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INTRODUCTION 
 

Pancreatic cancer (PC) is one of the most devastating 

and fatal malignancies with poor prognosis and high 

mortality worldwide, manifesting the close parallel 

correlation between incidence and mortality [1]. 

Currently, less than 10% of patients with PC are 

diagnosed at an early phase. Therefore, most of the 

patients lack the opportunity to receive surgical 

treatment due to being diagnosed at a later phase [2]. 

The high mortality is primarily attributed to several 

factors, for example, family history, genetics, cigarette 

consumption, and chronic pancreatitis [1]. The key 

reason for high mortality is the advanced stage at which 

most patients are diagnosed [3]. Another challenge for 

PC treatment is that patients with PC respond poorly to 

either radiotherapy or chemotherapy [4]. The only  

 

curative treatment of PC is surgical resection; however, 

only 15% of tumors are suitable for resection due to late 

diagnosis [5]. As such, the exploration of the 

mechanism underlying the pathology and progression of 

PC is urgently needed.  

 

Long non-coding RNAs (lncRNAs) are a class of non-

coding RNAs containing more than 200 nucleotides in 

length and cannot encode functional proteins in the 

nucleus or cytoplasm [6]. Even though the mechanism 

and function of lncRNAs have not been com-

prehensively investigated, growing evidence indicates 

that lncRNAs are essential for the regulation of gene 

expression at both transcriptional and post-

transcriptional levels [6, 7], thus playing crucial roles in 

various biological and pathological processes, including 

cancers [8–10]. Numerous reports suggest that lncRNAs 
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ABSTRACT 
 

Pancreatic cancer (PC) is one of the deadliest cancers worldwide. Cancer cells secrete excessive numbers of 
exosomes that play essential roles in tumorigenesis. Long non-coding RNAs (lncRNAs) are essential non-coding 
RNAs for cancer progression. However, the role of lncRNA plasmacytoma variant translocation 1 (PVT1) in 
exosome secretion of PC remains to be comprehensively investigated. Thus, nanoparticle tracking analysis and 
transmission electron microscopy were performed to determine exosome secretion. Confocal microscopy, 
western blots, real-time PCR, immunofluorescence, pull-down and RNA immunoprecipitation assays, and 
rescue experiments were applied to investigate the mechanism underlying the role of PVT1 in exosome 
secretion. The results showed that PVT1 was upregulated in PC cells, along with increased levels of YKT6 v-
SNARE homolog (YKT6), ras-related protein Rab-7 (RAB7), and vesicle-associated membrane protein 3 (VAMP3). 
Also, PVT1 promoted the transportation of multivesicular bodies (MVBs) towards the plasma membrane. In 
addition, PVT1 promoted the docking of MVBs by altering RAB7 expression and localization. Moreover, PVT1 
promoted the fusion of MVBs with the plasma membrane through regulating YKT6 and VAMP3 colocalization 
and the palmitoylation of YKT6. Taken together, the results suggest that PVT1 promoted exosome secretion of 
PC cells and thus, can expand the understanding of PVT1 in tumor biology. 
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act as crucial regulators for tumorigenesis of PC and as 

promising biomarkers for PC [11]. Among these studied 

lncRNAs, lncRNA plasmacytoma variant translocation 

1 (PVT1) is one of the most well-documented cancer-

associated regulators in several cancer types [12]. For 

example, PVT1 is found to be upregulated in PC and 

can serve as an independent prognostic factor for poor 

OS in PC patients [13, 14]. Also, the overexpression of 

PVT1 in the antisense orientation reconstituted can 

sensitize human ASPC-1 PC cell to Gemcitabine [15]. 

Furthermore, PVT1 has been reported to promote 

proliferation and migration of PC cells via acting as an 

endogenous sponge to compete with microRNA-448 for 

binding to SERPINE1 MRNA Binding Protein 1 [16].  
 

