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INTRODUCTION 
 

Breast cancer is a common malignant tumor in female, 

which occurs frequently in middle-aged and old women 

[1]. Nowadays, the incidence of breast cancer is 

increasing particularly in young adult population [2]. 

With the continuous development of modern medicine, 

the treatment of breast cancer has become more 

effective. However, the recurrence and metastasis of 

breast cancer are still challenging, and the treatment 

outcome after the occurrence of metastasis is poor. The  

 

high mortality among patients with recurrent breast 

cancer has been recognized as the major challenge of 

clinical treatment [3]. Breast cancer can be divided into 

Luminal (Luminal A, Luminal B), Her-2, and Basal-like 

subtypes on the basis of the gene expression profile of 

50 genes, known as PAM50 molecular intrinsic 

subtypes [4]. The molecular subtypes of breast cancer 

are related to the prognosis of patients, and such 

subtypes are independent risk factors for prognosis [5]. 

Breast cancer with different molecular subtypes has 

different genetic background and displays differences in 
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ABSTRACT 
 

Emerging evidence suggests that the dysregulation of autophagy-related genes (ARGs) is coupled with the 
carcinogenesis and progression of breast cancer (BRCA). We constructed three subtype-specific risk models using 
differentially expressed ARGs. In Luminal, Her-2, and Basal-like BRCA, four- (BIRC5, PARP1, ATG9B, and TP63), 
three- (ITPR1, CCL2, and GAPDH), and five-gene (PRKN, FOS, BAX, IFNG, and EIF4EBP1) risk models were identified, 
which all have a receiver operating characteristic > 0.65 in the training and testing dataset. Multivariable Cox 
analysis showed that those risk models can accurately and independently predict the overall survival of BRCA 
patients. Comprehensive analysis showed that the 12 identified ARGs were correlated with the overall survival of 
BRCA patients; six of the ARGs (PARP1, TP63, CCL2, GAPDH, FOS, and EIF4EBP1) were differentially expressed 
between BRCA and normal breast tissue at the protein level. In addition, the 12 identified ARGs were highly 
interconnected and displayed high frequency of copy number variation in BRCA samples. Gene set enrichment 
analysis suggested that the deactivation of the immune system was the important driving force for the progression 
of Basal-like BRCA. This study demonstrated that the 12 ARG signatures were potential multi-dimensional 
biomarkers for the diagnosis, prognosis, and treatment of BRCA. 
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both biological properties and clinical prognosis [6]. 

Luminal breast cancer has slow progress and poor 

invasion properties and shows good prognosis, whereas 

Basal-like and Her-2 breast cancer have strong invasion 

and proliferation ability and often has a poor prognosis 

[7]. The molecular subtypes of breast cancer also serve 

as indicators to guide the selection of therapeutic 

strategies. Therefore, the identification of new subtype-

specific biomarkers is necessary for the early detection 

and intervention of breast cancer. 

 

Autophagy, also known as type II programmed cell 

death, is an important biological process that maintains 

homeostasis within cells by degrading aged or damaged 

proteins and organelles in the lysosome [8]. Autophagy 

plays a dual role in the pathogenesis of many diseases, 

including inflammatory and neurodegenerative 

disorders and neoplasm [9–12]. In acute kidney injury 

and chronic kidney disease, autophagy can reduce the 

stimulation of cells to a certain extent, but it can 

aggravate tissue damage [13]. In the early stages of 

cancer, autophagy inhibits the transformation and 

growth of cancer cells, whereas autophagy can 

exaggerate the proliferation of malignant cells by 

degrading and recovering the components of damaged 

or aged organelles to meet their metabolic needs for 

rapid growth [14, 15]. Autophagy plays a crucial role in 

tumor progression. 

 

Studies have shown that autophagy is involved in 

regulating the growth and development of breast cancer 

[16, 17]. The autophagy protein Beclin-1 serves as a 

tumor suppressor or tumor promoter in a context-

dependent manner [18]. Autophagy-associated genes 

ATG8 and UVRAG, which have been frequently found 

to be deleted or mutated in BRCA tissue, are inhibitors 

of tumor progression [19, 20]. Although the autophagy-

related genes have played a key role in BRCA initiation 

and progression, the clinical relevance of these 

autophagy genes in different molecular subtypes of 

BCRA has not been discussed in detail. 

 

In this study, we explored the prognostic significance of 

autophagy-related genes (ARGs) in various types of 

BRCA tumors (Luminal, Her-2, and Basal-like) by 

using high-throughput expression profiles from the 

TCGA databases. We constructed three subtype-specific 

ARG risk predicting models by first identifying the 

differentially expressed autophagy-related genes 

(DEARGs) in each type of BRCA. Then, Lasso 

regression and Cox regression analysis were used to 

optimize the models, and DEARGs related to overall 

survival (OS) were screened out. We used these 

DEARGs to establish a Cox regression model (OS 

model) and evaluate the specificity and sensitivity of 

these models using ROC curve analysis. Our data show 

that these subtype-specific models can accurately and 

independently predict the prognosis of patients. These 

findings also provide an effective biomarker-based 

multi-dimensional strategy for the prognosis of BRCA 

patients with different molecular subtypes. 

