepared using standard 

annotation files and data uploaded to the CIBERSORT 

web portal (http://cibersort.stanford.edu/), with the 

algorithm run using the default signature matrix at 1,000 

permutations [20].  

 

Consensus clustering of TME-infiltrating patterns 
 

Different TME cell infiltration patterns were grouped 

using hierarchical agglomerative clustering based on 

Euclidean distance and Ward’s linkage. In addition, we 

used an unsupervised clustering method (K-means) for 

dataset analysis to identify TME cell infiltration 

patterns and to classify patients for further analyses 

[47]. The consensus clustering algorithm was used to 

detect the number of clusters in the meta-dataset. This 

was performed using the ConsensusClusterPlus R 

package and was repeated 1,000 times to ensure the 

stability of classification [48]. 

 

DEGs associated with the TME phenotypes 
 

To identify genes associated with TME cell infiltration 

patterns in patients with HNSCC, we grouped the TME 

cluster into three classes: TME cluster 1, 2 and 3. DEGs 

among these three clusters were determined using the R 

package limma, which implements an empirical 

Bayesian approach to estimate changes in gene 

expression levels using moderated t-tests. DEGs among 

the TME clusters were determined by significance 

criteria (P < 1e−3 and |log2FC| > 1), as implemented in 

the R package limma. 

 

TME gene signature analyses 
 

The construction of TME metagenes was performed as 

follows. Each DEG among TME cluster 1, 2 and 3 was 

standardized across all samples. An unsupervised 

clustering method (K-means) was used for DEG 

analyses to classify patients into three groups for 

further analyses. The random forest classification 

algorithm was used for dimension reduction to reduce 

noise or redundant class-specific DEGs in TME 

clusters. DEGs among the TME clusters were 

annotated using the clusterProfiler R package [49]. A 

consensus clustering algorithm was applied to define 

the cluster of genes and to calculate the signature 

score. For gene expression (normalized by RMA or 

TPM methods) analysis, the expression of each gene in 

a signature was first transformed into a z-score, and 

then, principal component analysis (PCA) was 

performed using the consensus clustering algorithm. 

Principal component 1 was extracted to serve as the 

gene signature score. After obtaining the prognostic 

value of each gene signature score, we used the gene 

expression grade index method to obtain the TME 

score of each patient [50]: 

 

TME score = ∑voom(X) – ∑voom(Y) 

 

wherein X represents the signature score of expression 

value of positive gene clusters, and Y represents the 

expression level of gene clusters. Patients with HNSCC 

were therefore assigned to groups based on high or low 

TME scores using the cut-off value obtained with the 

https://portal.gdc.cancer.gov/projects/TCGA-HNSC
https://portal.gdc.cancer.gov/projects/TCGA-HNSC
http://cibersort.stanford.edu/


 

www.aging-us.com 22520 AGING 

maxstat R package; the clinical outcomes were further 

analysed. 

 

Functional and pathway enrichment analysis 
 

Gene ontology terms (cellular component, biological 

process and molecular function) of TME gene signatures 

were identified using the clusterProfiler R package [49]. 

Gene set enrichment analysis of DEGs with high or low 

TME scores was performed based on the MSigDB 

database (Broad Institute) [51]. Broad hallmarks and 

specific pathways of interest from curated gene 

sets/canonical pathway collection were all included. 

 

Mutational signature analysis 

 

Mutational signature was first identified using the 

BayesNMF algorithm. The count of somatic mutations 

was calculated for each type of substitution (96 

trinucleotide mutation contexts) to generate a 

mutational catalogue. We then ran the Bayesian NMF 

1,000 times with the hyperparameter for the inverse 

gamma prior setting to 10 (a = 10); the iterations were 

terminated when the tolerance for convergence was  

< 10 e–7, and half-normal was selected as “pirors” for 

this algorithm [52]. Signatures identified following 

matrix factorization were scaled and the results were 

compared to the Catalogue of Somatic Mutations in 

Cancer (COSMIC) signature database. A cosine 

similarity value was then estimated for the best possible 

match [53]. For signature enrichment analysis, we used 

matrix H, containing signature exposures for every 

sample in every signature. Using K-means clustering, 

the samples were grouped into r clusters, thereby 

assigning samples to an identified signature. 

 

For apolipoprotein B-editing catalytic polypeptide-like 

subunit (APOBEC)-based enrichment analysis, we used 

the method described by Roberts et al. [44] to estimate an 

enrichment score, which defined the strength of APOBEC-

related mutagenic processes for every tumor sample in 

Mutation Annotation Format. Briefly, the enrichment of  

C > T mutations occurring within over all C > T mutations 

in a given sample was compared to background cytosines 

and occurring around ±20 bp of mutated bases. We further 

used this method to identify genes associated  

with APOBEC enrichment by classifying samples as 

APOBEC-enriched (enrichment score > 2) and non-

APOBEC-enriched (enrichment score < 2), followed by 

using one-way Fisher’s exact tests to identify genes 

overrepresented among APOBEC-enriched samples. 

 

Analysing CNVs 
 

To identify variant regions that drive cancer 

pathogenesis, the Genomic Identification of Significant 

Targets in Cancer (GISTIC) algorithm was used to 

detect genomic regions manifesting amplifications 

(copy number > 1) or deletions (copy number < −1) 

[54]. G-score was determined to evaluate the amplitude 

of aberrations and frequency of occurrence in variant 

regions. Briefly, GISTIC v2.0 was used to define the 

prepared CNV profiles for all genes in the 488 HNSCC 

samples. False discovery rate q-values were assigned to 

each variant region. “Peak regions,” also known as 

significantly aberrant regions, indicated the greatest 

frequency and amplitude of aberrations [55, 56]. 

 

Analysing somatic DNA copy number alterations 
 

To elucidate tumor purity and malignant cell ploidy 

from the somatic DNA copy number alterations, 

ABSOLUTE was used to detect subclonal heterogeneity 

and somatic homozygosity and to calculate statistical 

sensitivity to identify specific aberrations. Briefly, as 

described by Carter et al. [57], based on the CNV data 

of somatic DNA copy number alterations, pre-designed 

cancer karyotypes and somatic mutation frequencies 

were scored and integrated. The highest score was 

considered to represent the optimal model, and tumor 

purity and malignant cell ploidy were then detected 

using the ABSOLUTE R package limma. 

 

Statistical analysis 

 

Student’s t-test and ANOVA were utilized to compare 

continuous and discrete variables, respectively. 

Pearson’s chi-squared test was used for comparing 

categorical clinicopathological variables, and survival 

probability and differences were analysed using log-

rank test and the Cox proportional hazards model 

(multivariate analysis). Statistical analyses were 

performed using standard R packages (version 3.5.2).  

P < 0.05 indicated statistical significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Tumor ploidy and malignant cell purity in HNSCC samples. Ploidy (A) and purity (B) in TME cluster-1, -2 
and -3. Ploidy (C) and purity (D) in the high and low TME score groups. 
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Supplementary Tables 
 

 

 

Please browse Full Text version to see the data of Supplementary Tables 1 to 5. 

 

Supplementary Table 1. Relationship between different immune cells and survival. 

Supplementary Table 2. Differentially expressed genes of intersection in TME cluster-1, -2 and -3. 

Supplementary Table 3. Immune-related pathways related to differentially expressed genes. 

Supplementary Table 4. Amplification and deletion of chromosomes in the high and low TME score groups. 

Supplementary Table 5. Tumor purity and malignant cell ploidy, TMB (tumor mutation burden) and clinical 
information (age, grade and OS status) pertaining to HNSCC samples. 

 