The tumor microenvironment is critically essential to 

the development and progression of cancer [17]. As 

critical components in the tumor microenvironment, 

exosomes, double-layered microvesicles with a 

diameter of 50–100 nm, play an essential role in tumor 

development, such as angiogenesis, metastasis, 

migration, and chemoresistance [18–20]. Exosomal 

contents can also be applied as an early diagnostic 

biomarker and to monitor tumor progression [21]. In 

addition, a growing number of studies suggest that 

exosomes derived from cancer cells can carry bioactive 

cargos, including enzymes, miRNAs, and lncRNAs, to 

neighboring cells, ultimately regulating tumorigenesis 

[22, 23]. Collectively, exosomes have emerged as novel 

promising targets for diagnostic and therapeutic 

applications in cancers. Because of this, there is a large 

amount of attention to investigate the mechanism 

underlying the secretion of exosomes from tumor cells 

[24–26]. As a complex multi-step process, the secretion 

of exosomes is associated with multivesicular bodies 

(MVBs) transportation, docking, and fusion with 

plasma membranes, which are regulated by several 

related molecule families, such as RAB and SNARE 

[27, 28]. However, the function of lncRNAs in the 

secretion of cancer exosomes still needs to be fully 

elucidated. Therefore, based on the previous studies 

mentioned above, we aimed to investigate whether 

PVT1 contributes to exosome secretion of PC and to 

elucidate its related signaling pathways.  

 

RESULTS  
 

Upregulation of PVT1 is associated with exosome 

secretion  
 

As mentioned in the introduction section, PVT1 has 

been demonstrated to act as an important regulator in 

PC. However, the role of PVT1 in exosome secretion 

has not been reported in PC. Thus, in this study, we 

proposed to investigate the correlation between 

exosome secretion and PVT1. We first determined the 

expression level of PVT1 in PC cell lines (MIA PaCa-2, 

PANC-1, HS766T, and BxPC3). The results obtained 

from qRT-PCR revealed that PVT1 was increased in all 

four tested PC cell lines (Figure 1A), which was 

consistent with previous findings [14, 16, 29]. 

Meanwhile, we detected the mRNA levels of several 

key regulators associated with the process of exosome 

secretion, including RAB2B, RAB5, RAB7, RAB9A, 

RAB11, RAB27A, RAB27B, RAB35, VAMP3, 

VAMP7, SNAP23, and YKT6. In addition, the results 

showed that the expressions of YKT6, RAB7, and 

VAMP3 were upregulated in PC cells (Figure 1B–1D). 

Collectively, these findings suggested that the secretion 

of exosomes may be increased in PC cells compared 

with healthy control cells and that the upregulation of 

PVT1 may be associated with increased exosome 

secretion.  

 

Upregulation of PVT1 stimulates exosome secretion 

of PC HS766T cells 

 

Exosomes derived from PC HS766T cells were isolated 

from cell culture medium via the ultracentrifugation 

assay. As shown in Figure 2A, 2B, the morphology of 

exosomes exhibited a round-shape and double-

membrane with a diameter of 50 - 120 nm. Next, 

HS766T cells were transfected with pcDNA3.1-PVT1 

vectors to overexpress PVT1. The efficiency of 

transfection was determined by qRT-PCR, and the 

results showed that the expression of PVT1 displayed a 

15-fold increase compared with the control group 

(Figure 2C). Also, PVT1 was found to be primarily 

expressed in the cytoplasm of HS766T cells, relative to 

the nucleus (Figure 2D). According to the NTA, the 

overexpression of PVT1 was associated with increased 

exosome secretion (Figure 2E), which was also verified 

by elevated protein expression of exosome markers, 

CD63 and Tsg101, in exosomes derived from HS766T 

cells, compared with those derived from control cells 

(Figure 2F). Thus, these results indicated that the 

overexpression of PVT1 might exert a positive role in 

exosome secretion of PC cells.  

 

Upregulation of PVT1 promotes the movement of 

MVBs towards the plasma membrane 
 

It has been demonstrated that exosome secretion is 

involved in several important steps, including MVBs 

transportation, docking, and fusion with the plasma 

membrane [27, 28]. Thus, to determine the 

transportation of MVBs that contain exosomes, CD63 

was used as a marker to label MVBs. As shown in 

Figure 3A, the overexpression of PVT1 led to MVBs to 

move far away from the nucleus. Moreover, YKT6 is an 

essential member of the SNARE complex that plays an 

essential role in MVBs docking and fusion with the 
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Figure 1. PVT1 and exosome secretion-associated factors are increased in PC cell lines. (A) The expression of PVT1 in PC cell lines. 
(B) The mRNA expression of YKT6 in PC cell lines. (C) The expression of RAB7 in PC cell lines. (D) The expression of VAMP3 in PC cell lines.  
*P < 0.05, data are expressed as the mean ± SD. 