 

RESULTS 
 

Flowchart of this study 

 

The detailed workflow for the construction of the 

subtype-specific risk models and downstream analysis 

was shown in Figure 1. First, we identified the DEARGs 

in Luminal, Her-2, and Basal-like subtypes of BRCA. 

 

 
 

Figure 1. The workflow of the identification of subtype-specific survival-related autophagy signature in BRCA. 
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Then, subtype-specific risk models were constructed 

using the data in the training dataset. The risk models 

were further verified and optimized in the testing 

datasets. The prediction power of these risk models 

was investigated by time-dependent ROC analysis. 

GSEA analysis was performed to analyze the 

differentially enriched hallmarks and KEGG pathways 

in the predicted high- and low-risk groups. The 12 

genes in the subtype-specific risk model were 

subjected to Kaplan–Meier, protein expression, 

oncoPrint, protein–protein interaction (PPI), and 

correlation analyses. 

 

Differential expression of ARGs in Luminal, Her2, 

and Basal-like BRCA 

 

We downloaded the mRNA expression data and clinical 

information of 1109 BRCA tissue samples and 113 non-

tumor samples from the TCGA database (Table 1). 

After extracting the expression values of 234 ARGs 

from the three breast cancer subtypes, we obtained the 

DEARGs and showed the expression patterns of the 

DEARGs in BRCA and non-tumor tissues by volcano 

plots and box plots (Figure 2). In Luminal BRCA, 29 

differentially expressed genes were identified, among 

which, 16 and 13 genes were downregulated and 

upregulated (Figure 2A, 2B, 2G) in tumor tissue, 

respectively. In Her-2 BRCA, 45 differentially 

expressed genes were discovered, 23 and 22 of which 

were downregulated and upregulated in tumor tissue, 

respectively (Figure 2C, 2D, 2H). We also identified 41 

differentially expressed genes in Basal-like BRCA, 

among them, 22 and 19 genes were upregulated and 

downregulated in tumor tissue (Figure 2E, 2F, 2I), 

respectively. In addition, we found that 18 DEARGs 

were shared by Luminal, Her-2, and Basal-like BRCA 

(Supplementary Figure 1A). 

 

Functional annotation of the DEARGs 

 

Functional enrichment analysis of the DEARGs 

provided biological understanding of these genes. The 

GO terms and KEGG pathway enrichment of these 

genes were summarized in Figure 3. In Luminal BRCA, 

we found that the top enriched GO terms for biological 

processes were as follows: neuron death, neuron 

apoptotic process, regulation of neuron death. For 

cellular components, the GO terms were as follows: 

autophagosome, membrane raft, membrane 

microdomain. For molecular function, genes were 

mostly enriched in the following terms: ubiquitin 

protein ligase binding, ubiquitin-like protein ligase 

binding, and protein phosphatase binding (Figure 3A). 

In Her-2 BRCA, we found that the top enriched GO 

terms for biological processes were as follows: 

autophagy, process utilizing autophagic mechanism, 

intrinsic apoptotic signaling pathway. For cellular 

components, the GO terms were as follows: 

autophagosome, autophagosome membrane, vacuolar 

membrane. For molecular function, genes were mostly 

enriched in the following terms: ubiquitin protein ligase 

binding, ubiquitin-like protein ligase binding, cytokine 

activity (Figure 3B). In Basal-like BRCA, we found that 

the top enriched GO terms for biological processes were 

as follows: autophagy, process utilizing autophagic 

mechanism, intrinsic apoptotic signaling pathway. For 

cellular components, the GO terms were as follows: 

mitochondrial outer membrane, organelle outer 

membrane, outer membrane. For molecular function, 

genes were mostly enriched in the following terms: 

ubiquitin protein ligase binding, ubiquitin-like protein 

ligase binding, protease binding (Figure 3C). 

 

In addition, in the KEGG pathway enrichment analysis 

for the DEARGs, these genes were associated with 

EGFR tyrosine kinase inhibitor resistance, ERBB 

signaling pathway, and Human cytomegalovirus 

infection in Luminal BRCA (Figure 3D). Terms such as 

Human cytomegalovirus infection and Apoptosis were 

enriched in Her-2 BRCA (Figure 3E). In Basal-like 

BRCA, terms such as EGFR tyrosine kinase inhibitor 

resistance and Apoptosis were significantly enriched 

(Figure 3F). The PPI analysis using STRING showed 

that the 18 shared DEARGs (Supplementary Figure 1A) 

were highly interconnected with PPI P-value < 0.01 

(Supplementary Figure 1B). Functional enrichment 

analysis also suggested that the shared DEARGs were 

related to mitochondria disassembly, organelle 

disassembly, and apoptosis (Supplementary Figure 1C). 

 

Construction and validation of subtype-specific 

prognostic risk models for BRCA 

 

To explore the connection between ARGs and 

prognosis, we constructed risk models in Luminal, Her-

2, and Basal-like breast cancer patients. Initially, 

univariable Cox regression analysis was performed to 

obtain the genes that were significantly correlated to 

prognosis, and then the lasso regression and 

multivariable Cox regression were adopted to generate 

the final prognostic model (Table 2, Figure 4A, 5A, 6A). 

