
 

www.aging-us.com 10300 AGING 

INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is the most common 

type of primary liver cancer, accounting for 70-90% of 

cases [1]. The occurrence of HCC is strongly associated 

with hepatitis viral infections, alcohol abuse and 

aflatoxin contamination [2]. Because HCC is difficult to 

diagnose early, and is also highly malignant and  

 

insensitive to chemoradiotherapy, it is a serious threat to 

human health. The latest epidemiological surveys have 

demonstrated that HCC is the second leading cause of 

cancer death among men worldwide and the sixth 

leading cause of cancer death among men in developed 

countries [3, 4]. Although advances in HCC treatment 

have been made in recent years, HCC recurrence and 

metastasis are still key determinants of the long-term 
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ABSTRACT 
 

Metabolic reprogramming is a hallmark of tumors, including hepatocellular carcinoma (HCC). We used data from 
The Cancer Genome Atlas and the International Cancer Genome Consortium to assess the alterations in glycolytic 
and cholesterogenic genes in HCC and to determine their association with clinical features in HCC patients. Based 
on the gene expression profiles from these databases, we established four subtypes of HCC: cholesterogenic, 
glycolytic, mixed, and quiescent. The prognosis of the cholesterogenic subgroup was poorer than that of the 
glycolytic group. Tumors in the glycolytic group were more sensitive to chemotherapy. We also explored the 
relationships between these metabolic subtypes and previously established HCC subgroups. Glycolytic gene 
expression correlated strongly with poorer prognostic gene expression in the Hoshida classification of HCC. 
Whole-genome analyses indicated that aberrant amplification of TP53 and MYC in HCC were associated with 
abnormal anabolic cholesterol metabolism. The mRNA levels of mitochondrial pyruvate carriers 1 and 2 differed 
among the HCC metabolic subtypes. In a bioinformatics analysis we identified genomic characteristics of tumor 
metabolism that varied among different cancer types. These findings demonstrate that metabolic subtypes may 
be valuable prognostic indicators in HCC patients. 
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prognosis of patients, and are the main obstacles to 

patient survival [5]. 

 

The study of metabolic reprogramming in tumors has 

developed in recent years, and may provide a new 

method of eliminating tumor cells effectively [6, 7]. To 

satisfy the additional energy requirements for their 

proliferation and growth, tumor cells must reshape their 

metabolic pathways [8]. Tumor cells differ from normal 

cells in their metabolism of glucose, amino acids, fatty 

acids and nucleotides, which provide large amounts of 

energy and intermediates [9]. The metabolic 

reprogramming of tumor cells primarily involves 

hyperactive glycolysis and fatty acid synthesis. Key 

metabolic enzymes are upregulated in a variety of 

cancer types, including lung cancer [10], prostate cancer 

[11], kidney cancer [12] and lymphoma [13]. Using an 

online prediction tool, we previously illustrated that 

beta-lactamase expression correlated strongly with the 

expression of genes involved in lipid metabolism in 

HCC patients [14]. Although disruptions in certain 

signaling pathways are known to contribute to 

metabolic reprogramming in cancer, alterations in 

glycolipid metabolism have rarely been reported in liver 

cancer. 

 

Otto Warburg first reported that liver cancer cells 

exhibited significantly greater glycolytic activity than 

normal hepatocytes, and proposed that rapidly 

proliferating tumor cells were powered by aerobic 

glycolysis [15]. This phenomenon has been observed in 

different tumor types, and has become fundamental to 

our understanding of tumor metabolism. Similarly, 

cholesterol levels are significantly higher in liver cancer 

than in healthy liver tissues [16]. Cholesterol is 

important for the formation of cell membranes and for 

the synthesis of bile acids, vitamin D and steroid 

hormones [17]. Previous studies have revealed that 

metabolism-related genes (including isoenzymes within 

specific pathways) exhibit an increased mutation rate in 

cancer patients and display heterogeneity among 

different cancer types [18, 19]. However, no systematic 

reports have been published to date on the relationship 

of abnormal glucose and lipid metabolism to the 

molecular mechanism, prognosis and treatment of HCC. 