 

 
 

Figure 2. PVT1 stimulates exosome secretion in HS766T cells. (A) Representative images of exosomes derived from HS766T cells, as 
detected by TEM. Scale bar: 200 nm (left) and 100 nm (right). (B) The size distribution of exosomes, as determined by NTA. (C) The 
transfection efficiency of PVT1 overexpression in HS766T cells. (D) The expression of PVT1 in the nucleus and cytoplasm of HS766T cells.  
(E) The concentration of exosome derived from PVT1-overexpressing HS766T cells. (F) The protein expression of exosome markers in PVT1-
overexpressing HS766T cells. *P < 0.05, data are expressed as the mean ± SD. 
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plasma membrane [27, 28]. In this study, confocal 

colocalization analysis suggested that the increase of 

PVT1 in HS766T cells resulted in more colocalization 

of CD63 and YKT6, suggesting MVBs moved towards 

the plasma membrane (Figure 3B). Furthermore, more 

MVBs were observed in PVT1-overexpressing HS766T 

cells using the electron microscope, compared with the 

control cells (Figure 3C). Together, these findings 

suggested that PVT1 may play an essential role in the 

transportation of MVBs towards the plasma membrane. 

 

 
 

Figure 3. PVT1 promotes the movement of MVBs towards the plasma membrane. (A) Analysis of CD63 (red) in PVT1-
overexpressing HS766T cells, as determined by confocal microscope. Nuclei were labeled with DAPI (blue). (B) Analysis of YKT6 (green) and 
CD63 (red) in PVT1-overexpressing HS766T cells, as determined by confocal microscope. (C) Exosomes in PVT1-overexpressing HS766T cells, 
as determined by electron microscope. 
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PVT1 affects the expression and localization of 

RAB7 in HS766T cells 

 

To further determine the role of PVT1 in the 

transportation of MVBs, we first detected the mRNA 

expressions of several RAB GTPases in PVT1-

overexpressing HS766T cells (Figure 4A). The results 

demonstrated that both mRNA and protein expressions of 

RAB7 were upregulated in HS766T cells transfected with 

pcDNA3.1-PVT1 vectors while the overexpression of 

PVT1 did not affect the expressions of other RAB 

GTPases (Figure 4A and 4B). By confocal colocalization 

analysis, we found that the overexpression of PVT1 

promoted the colocalization of RAB7 with CD63  

(Figure 4C), indicating that PVT1 is associated with the 

distribution of RAB7. In addition, results obtained from 

the RIP assay showed that PVT1 was highly enriched by 

the RAB7 antibody (Figure 4D). Also, the pull-down 

assay revealed a physical interaction between PVT1 and 

RAB7 (Figure 4E). These results together suggest a direct 

interaction between PVT1 and RAB7. To further study 

the role of RAB7 in exosome secretion, we applied si-

RAB7 to knockdown RAB7, and the efficiency of si-

RAB7 was determined by western blots (Figure 4F). 

According to the NTA, we found that the knockdown of 

RAB7 significantly inhibited exosome secretion while the 

overexpression of PVT1 abolished the effect of si-RAB7 

in exosome secretion (Figure 4G).  

 

 
 

Figure 4. PVT1 affects the expression and localization of RAB7 in HS766T cells. (A) The mRNA expression of Rab GTPases genes in 
PVT1-overexpressing HS766T cells. (B) The protein expression of RAB7 in PVT1-overexpressing HS766T cells. (C) Analysis of RAB7 (green) and 
CD63 (red) in PVT1-overexpressing HS766T cells, as determined by confocal microscope. (D) The interaction between PVT1 and RAB7, as 
determined by RIP assay and qRT-PCR. (E) The correlation between PVT1 and RAB7, as determined by pull-down assay. (F) The knockdown 
efficiency of si-RAB7 in HS766T cells. (G) The concentration of exosome derived from HS766T cells with overexpression of PVT1 and 
knockdown of RAB7. *P < 0.05, data are expressed as the mean ± SD. 



 

www.aging-us.com 10432 AGING 

PVT1 regulates the translocation of YKT6 and 

VAMP3 

 

During the process of fusion of MVBs with the plasma 

membrane, soluble N-ethylmaleimide-sensitive factor 

attachment protein receptors (SNAREs) family proteins 

are a class of essential regulators for exosome release 

[30, 31]. As an essential member of the SNARE 

complex, YKT6 was increased in PVT1-overexpressing 

HS766T cells and moved away from the nucleus 

(Figure 5A). Meanwhile, the overexpression of PVT1 

increased the colocalization of YKT6 and VAMP3 

(Figure 5B), which is reported as a key v-SNARE 

molecule [32]. Collectively, the results indicated that 

PVT1 might promote the formation of the SNARE 

complex and then facilitate the fusion of MVBs with the 

plasma membrane. 