 

After the construction of the subtype-specific risk 

models, patients were grouped into high- and low-risk 

groups, and then Kaplan–Meier survival analysis was 

performed in training and testing sets. The results showed 

that patients with a high risk score have a significantly 

poor overall survival time compared with patients with a 

low risk score in Luminal, Her-2, and Basal-like datasets 

(Figure 4B, 5B, and 6B). In addition, time-dependent 

ROC analysis indicated that both models can accurately 

predict the OS of BRCA patients (Figure 4C, 5C, and 6C). 
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Table 1. Clinicopathological parameters of BRCA patients in the TCGA database. 

Clinical parameters Variables Total(988) Percentages(%) 

Age <=65 698 70.65% 

 >65 290 29.35% 

Pathological stage Stage I 167 16.90% 

 Stage II 570 57.69% 

 Stage III 220 22.27% 

 Stage IV 14 1.42% 

 Stage X 17 1.72% 

T T1 256 25.91% 

 T2 579 58.60% 

 T3 116 11.74% 

 T4 35 3.54% 

 TX 2 0.20% 

N N0 472 47.77% 

 N1 326 33.00% 

 N2 110 11.13% 

 N3 63 6.38% 

 NX 17 1.72% 

Molecular subtypes Luminal 729 73.79% 

 Her-2 78 7.89% 

 Basal-like 181 18.32% 

Survival status Dead 137 13.87% 

 Alive 851 86.13% 

Abbreviations: T, Tumor; N, Node (lymph node regional) 

In Luminal BRCA patients, a four-gene model 

(BIRC5, PARP1, ATG9B, and TP63) was successfully 

obtained with good prediction power for 2 year 

survival (area under the curve [AUC] = 0.787 in the 

training set and AUC = 0.729 in the testing set). The 

prediction accuracy for 3 year survival of this model 

was relatively low but acceptable (AUC = 0.695 in 

the training set and AUC = 0.681 in the testing set). 

The risk score of each patient was predicted using 

this model, and we identified that BIRC5, PARP1, 

and ATG9B were positive risk-correlated genes, 

whereas TP63 was negative risk-correlated genes 

(Figure 4E, 4F). 

 

The same data processing and analysis were also 

performed in other BRCA subtypes. We identified a 

three-gene risk model (ITPR1, CCL2, and GAPDH) in 

Her-2 BRCA with good predicting power for both 2 

and 3 year survival (AUC > 0.700). The risk scores 

were then calculated, and ITPR1 and GAPDH were 

identified as positive risk-correlated genes, and CCL2 

was identified as a negative risk-correlated gene 

(Figure 5E, 5F). 

 

Moreover, we constructed a five-gene risk model 

(PRKN, FOS, BAX, IFNG, and EIF4EBP1) in patients 

with Basal-like BRCA, which has a good predicting 

power for 2 year survival (AUC = 0.837 in the training 

set and AUC = 0.729 in the testing set). The predicting 

power of this model for 3 year survival was good but 

might have mild overfitting problem (AUC = 0.927 in 

the training set and AUC = 0.829 in the testing set). 

PRKN, FOS, BAX, and EIF4EBP1 were identified as 

positive risk-correlated genes, whereas IFNG was 

identified as a negative risk-correlated gene (Figure 

6E, 6F). 

 

Prognostic risk models were independently related 

to OS in BRCA patients 

 

We used univariable Cox regression and multivariable 

Cox regression to analyze the correlation among clinical 

parameters, such as age, histological grade, pathological 

stage, risk score, and OS in BRCA patients. 

 

In Luminal BRCA, univariable Cox regression analysis 

showed that the age, stage, pathological stage T, and 

risk score were correlated with OS in BRCA patients 

(P < 0.05). Multivariable Cox analysis showed that age 

and risk score were correlated with OS in BRCA 

patients (P < 0.05) (Figure 7A). In Her-2 BRCA, 

univariable Cox regression analysis showed that age, 

stage, pathological stage T, and risk score were related 

to OS in BRCA patients (P < 0.05). Multivariable Cox 

analysis showed that age, stage, and risk score were 

correlated with OS in BRCA patients (P < 0.05) 

(Figure 7B). In Basal BRCA, univariable Cox 

regression analysis showed that stage, pathological 

stage T, N, and risk score were correlated with OS of 

BRCA patients (P < 0.05). Multivariable Cox analysis 
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Figure 2. Subtype-specific DEARGs in BRCA and normal breast tissues. (A) Boxplot showing the expression pattern of DEARGs in 

Luminal BRCA. (B) Volcano plot for the 234 ARGs in Luminal BRCA. (C) Boxplot showing the expression pattern of DEARGs in Her-2 BRCA. (D) 
Volcano plot for the 234 ARGs in Her-2 BRCA. (E) Boxplot showing the expression pattern of DEARGs in Basal-like BRCA. (F) Volcano plot for 
the 234 ARGs in Basal-like BRCA. The upregulated, downregulated and no-differential expressed genes were indicated by green, red and 
black dots, respectively. The P-value was calculated by Wilcox-test. (G–I) Clustered heatmap of differentially expressed ARGs expression level 
in Luminal (G), Her-2 (H) and Basal-like (I) BRCA. 
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showed that stage, pathological stage T, N, and risk 

score were significantly correlated with OS (P < 0.05) 

(Figure 7C). These results indicated that the identified 

subtype-specific prognostic models can be used 

independently to predict OS in BRCA patients with 

different molecular subtypes. 