 

The lack of molecular subtyping for HCC tumors makes 

it impossible to screen patients for their suitability for 

targeted therapies. The latest guidelines for the 

diagnosis of primary liver cancer mainly describe its 

pathology in terms of gross and histological 

morphology, while only using immunohistochemical 

indexes to distinguish the source of the tumor cells 

(HCC, biliary cell carcinoma or mixed cell types). The 

molecular classification of liver cancer lags behind 

those of lung, breast and gastric cancers, and does not 

satisfy the requirements for clinically accurate 

treatment. Understanding the reprogramming of energy 

metabolism in liver cancer could provide a new strategy 

for subtyping HCC patients so that precise and targeted 

treatments can be developed to improve survival. 

 

In the present study, we classified HCC patients into 

different subtypes based on their expression of genes 

involved in glycolysis and cholesterol synthesis. We 

explored the differences in survival and other clinical 

characteristics among the various metabolic subtypes of 

HCC, and identified carcinogenic molecular events in 

the different subtypes. We now propose a clinically 

feasible HCC-typing scheme, which may become a new 

tool to guide the targeted therapy of HCC. 

 

RESULTS 
 

Four metabolic subgroups of HCC were identified 

based on the dual analysis of glycolytic and 

cholesterogenic gene expression 
 

In total, 610 HCC tumor samples were included in this 

study (The Cancer Genome Atlas [TCGA], n = 373, and 

International Cancer Genome Consortium [ICGC], n = 

237). Samples with < 30% were excluded. Reactome 

gene set enrichment analysis was applied to obtain the 

“glycolysis” (n = 29) and “cholesterol biosynthesis” (n 

= 72) gene sets. Unsupervised consensus clustering 

analysis was implemented to classify the two subgroups 

of significantly expressed glycolytic (n = 9) and 

cholesterogenic (n = 11) genes for further metabolic 

subtyping (Figure 1A). 

 

We calculated the median levels of glycolytic and 

cholesterol-producing genes in each sample. Based on 

the co-expression of the two gene sets, we separated the 

gene profiles into four metabolic subtypes of HCC: the 

glycolytic subgroup (high expression of glycolytic 

genes and low expression of cholesterol synthesis 

genes), cholesterogenic (high expression of cholesterol 

synthesis genes and low expression of glycolytic genes), 

mixed (high expression of both cholesterol synthesis 

genes and glycolytic genes) and quiescent (low 

expression of both cholesterol synthesis genes and 

glycolytic genes) subgroups (Figure 1B). The levels of 

genes involved in glycolysis and cholesterol synthesis 

are illustrated in Figure 1C, along with the proportion of 

patients in each metabolic subgroup. The quiescent 

phenotype group contained the largest number of 

patients (332/610, 54.4%), followed by the 

cholesterogenic (164/610, 26.9%), glycolytic (65/610, 

11%) and mixed subtypes (49/610, 8%). 

 

To determine the relationship between the HCC 

metabolic subgroup and patient prognosis, we 
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performed a statistical cluster analysis on HCC 

metabolic oncogene characteristics in metastatic and 

non-metastatic patients. There was no significant 

difference in the distribution of the metabolic subgroups 

between the metastatic and non-metastatic groups. 

However, there were significant differences in overall 

survival based on cholesterol-generating and glycolytic 

gene expression. The clinical outcomes were 

significantly worse in the cholesterol-generating 

subgroup than in the glycolytic group (p = 0.017) 

(Figure 1D). In both the non-metastatic and metastatic 

groups of HCC patients (Figure 1E and 1F, p = 0.049 

and p = 0.027, respectively), there was a significant 

difference in survival between the cholesterogenic and 

glycolytic subgroups. Surprisingly, survival benefits 

were observed in patients with increased expression of 

glycolytic genes. These findings indicated that there are 

metabolic phenotypes associated with 

glycolysis/cholesterogenesis and prognosis in HCC. 

 

Relationship between the tumor genome metabolic 

subtype and the HCC subtype 

 

Metabolic reprogramming is now accepted as a 

hallmark of cancer [20, 21], and we found significant 

abnormalities in metabolic gene expression in HCC 

patients. We next investigated the frequency of single 

nucleotide variations (SNVs), insertion-deletion 

mutations (INDELs) and copy number variations 

(CNVs) [22] in genes associated with the different 

metabolic subtypes of liver hepatocellular carcinoma 

(LIHC) cohorts (Figure 2A). The mutational frequency 

of each gene did not differ significantly among the 

subtypes (Fisher’s exact test and Benjamini-Hochberg 

(BH) test-corrected, p > 0.05 after correction). 