PVT1 stimulates exosome secretion via 

palmitoylation of YKT6 

 

It has been reported that the activity of YKT6 is 

associated with the level of palmitoylation [33, 34]. 

Thus, according to the palmitoylation assay, we found 

that the palmitoylation level of YKT6 was 

significantly increased in PVT1-overexpressing 

HS766T cells (Figure 6A). The addition of Triton X-

100, a palmitoylation inhibitor [35], decreased 

palmitoylation of YKT6, compared with the control 

group (Figure 6B). Furthermore, decreased 

palmitoylation of YKT6 was associated with less 

exosome secretion in PVT1-overexpressing HS766T 

cells (Figure 6C). Thus, our results demonstrated that 

PVT1 might stimulate exosome secretion through the 

palmitoylation of YKT6.  

 

 
 

Figure 5. PVT1 regulates the translocation of YKT6 and VAMP3. (A) Analysis of YKT6 (green) in PVT1-overexpressing HS766T cells, as 
determined by confocal microscope. Nuclei were labeled with DAPI (blue). (B) Analysis of YKT6 (green) and VAMP3 (red) in PVT1-
overexpressing HS766T cells, as determined by confocal microscope. 
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DISCUSSION 
 

Pancreatic cancer has emerged as one of the leading 

causes of cancer-associated death all over the world 

[36]. In the past decade, the incidence of PC increased 

3-fold, ranking it the seventh disease of cancer mortality 

in China and the fourth worldwide [37, 38]. Even 

though the biological knowledge of PC has been 

dramatically increased in the past decades, the leading 

causes of PC remain to be investigated, and better 

diagnosis and therapeutic strategies continue to be of 

urgent need. Given the importance of exosomes in 

tumorigenesis and cancer progression [18–20], the 

present study found that PVT1 could facilitate the 

secretion of exosomes from PC cells. Also, PVT1 exerts 

a positive role in the transportation of MVBs towards 

the plasma membrane and the docking process through 

RAB7. Furthermore, PVT1 promotes the colocalization 

of YKT6 and VAMP3, resulting in the fusion of MVBs 

with the plasma membrane.  

Growing evidence reports that lncRNAs participate in a 

wide range of biological activities, and aberrant 

expression of lncRNAs is associated with many 

pathological processes, such as cancers [39]. To date, 

numerous studies have revealed that lncRNAs play 

important roles in various tumor cell activities, 

including metastasis, invasion, migration, proliferation, 

and drug resistance [39, 40]. In particular, the function 

of PVT1 has been reported in various cancer types and 

summarized in several review papers [12, 41, 42]. In 

PC, PVT1 can be applied as a potential biomarker for 

predicting the prognosis [14]. Also, PVT1 is essential 

for Gemcitabine sensitivity, proliferation, migration, 

and epithelial-mesenchymal transition in PC cells [16, 

29, 43]. However, the role of PVT1 in exosome 

secretion of PC cells has not been fully studied. In this 

study, we found that the overexpression of PVT1 

promoted exosome secretion in PC cells, along with 

increased transportation of MVBs, docking, and fusion 

with the plasma membrane. Therefore, our findings  

 

 
 

Figure 6. PVT1 stimulates exosome secretion via palmitoylation of YKT6. (A) The level of palmitoylation of YKT6 in PVT1-
overexpressing HS766T cells. (B) The level of palmitoylation of YKT6 in PVT1-overexpressing HS766T cells treated with Digitonine (control) or 
Triton X-100 (palmitoylation inhibitor). (C) The concentration of exosomes derived from PVT1-overexpressing HS766T cells treated with 
Digitonine (control) or Triton X-100 (palmitoylation inhibitor). *P < 0.05, data are expressed as the mean ± SD.  
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indicated that there is a positive correlation between the 

level of PVT1 and exosome secretion in PC cells. 

 

Exosomes are crucial intercellular communication 

modes to transmit molecular information, including 

proteins, enzymes, and non-coding RNAs between 

cancer cells and between cancer cells and the tumor 

stroma [44]. Also, cancer cells can release a large 

number of exosomes compared to normal cells [45], 

suggesting that the active secretion of exosomes may be 

a key functional implication for cancer progression. 