 

Comprehensive analysis of genes in subtype-specific 

autophagy prognostic models 

 

We obtained a total of 12 genes in the subtype-specific 

risk models, and then we further evaluated the 

prognostic value of the selected genes in other 

databases. The genes were subjected to GEPIA database 

to perform the Kaplan–Meier analysis. The results 

showed that in Luminal BRCA, BIRC5, PARP1, and 

ATG9B negatively correlated with OS, whereas the high 

expression of TP63 indicated a good prognosis (Figure 

8A1–4). In Her-2 BRCA, ITPR1 and GAPDH were 

correlated with bad prognosis, whereas CCL2 was a 

good prognostic marker (Figure 8B 1–3). In Basal 

BRCA, the high expression of PRKN, FOX, BAX, and 

EIF4EBP1 indicated a bad prognosis; however, INFG 

was a protective molecule that significantly correlated 

with good prognosis (Figure 8C 1–5). Collectively, the 

results of Kaplan–Meier analysis were consistent with 

the results of univariable Cox analysis, which indicated 

that all genes have been inculcated in the risk-specific 

models and have a good prognostic predicting power. 

 

Next, we analyzed the protein expression patterns of the 

genes in subtype-specific risk models by the HPA 

database (Figure 9). The results showed that PARP1, 

GAPDH, and FOS protein were less expressed in 

normal breast tissues but were moderately expressed in 

breast cancer tissues (Figure 9A–9C). TP63 was highly 

expressed in normal tissues but not detected in tumor 

tissues (Figure 9D). The CCL2 protein was moderately 

expressed in normal tissues and lowly expressed in 

cancer tissues (Figure 9F). The EIF4EBP1 protein was 

moderately expressed in normal tissues and highly 

expressed in cancer tissues (Figure 9H). These results 

were consistent with most of our previous mRNA level 

observations. However, we found that PRKN and BAX 

protein were only slightly upregulated in cancer tissues 

(Figure 9E, 9G). 

 

We then investigated the CNV and mRNA expression 

alternation of the aforementioned genes by using the 

cbioProtal database (Figure 10A). The results indicated 

that CNVs contributed to the mRNA expression 

alterations of these analyzed genes. Notably, PARP1, 

 

 
 

Figure 3. Gene-Ontology and KEGG enrichment analysis of DEARGs. (A–C) Gene-Ontology analysis of DEARGs in Luminal (A), Her-2 

(B) and Basal-like (C) BRCA. (D–F) KEGG analysis of DEARGs Luminal (A), Her-2 (B) and Basal-like (C) BRCA. The outer circle shows a scatter 
plot for each term of the logFC of the assigned genes. Red circles display up-regulation pathways, and blue circles showing the down-
regulation pathway. 
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Table 2. The 12 selected autophagy-related genes. 

Subtypes Gene Coef HR HR.95L HR.95H P value 

Luminal BIRC5 0.03 1.03 0.79 1.33 0.85 

 PARP1 0.49 1.64 1.02 2.64 0.04 

 ATG9B 0.24 1.28 0.94 1.74 0.12 

 TP63 -0.25 0.78 0.63 0.96 0.02 

       

Her-2 ITPR1 1.06 2.89 1.12 7.44 0.03 

 CCL2 -0.68 0.51 0.26 0.99 0.04 

 GAPDH 0.34 1.41 0.51 3.88 0.50 

       

Basal-like PRKN 0.91 2.47 1.10 5.58 0.03 

 FOS 0.99 2.70 1.20 6.07 0.02 

 BAX 1.26 3.53 1.10 11.30 0.03 

 IFNG -0.22 0.81 0.39 1.67 0.56 

 EIF4EBP1 1.65 5.23 2.11 12.99 <0.001 

Abbreviations: HR, hazard ratio; HR.95 L/H, 95 % confidence interval of the hazard ratio. 
 

 
 

Figure 4. Construction and Validation of the prognostic risk model in Luminal BRCA patients. (A) Lasso regression analyses of 

DEARGs using the OS model. The Lasso regression was performed using prognosis-significant DEARGs in the training dataset of Luminal BRCA. 
(B) Kaplan-Meier plot represents that patients in the high-risk group had a significantly shorter overall survival time than those in the low-risk 
group. left, training dataset, right, testing dataset. (C) Time-dependent ROC curve analyses showing AUC values for OS in BRCA patients. Left, 
training dataset, right, testing dataset. (D) Dot plots showing the survival time and risk score in training set and testing set. (E) The heatmap 
of the 4 key genes expression profiles in the training dataset and testing dataset. (F) Forest plot showing the multivariable Cox regression 
analysis of 4 key genes in risk-model. 
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EIF4EBP1, and CCL2 showed the highest CNVs and 

