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SUPPLEMENTARY MATERIALS 
 

SUPPLEMENTARY METHODS 
 

Sequencing 

 

Whole-exome sequencing (WES) was performed at the 

Broad Institute (Boston, MA). Demographic 

characteristics, as well as exome capture methods, 

sequencing, variant annotation, and data processing of 

the samples were described previously [1]. 

 

Definition of disrupting variants and statistical 

analysis 

 

Using WES data, we searched the ACE2 and TMPRSS2 

genes for loss-of-function variants (nonsense, 

frameshift, splicing, or disrupting missense mutations). 

Missense variants were considered damaging if they 

were predicted to be deleterious or possibly deleterious 

by all the 5 prediction algorithms used: LRT (likelihood 

ratio test) [2], MutationTaster [3], PolyPhen-2 HumDiv, 

PolyPhen-2 HumVar [4], and SIFT [5]. 

 

The positions of mutations were based on the cDNA 

reference sequence for ACE2 and TMPRSS2 

(NM_021804 and NM_005656) with the ATG initiation 

codon numbered as residue 1 (p.Met1). 

 

Burden test analyses were performed considering only 

those variants having a minor allele frequency (MAF) 

<1%. Significance in the differences of MAFs between 

different populations were calculated using chi-square 

tests, with the R software (https://www.r-project.org/). A 

P<0.05 was considered to indicate statistical significance. 

 

Dataset imputation 

 

When missing from exome data, intronic variant 

frequencies in TMPRSS2 were retrieved from SNP-

array data obtained from the same Italian cohort. 

Genome-wide genotyping was performed at the Broad 

Institute. Genotyping details and data processing of the 

samples have been already described [6]. 

 

Imputation was performed remotely using the Michigan 

Imputation Server (https://imputationserver.sph.umich. 

edu) [7], using the 1000G Phase 3 v5 as reference panel, 

ShapeIT v2.r790 for the phasing step [8], and Minimac3 

[7] as imputation software. The imputed dataset was 

then filtered to retain only those variants with r
2
>0.3. 

 

Datasets and statistical power estimations 

 

For expression data analyses, we took advantage of 

microarray data reported in the GEO repository 

(https://www.ncbi.nlm.nih.gov/geo/). We specifically 

searched for the wider datasets reporting expression 

data on normal lung tissues derived from individuals 

whose sex and geographical origin were specified 

(search done by keywords, filters based on the number 

of available samples in the dataset, and by a final 

manual inspection of the retrieved data). This search 

allowed the identification of two datasets: GSE66499 

and GSE19804, for a total of 115 samples from male 

individuals, and 135 samples from female subjects. 

Indeed, it is difficult to provide an accurate power 

estimate for a microarray study. Among others, [9] 

suggested that a sample size of 20 is necessary, at a P 

value of 0.01 and 90% power, to detect a two-fold 

change in the 75% least variable genes in a microarray 

study. Based on this observation, the data available 

through the GSE66499 and GSE19804 datasets were 

considered reasonably powered to identify possible 

altered levels in the ACE2 and TMPRSS2 genes. 

 

As for genotype data, from one side we took advantage 

of exome and SNP-array in-house data on ~3,500 

individuals; [1, 6], from the other of exome and genome 

data on the largest dataset freely accessible online, i.e. the 

GnomAD repository (https://gnomad.broadinstitute.org/). 

For GnomAD data, we extracted allele/genotype 

frequencies available for East Asian and European 

individuals, for a total of at least 9,967 and 64,302 

subjects, respectively. The use of such large cohorts 

ensured us to be sufficiently powered to detect 

significant differences in allele frequencies between the 

analyzed populations. As an example, a sample size of 

2,000 pairs has an approximately 80% power of 

detecting a significant allele difference at P<0.05 if the 

frequency of the rare allele is 2%. For higher 

frequencies of 10% or more, the power of detection 

increases to more than 90%. 
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