Therefore, exosome secretion associated with this 

mechanism has drawn increasing scientific attention. In 

general, the process of exosome secretion is involved in 

several important intracellular trafficking steps, 

including the transportation of MVBs, docking, and 

fusion with the plasma membrane [28]. During this 

series of processes, the RAB GTPase family is essential 

for the transportation of MVBs and docking at the 

plasma membrane [46, 47], of which several RAB 

GTPases has been demonstrated to act as key regulators 

in the exosome-associated function as well as exosome 

release, such as RAB5, RAB7, RAB27A, RAB27B, and 

RAB35 [27, 48]. In the present study, we determined 

the mRNA expressions of several RAB GTPase factors 

and found RAB7 to be significantly upregulated in all 

four PC cell lines, implying a potential role of RAB in 

exosome secretion of PC. Furthermore, the forced 

expression of PVT1 not only increased the level of 

RAB7 but also promoted RAB7 to be located at the 

membrane of MVBs. Vanlandingham et al. reported 

that RAB7 plays a vital role in the endocytic organelle 

maintenance and the cargo shuttling from the late 

endosome/MVB to the lysosome [49]. Also, RAB7 is 

critical for syntenin/ALIX-carrying exosome secretion 

in MCF-7 breast cancer cells [50]. Thus, these results 

suggest that the involvement of RAB7 may be required 

for PVT1-associated MVBs transportation.  

 

After transportation and docking, MVBs fusion with the 

plasma membrane is the last phase of exosome secretion 

[28], in which the SNARE complex is an essential 

mediator [31]. As a member of the SNARE family, 

YKT6 is highly conserved across species and broadly 

distributed in the membrane, cytosol, and perinuclear 

locations [51]. Also, YKT6 has been identified as a 

critical protein in cell membrane fusion and vesicular 

transportation [52]. In the current study, we observed 

that PVT1 promote the diffused location of YKT6 at the 

plasma membrane, and the overexpression of PVT1 

resulted in the colocalization of YKT6 with VAMP3, 

which is a critical SNARE protein for MVBs fusion [53, 

54]. Previous evidence revealed that YKT6 is a crucial 

protein for the secretion of WNT3A-carrying exosome 

in HEK293 cells [55]. In lung cancer, the suppression of 

YKT6 remarkably inhibited exosome secretion in the 

NSCLC cell line [56]. Collectively, our findings 

suggested that PVT1 is associated with the formation of 

the SNARE complex to facilitate the fusion of MVBs 

with the plasma membrane.  
 

There are some limitations that should be addressed in 

the future. First, our results showed that the expressions 

of PVT1, YKT6, RAB7, and VAMP3 were higher in all 

four PC cell lines, indicating that PVT1 may exert a 

similar effect on exosome secretion in other PC cell 

lines, not only in HS766T cells. Thus, future studies are 

necessary to address this issue. Second, the function of 

PVT1 in exosome secretion should also be verified in 

the xenograft mouse model, which will significantly 

extend the understanding of the mechanism underlying 

exosome secretion. Lastly, the final fate of exosomes 

that are not secreted to the extracellular environment 

can fuse with the lysosomes or autophagosomes, 

leading to degradation of their content [57]. In this 

study, we did not explore the mechanism underlying the 

balance between exosome secretion and degradation. In 

cancers, both exosome secretion and autophagy 

processes are activated in the development and 

progression of tumors [58, 59]; thus the further 

investigation of this balance will provide a more in-

depth look into the physiology of tumor cells.  

 

In conclusion, the results suggested that PVT1 plays a 

positive role in exosome secretion of PC cells by 

promoting the transportation of MVBs towards the 

plasma membrane, docking, and fusion. Also, SNARE 

proteins, YKT6, VAMP3, and GTPase RAB7, are 

essential for PVT1-mediated exosome secretion. This 

study extends our understanding of the function of 

PVT1 in PC and provides novel insight into the role of 

lncRNAs in tumor biology.  