mRNA expression alterations throughout the analyzed 

samples, which might indicate that the CNVs were the 

primary driving power response to the mRNA expression 

alterations of such genes. We also analyzed the PPI of the 

12 selected genes, and the results suggested that such 

genes were highly interconnected (PPI enrichment P < 

0.05), and GAPDH was the major hub gene in the PPI 

network (Figure 10B). The correlation analysis of the 12 

selected genes was consistent with PPI analysis, which 

showed that most of the genes were correlated with 

mRNA expression (Figure 10C). The clustered heatmap 

showed that the 12 selected genes can be clustered into 

two groups, one of which showed a universal 

upregulation pattern in Basal-like BRCA (IFNG, CCL2, 

ATG9B, BAX, EIF4EBP1, GAPDH, and BIRC5), 

whereas genes in another cluster (PRKN, FOS, TP63, and 

ITPR1) displayed a low expression pattern in Basal-like 

BRCA. This finding might indicate that the two clusters 

of genes played different functional roles in Basal-like 

BRCA (Figure 10D). Consistently, the violin plots also 

showed that most of the selected genes were 

differentially expressed between Luminal, Basal-like, and 

Her-2 BRCA (Figure 10E). 

 

 
 

Figure 5. Construction and Validation of the prognostic risk model in Her-2 BRCA patients. (A) Lasso regression analyses of 

DEARGs using the OS model. The Lasso regression was performed using prognosis-significant DEARGs in the training dataset of Her-2 BRCA. 
(B) Kaplan-Meier plot represents that patients in the high-risk group had a significantly shorter overall survival time than those in the low-risk 
group. left, training dataset, right, testing dataset. (C) Time-dependent ROC curve analyses showing AUC values for OS in BRCA patients. Left, 
training dataset, right, testing dataset. (D) Dot plots showing the survival time and risk score in training set and testing set. (E) The heatmap 
of the 3 key genes expression profiles in the training dataset and testing dataset. (F) Forest plot showing the multivariable Cox regression 
analysis of 4 key genes in risk-model. 
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Mechanistic exploration of model-predicted high-

risk patients by gene set enrichment analysis 

(GSEA) 

 

Considering that the high- and low-risk patients had a 

significant prognostic difference in the OS, we explored 

the mechanisms that contributed to this observation by a 

computational approach. The GSEAs were performed in 

Luminal, Basal-like, and Her-2 BRCA to interpret the 

enriched hallmarks and pathways between high- and 

low-risk patients. In Luminal BRCA, the results showed 

that several canonical tumor-promoting molecules were 

upregulated in the high-risk groups, including DNA 

repair, E2F targets, and G2M checkpoint. Otherwise, 

certain well-recognized Onco-signaling pathways were 

highly activated in high-risk tumors, such as PI3K AKT 

 

 
 

Figure 6. Construction and Validation of the prognostic risk model Basal-like BRCA patients. (A) Lasso regression analyses of 

DEARGs using the OS model. The Lasso regression was performed using prognosis-significant DEARGs in the training dataset of Basal-like 
BRCA. (B) Kaplan-Meier plot represents that patients in the high-risk group had a significantly shorter overall survival time than those in the 
low-risk group. left, training dataset, right, testing dataset. (C) Time-dependent ROC curve analyses showing the AUC values for OS in BRCA 
patients. Left, training dataset, right, testing dataset. (D) Dot plots showing the survival time and risk score in training set and testing set. 
(E) The heatmap of the 5 key genes expression profiles in the training dataset and testing dataset. (F) Forest plot showing the multivariable 
Cox regression analysis of 4 key genes in risk-model. 
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mTOR signaling, DNA replication, and cell cycle. High 

enrichment of focal adhesion, cell adhesion molecules 

(CAMs), and ECM receptor interaction-related genes 

were found in low-risk tumors, which might suggest 

that high-level cell–cell adhesion was a protective event 

in Luminal BRCA (Figure 11A). 

 

Similar to Luminal BRCA, canonical tumor-promoting 

molecules and pathways in Her-2 BRCA were also 

enriched in high-risk tumors. The low-risk tumors were 

enriched in terms such as cytokine–cytokine receptor 

interaction and natural killer cell-mediated cytotoxicity, 

which suggested that the activation of the immune 

system contributed to the restraints of tumor 

progression (Figure 11 B). 

 

None of the analyzed hallmarks or KEGG pathways 

were enriched in Basal-like BRCAs with high risk 

score; however, several immune-related molecules and 

signaling pathways were highly enriched in low-risk 

patients of Basal-like BRCA, such as interferon 

alpha/gamma response, antigen processing and 

presentation, cytokine–cytokine receptor interaction, 

natural killer cell-mediated cytotoxicity, and T-cell 

receptor signaling pathway (Figure 11C). This 

observation indicated that the activation of the immune 

system was important in controlling the progression of 

Basal-like BRCA. 

 

Collectively, such in silico analyses proposed that 

ARGs might correlate with several well-known 

oncogenes and/or Onco-pathways that contributed to the 

progression of Luminal and Her-2 BRCA, but the 

dysregulation of ARGs might inhibit the tumor-

suppressing immune reactions that exaggerated the 

aggressive nature of Basal-like BRCA. 