 

MATERIALS AND METHODS 
 

Cell culture 
 

Human Pancreatic Duct Epithelial Cell Line (H6C7) 

was purchased from Kerafast, Inc. (Boston, MA, USA) 

and cultured in Keratinocyte Basal Medium (Sigma-

Aldrich, Shanghai, China). Human PC cell lines MIA 

PaCa-2, PANC-1, HS766T, and BxPC3, were 

purchased from American Type Culture Collection 

(ATCC; Manassas, VA, USA). The PC cell lines were 

maintained in Dulbecco’s Modified Eagle Medium 

(DMEM; Sigma-Aldrich, Shanghai, China) 

supplemented with 10% fetal bovine serum (Life 

Technologies, Grand Island, NY, USA) at 37°C with 

5% CO2. The morphology, growth curve, and 

mycoplasma detection of PC cell lines were determined 

one month prior to the experiment, according to the cell 

line verification test recommendation from ATCC.  



 

www.aging-us.com 10435 AGING 

Transfection  
 

The PVT1-loaded plasmids, small interfering RNAs for 

RAB7 (siRAB7), and corresponding negative controls 

were purchased from Applied Biological Materials Inc. 

(Richmond, BC, Canada). The full-length cDNA 

sequence of PVT1 was inserted into the pcDNA3.1 

vector to create the PVT1 overexpression plasmid. The 

two siRAB7 sequences were as following: siRAB7-1: 

5′-TACGTCCAAGGTCGGGCAGGAAGA-3′ and 

siRAB7-2: 5′- TACGTCCAAGGTCGGGCAGGA 

AGA-3′. Cell transfection was performed using the 

Lipofectamine™ 3000 Reagent (Invitrogen, Carlsbad, 

CA, USA) according to the manufacturer’s instructions. 

 

Exosome isolation  
 

Exosomes were isolated from the culture supernatant 

of HS766T cells using ultracentrifugation as 

previously described [60]. Exosomes were collected 

from the pellet and resuspended in PBS for subsequent 

experiments.  

 

Transmission electron microscopy (TEM) 
 

Exosomes were placed on Formvar carbon-coated 

electron microscopy grids (Electron Microscopy 

Sciences, Hatfield, PA, USA) and incubated at room 

temperature for 5 minutes. Then, exosomes were fixed 

using 2% paraformaldehyde and washed with water 

twice. Next, the grids were stained with 10% uranyl 

acetate for 10 minutes. The morphology of exosomes 

was imaged using the JEOL 100XCII electron 

microscope (Peabody, MA, USA).  

 

Nanoparticle tracking analysis (NTA) 
 

The size and number of exosomes were determined by 

the NanoSight NS300 system (Salisbury, UK) 

according to the manufacturer’s instructions. The 

exosome sample was diluted 150 - 3000 times using 

Dulbecco’s PBS to obtain a concentration of 1-

20 × 108 particles per milliliter.  

 

Quantitative real-time PCR (qRT- PCR) 
 

Total RNAs were isolated from cells or exosomes using 

the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s instructions. Reverse 

transcription was performed using the High-Capacity 

cDNA Reverse Transcription Kit (Thermo Fisher 

Scientific, Waltham, MA, USA). The PCR reaction was 

performed on the Bio-Rad Icycler Pcr Thermal Cycler 

(Hercules, CA, USA) using SYBR™ Green PCR 

Master Mix (Thermo Fisher Scientific, Waltham, MA, 

USA). Table 1 lists the primers used.  

Western blots 
 

Total proteins were isolated from cells or exosomes 

using the ReadyPrep™ Protein Extraction Kit (Bio-Rad 

Laboratories, Hercules, CA, USA). Western blots assay 

was conducted as previously described [61]. The 

primary antibodies used were as follows: TSG101 

(1:1000), CD63 (1:1000), RAB7 (1:500), and β-Actin 

(1:5000) (Applied Biological Materials Inc., Richmond, 

BC, Canada). Optical densities of protein bands were 

determined using Imagej [62]. 

 

Immunofluorescence  
 

Cells (2 × 106) were fixed using 4% paraformaldehyde at 

room temperature for 25 minutes and then stained with 

corresponding primary antibodies at 4 °C overnight. The 

primary antibodies used were as following: ras-related 

protein Rab-7 (RAB7) (1:100), CD63 (1:200), YKT6 v-

SNARE homolog (YKT6) (1:100), and vesicle-

associated membrane protein 3 (VAMP3) (1:100) 

(Applied Biological Materials Inc., Richmond, BC, 

Canada). The 2-(4-amidinophenyl)-1H-indole-6-

carboxamidine (DAPI) was used to stain the nuclei 

(Thermo Fisher Scientific, Waltham, MA, USA). 