 

 
 

Figure 7. Univariable and multivariable Cox regression analyses of OS in Luminal, Her-2, and Basal-like BRCA. (A) Forest plots 

showing the univariable (A1) and multivariable cox regression analyses (A2) of OS in Luminal BRCA. (B) Forest plots showing the univariate 
(B1) and multivariable cox regression analyses (B2) of OS in Her-2 BRCA. (C) Forest plots showing the univariable (C1) and multivariable cox 
regression analyses (C2) of OS in Basal-like BRCA. 
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DISCUSSION 
 

Breast cancer is a common malignant tumor in female 

patients, which is one of the primary causes of death in 

women with malignant tumors [21, 22]. The 

development of a new molecularly targeted therapy is 

relatively slow because of limited effective molecular 

biomarkers for BRCA prognostic monitoring and 

pharmaceutical intervention [23]. At present, the role of 

autophagy in BRCA is controversial. Current data 

shows that autophagy can inhibit or promote the 

progression of cancer in a context-dependent manner 

[14]. Autophagy can also regulate the response of 

cancer to various therapies, which contributes to the 

acquisition of drug resistance in cancer cells [8]. 

Therefore, studying the expression pattern of ARGs is 

important to understand the role of autophagy in BRCA 

[24, 25]. Although the correlation between single ARG 

and BRCA has been discussed in previous studies, a 

comprehensive in-depth analysis of the clinical 

correlation between ARGs and the subtype of BRCA 

has not been carried out [26, 27]. In addition, the 

relationship between the expression of ARGs and the 

prognosis of BRCA patients is not clear. 

 

In this study, we explore the expression profile of ARGs 

in the TCGA database to identify molecular biomarkers 

related to the diagnosis, treatment, and prognosis of 

BRCA patients. We first screened the DEARGs 

between BRCA and non-tumor tissues. Considering that 

these genes may be deeply related to the occurrence of 

BRCA, we performed GO and KEGG analysis on these 

genes. Most of the enriched pathways are autophagy-

related pathways. Some other annotations were also 

 

 
 

Figure 8. Kaplan-Meier analyses of ARGs in subtype-specific prognosis models. (A) Kaplan-Meier analyses of BIRC5, PARP1, ATG9B 

and TP63 in Luminal BRCA. (B) Kaplan-Meier analyses of ITPR1, CCL2 and GAPHD in Her-2 BRCA. (C) Kaplan-Meier analyses of PRKN, FOS, BAX, 
INFG and EIF4EBP1 in Basal-like BRCA. The statistical significance was determined by Log-rank test. The dashed lines represent 95% 
confidence interval. 
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found, including apoptosis signaling pathway, ERBB 

signaling pathways, and mitochondria/organelles 

disassembly. For the KEGG pathway, we identified that 

the ERBB2 signaling pathway was enriched. The 

ERBB2 signal is closely related to autophagy. The 

activation of the ERBB2 signaling pathway can induce 

autophagy in a variety of cancers [28–30]. Then, we 

analyzed three breast cancer subtypes and constructed 

models by Cox regression and lasso regression, 

subsequently. Multivariable Cox regression analysis of 

the prognostic models and other clinical parameters 

showed that the model-calculated risk scores 

independently predicted the prognosis of patients with 

BRCA. The major findings of this study were 

summarized in Figure 12. 

Recently, on the basis of the GEO database, Gu and 

his colleagues constructed an ARG model consisting 

of eight genes (BCL2, BIRC5, EIF4EBP1, ERO1L, 

FOS, GAPDH, ITPR1, and VEGFA), which can be 

used as an independent prognostic indicator of breast 

cancer [31]. Notably, five of those genes (BIRC5, 

EIF4EBP1, FOS, GAPDH, and ITPR1) are also 

identified in our subtype-specific risk models. 

Considering that the molecular background is distinct 

in Luminal, Her-2, and Basal-like breast cancer, this 

scoring system did not consider the subtype-specific 

genetic background, which may limit clinical 

application. Thus, a subtype-specific scoring system is 

necessary and more reliable in clinical application to 

predict patient’s prognosis. 

 

 
 

Figure 9. Analysis of the protein expression of ARGs in subtype-specific prognostic models by HPA. (A–H) The protein expression 

of PARP1, GAPDH, FOS, TP63, PRKN, CCL2, BAX and EIF4EBP were determined by immunohistochemistry using indicated antibodies in HPA 
database, the staining strengths were annotated as Not detected, Low, Medium and High. The bar plots indicating the number of samples 
with different staining strength in HPA database. 
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Figure 10. Comprehensive analysis of ARGs in subtype-specific prognostic models. (A) OncoPrint showing the copy number 

alterations and mRNA expression alterations of 12 ARGs in subtype-specific autophagy prognostic models. The analysis was performed by 
cBioProtal database using MATABRIC dataset. (B) Protein-protein interaction analysis of genes in subtype-specific autophagy prognostic 
model by STRING database. (C) Clustered heatmap showing the correlation of genes expression in subtype-specific autophagy prognostic 
model. The correlation was calculated by Pearson’s correlation using log2 (TPM+1). Not statistically significant correlations were defined as P 
> 0.05 and marked by a black cross. (D) Clustered heatmap showing the genes expression and clinical information in BRCA patients. (E) Violin 
plots showing identified gene expression in Luminal, Her-2 and Basal-like BRCA. The P values were calculated by Wilcox-test (two groups 
comparison) and Kruskal- Wallis test (three groups comparison). 
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In the Luminal subtype, a four-gene (BIRC5, PARP1, 

ATG9B, and TP63) risk model was identified. High-risk 

patients in this model are related to DNA repair, G2M 

checkpoints, MYC-related genes, and PI3K/AKT/mTOR 

pathways in GSEA, which indicate that tumors in the 

high-risk group may have higher proliferation potential. 