Immunofluorescence was imaged using the Nikon PCM-

2000 confocal microscope (Minato, Tokyo, Japan).  

 

Pull-down assay 
 

The pull-down assay was performed using the Pierce™ 

Biotinylated Protein Interaction Pull-Down Kit (Thermo 

Fisher Scientific, Waltham, MA, USA) according to the 

manufacturer’s instructions. Biotin-labeled PVT1 or 

antisense RNA was cocultured with the total protein of 

HS766T cell and magnetic beads. Western blots were 

performed to determine RAB7 levels.  

 

RNA immunoprecipitation (RIP) assay 
 

The RIP assay was performed using Magna RIP™ 

RNA-Binding Protein Immunoprecipitation Kit (Sigma-

Aldrich, Shanghai, China) according to the 

manufacturer’s instructions. The RAB7 antibody or IgG 

(negative control) was used to conjugate with magnetic 

beads loaded with cell lysates. Real-time PCR was 

performed to determine the level of PVT1 in immuno-

precipitated RNAs.  

 

Palmitoylation assay 
 

The palmitoylation of YKT6 was determined using the 

palmitoylation assay as previously described [35]. 

Samples were tested by SDS/PAGE, and the gels were 

stained with Coomassie Brilliant Blue G-250 Dye 

(Thermo Fisher Scientific, Waltham, MA, USA).  
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Table 1. Primer information.  

Gene name Primer sequence 

RAB2B (F) 5′- GGTCCGGGAAGTCCATACTC -3′ 

RAB2B (R) 5′- GGCTGGAACCGCTTATCTGT -3′ 

RAB5 (F) 5’- AGACCCAACGGGCCAAATAC -3’ 

RAB5 (R) 5’- GCCCCAATGGTACTCTCTTGAA -3’ 

RAB7 (F) 5′- CTCATTATCGTCGGAGCCATTG -3′ 

RAB7 (R) 5′- AGTGTGGTCTGGTATTCCTCATA -3′ 

RAB9A (F) 5’- GGCAACCTTGCGACTATAACCA-3’ 

RAB9A (R) 5’- GTTTCCTCTCCCTGAGACCCTA-3’ 

RAB11 (F) 5′- GCTCGGCCTCGACAAGTTC -3′ 

RAB11 (R) 5′- ACTTATACCACTGCGTCTTCCT -3′ 

RAB27A (F) 5’- GGAGAGGTTTCGTAGCTTAACG -3’ 

RAB27A (R) 5’- CCACACAGCACTATATCTGGGT -3’ 

RAB27B (F) 5’- AGAAGCTCTGTTGACTGGTGA -3’ 

RAB27B (R) 5’- GTTGGATCCTATTAATAGGGGGCCCATGCAAGAT-3’ 

RAB35 (F) 5’- TTAAGCTTCGATGGCCCGGGACTACGACC -3’ 

RAB35 (R) 5’- TTGGATCCTTAGCAGCAGCGTTTCTTTCGTTTACTG -3’ 

VAMP3 (F) 5′- ATGTCTACAGGTGTGCCTTCGG -3′ 

VAMP3 (R) 5′- TTAAGAGACACACCACACGATGATG -3′ 

VAMP7 (R) 5’- CCGAGCTCATGGCCATTCTTTTTGCCGTTG -3’ 

VAMP7 (F) 5’- GGAATTCGTTTCTTCACACAGCTTGGACC -3’ 

SNAP23 (F) 5’- TTTCCTGATAAGTTCCTAAATTCCA -3’ 

SNAP23 (R) 5’- AAGGCTCTCTCACTCCTCCA -3’ 

YKT6 (F) 5’- GCGATCGCCGGAAACAAAACTCATGCT -3’ 

YKT6 (R) 5’- GTTTAAACCCCTGAAGCACAAAGAAAGC -3’ 

β-Actin (F) 5’- CAGGGCGTGATGGTGGGCA -3’ 

β-Actin (R) 5’- CAAACATCATCTGGGTCATCTTC -3’ 

 

Statistical analysis 

 

Statistical analysis was performed using the SPSS 17.0 

software (SPSS, Chicago, USA). Data were expressed 

as mean ± standard deviation (SD). At least three 

replicates were included in each independent 

experiment. Student’s t-test and ANOVA were used for 

statistical analysis. Statistical significance was regarded 

as P < 0.05.  
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