Furthermore, GESA-KEGG enrichment analysis showed 

that cytokine receptor and adhesion pathways were 

highly activated in the low-risk patients, which suggested 

that the activation of immune-related pathways and 

 

 
 

Figure 11. Gene set enrichment analysis of genes in high-risk and low-risk patients in Luminal, Her-2 and Basal-like BRCA. (A) 

Gene set enrichment analysis (GSEA) showing the enrichment of Hallmarks and KEGG pathways in high-risk and low-risk patients with 
Luminal BRCA. (B) GSEA showing the enrichment of Hallmarks and KEGG pathways in high-risk and low-risk patients with Her-2 BRCA. (C) 
GSEA showing the enrichment of Hallmarks and KEGG pathways in high-risk and low-risk patients with Basal-like BRCA. 
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expression of adhesion molecules may have an 

inhibitory effect on tumor progression in the Luminal 

type. A prognostic model of three genes (ITPR1, CCL2, 

and GAPDH) was obtained in the Her-2 subtype. 

Similar to the Luminal type, E2F downstream genes, 

G2M checkpoint-related genes, and MYC target genes 

are highly enriched in high-risk patients. However, low-

risk patients are highly enriched in CAMS and 

cytokine-related molecules. This finding indicates that 

in Her-2 BRCA, not only cell proliferation-related 

signals play a role in promoting the development of 

tumors but also the deactivation of immune-related 

pathways can promote the progression of tumors [32]. 

A prognostic model of five genes (PRKN, FOS, BAX, 

IFNG, and EIF4EBP1) was obtained in a basal-like 

subtype. Unlike the luminal and Her-2 subtypes, some 

well-known tumor-promoting molecules and signaling 

pathways were not enriched in high-risk patients based 

on the GSEA analysis. Notably, the immune-related 

molecules, such as immunology-related signaling, 

TNFα signaling, antigen presentation, natural killer cell, 

and T-cell receptor signaling, are highly enriched in the 

low-risk patients. Autophagy-related genes exert a 

distinct functional role in the Basal-like BRCA, which 

indicates that the microenvironment and immune-

related signaling are related to autophagy in Basal-like 

BRCA [33–35]. 

Based on the comprehensive analysis of ARG expression 

profiles and corresponding clinical characteristics, three 

subtype-specific prognostic ARG risk models were 

identified. The genes identified in the aforementioned 

models provide new targets for the treatment and 

intervention of breast cancer. The primary limitation of 

our findings is that the data used in our study were 

obtained from several public databases. The 12 identified 

ARGs may prove new perspectives for the diagnosis, 

prognosis, and treatment of breast cancers. However, the 

clinical implication of these findings is challenging and 

remains unclear, and these findings need to be validated 

in future clinical trials. In addition, the Luminal and 

Basal-like risk models perform well in predicting 2 years 

of survival but less accurate in predicting 3 years of 

survival. Such limitations are probably due to limited 

data involved in model construction, and future studies 

are needed to improve the performance of such risk 

models by involving more data in model construction. 

Moreover, the mechanisms by which ARGs regulate 

BRCA initiation and progression require further study. 

Our study shows that the DEARGs have remarkable 

potential as biomarkers and therapeutic targets for the 

diagnosis and prognosis of BRCA. Further investigation 

is needed to confirm our findings. These models should 

also be verified in local clinical cohorts to improve the 

accuracy of the prediction. 

 

 
 

Figure 12. Schematic summary diagram for the three subtype-specific risk-models constructed in this study. 
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MATERIALS AND METHODS 
 

Data collection 

 

In this study, ARGs were downloaded from human 

autophagy database (HADB, http://www.autophagy. 

lu/index.html), and clinicopathological parameters and 

RNA sequencing results (FPKM) of BRCA were 

obtained from the TCGA data portal 

(https://portal.gdc.cancer.gov/). The expression data 

were converted to TPM, and the batch effect in the data 

was analyzed by TCGA Batch Effects Viewer and PCA 

analysis. No significant batch effect was found. The 

PAM50 classification information of samples included 

in this study was downloaded from UCSC Xena 

(http://xena.ucsc.edu/). 

 

Differential expression analysis of ARGs 

 

The Wilcox test was used to estimate the DEARGs 

between BRCA and non-tumor samples. Genes with 

at least a two fold change and corresponding P values 

of less than 0.05 were selected as ARGs with 

significant differential expression (DEARGs). A 

series of gene functional enrichment analyses was 

then performed to discover the primary biological 

characteristics of these genes. The clusterProfiler 

package in R was used to identify the enriched GO 

and KEGG, and the GOplot package of R was used to 

visualize the enriched items. 

 

Construction and validation of subtype-specific risk 

prediction models using DEARGs 

 

We randomly divided the patients with complete OS 

information into two groups: the training group and 

the testing group (Table 3). We used the data from the 

training group to build a Cox regression model for the 

OS, and we used the testing group to verify the 

accuracy of the model. Initially, univariable Cox 

regression analysis was used to select potential 

prognostic genes. Then, the lasso regression analysis 

was used to eliminate false-positive parameters caused 

by overfitting. Finally, Cox proportional risk 

regression was used to establish an OS prognostic risk 

model. 

 

Calculation of risk score 

 

The risk score of each patient was calculated by the 

regression coefficient of a single gene and the 

expression value of each gene. The calculation formula 

is as follows: 

 ( ) = ( )
=1,2,3,

× ( )

Risk score Patients coefficient ARGi
i i

expression ARGi


 

where ARGi represents the identifier of the i-th 

selected ARG. The value of coefficient (ARGi) is the 

regression coefficient estimated by ARGi based on 

Cox proportional risk regression analysis. The risk 

score is a measurement of the prognostic risk of each 

BRCA patient. We divided the BRCA patients into 

high- and low-risk groups, with the median risk 

score of the training group as the boundary. High 

risk scores suggested a poor prognosis for BRCA 

patients. 

 

Comprehensive analysis of ARGs in the risk-specific 

model 

 

The ARGs in risk-specific models were subjected to 

Kaplan–Meier analysis using the GEPIA database 

(http://gepia.cancer-pku.cn/). The log-rank test was 

used to determine statistical significance. The protein 

expression of the selected ARGs was analyzed by 

comparing immunohistochemistry staging images  

in The Human Protein Atlas database 

(http://www.proteinatlas.org/). The samples were 

annotated as not detected, low, medium, and high on 

the basis of the staining strength. The 12 ARGs in the 

risk-specific model were analyzed by using the 

cbioProtal database (http://www.cbioportal.org/) to 

assess the copy number variation and mRNA 

expression variation. The threshold to determine 

mRNA expression alteration was set as Z-score=1.5. 

For PPI network construction, the 12 selected  

ARGs were subjected to STRING database 

(https://string-db.org/). The interacting proteins (both 

experimentally determined and computationally 

predicted) were marked as colored lines between 

genes. For correlation analysis of selected ARGs,  

the gene expression data were extracted and 

logarithmically transformed. Then, Pearson’s 

correlation was calculated among all the gene pairs. 

The expression of the selected ARGs was compared 

among different molecular subtypes of BRCA 

(Luminal, Her-2, and Basal-like) using the Wilcox 

test and Kruskal–Wallis test, and the distribution of 

the gene expression was presented by violin plots. 

 

Gene set enrichment analysis (GSEA) 

 

To explore the hallmarks and pathways that were 

enriched in the predicted high- and low-risk group, 

GSEA was performed. Using GSEA, the present study 

tested whether the activated/repressed gene signatures 

were enriched for high-risk vs. low-risk cases. The 

enrichment of pre-defined hallmarks and KEGG 

pathways was calculated using a normalized enrichment 

score (NES) and normalized P-value. Terms with 

|NES|>1 and P<0.05 were considered significantly 

enriched. 

http://www.autophagy.lu/index.html
http://www.autophagy.lu/index.html
https://portal.gdc.cancer.gov/
http://xena.ucsc.edu/
http://gepia.cancer-pku.cn/
http://www.proteinatlas.org/
http://www.cbioportal.org/
https://string-db.org/
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Table 3. Demographics of the patients in training and testing groups. 

Subtypes Clinical parameters Variables Training group(%) Testing group(%) 

Luminal  Survival status Dead 52(5.26) 44(4.45) 

  Alive 315(31.88) 318(32.19) 

     

Her-2 Survival status Dead 9(0.91) 7(0.71) 

  Alive 31(3.14) 31(3.14) 

     

Basal-like Survival status Dead 14(1.42) 11(1.11) 

  Alive 78(7.89) 78(7.89) 

Total patient = 988 

Statistical analysis 

 

All statistical analyses were performed using R software 

(version 3.6.0). P < 0.05 was considered statistically 

significant. Wilcox test or Kruskal–Wallis test was used to 

evaluate the distribution differences among variables. 

Kaplan–Meier survival curve analysis and log-rank test 

were used to analyze OS. The Cox regression model was 

used to analyze the factors influencing the survival of 

BRCA patients. Cox proportional risk regression model 

was used for univariable and multivariable analyses. 

Time-related ROC analysis was used to assess the 

accuracy of models for predicting prognosis. We used the 

survival time, survival state, and risk score obtained from 

the risk models to draw the ROC curve in the R software 

using the survivalROC package, and both 2 year and 3 

year ROC curve was drawn. The AUC value greater than 

or equal to 0.70 was regarded as the significant prediction 

value, and AUC value greater than or equal to 0.65 was 

regarded as the acceptable prediction value. 
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Supplementary Figure 1. Analysis of the overlapping DEARGs among the three subtypes. (A) Venn diagram of overlapping 

DEARGs between three subtypes. (B) PPI analysis of overlapping genes. (C) Gene Ontology enrichment analysis of overlapping genes. 