However, the median levels of cholesterol synthesis 

genes were significantly greater in MYC-amplified and 

TP53-deleted samples than in samples without these 

alterations (Figure 2B). Cholesterogenic gene 

expression correlated positively with MYC mutations (p 

= 0.039, R = 0.1) (Figure 2C) and negatively with TP53 

mutations (p = 0.037, R = -0.14) (Figure 2D). These 

findings are consistent with the high mutational 

frequency of TP53 and MYC, and support the notion 

that mutations in TP53 and MYC promote tumor 

progression by inducing abnormal glucose utilization. 

Thus, tumors may be vulnerable to changes in 

glycolysis. 

 

The relationship between survival-related features and 

gene expression in HCC has been illustrated in previous 

studies [23, 24]. Hoshida’s classification, Budhu’s 

metastasis-averse/inclined microenvironment 

(MAM/MIM) and Chew’s classification have been used 

to classify liver cancer according to the clinical 

prognosis (see Methods for details) (Supplementary 

Table 1). To explore the association between the 

glycolytic/cholesterogenic metabolic phenotypes and 

the tumor subtypes from the above-mentioned 

prognostic classification methods, we identified the 

tumor subtype and metabolic phenotype of each sample 

(Figure 3A). Most of the patients in the quiescent group 

had favorable prognoses according to the Hoshida 

classification (75.4%), while fewer patients in the 

mixed group (29.9%, adjusted p = 0.0025) and the 

cholesterogenic group (34.8%, adjusted p = 0.022) had 

favorable prognoses (Figure 3B). The number of 

MAM/MIM samples according to the Budhu 

classification differed significantly between the 

quiescent group and the mixed group. The number of 

samples with a poor prognosis according to the Chew 

classification differed significantly between the 

quiescent group and the glycolytic group. 

 

We also analyzed the correlation of cholesterogenic 

/glycolytic gene expression with prognostic gene 

expression according to the Hoshida classification. The 

expression of genes associated with a poor prognosis 

correlated positively with the expression of genes in the 

cholesterol synthesis pathway. Likewise, the expression 

of genes associated with a good prognosis correlated 

negatively with the expression of genes in the 

cholesterol synthesis pathway. Glycolytic gene 

expression correlated positively with prognostic gene 

expression in both the better and poorer prognosis 

groups, but the correlation was stronger in the poorer 

prognosis group (Figure 3C). This was consistent with 

the significant association between cholesterogenic 

gene expression and a poorer survival prognosis. These 

data indicated that glycolysis and cholesterol synthesis 

are potential metabolic targets in patients with different 

HCC subtypes. 

 

Mitochondrial pyruvate carrier complex expression 

differed among the metabolic subtypes 
 

The mitochondrial pyruvate carrier (MPC) complex in 

the inner membrane of the mitochondria transfers free 

pyruvate from the cytoplasm to the mitochondrial 

matrix [25]. Previous studies observed that MPC1 and 

MPC2 were different in metabolic pathways and 

promoted tumor glycolysis activity. This difference is 

important in lactic acid production [26, 27]. 

 

To explore the association of MPC1 and MPC2 with the 

different metabolic phenotypes, we assessed the 

metabolic subpopulations for SNVs, INDELs, CNVs 

and mRNA expression changes in these genes. The 

CNVs in MPC1 and MPC2 differed significantly among 

the metabolic subgroups; however, the CNVs in MPC1 

were deletions in almost all of the HCC samples, while 

the CNVs in MPC2 were mostly amplifications
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Figure 1. The metabolic gene landscape of HCC based on glycolytic and cholesterogenic clusters. (A) Heat map of consensus 
clustering (k=5) for glycolytic and cholesterogenic genes in resected and metastatic LIHC samples (n=610). (B) Scatter plot of the median 
levels of co-expressed glycolytic (x-axis) and cholesterogenic (y-axis) genes in each LIHC sample. Metabolic subgroups were assigned based on 
the relative levels of glycolytic and cholesterogenic genes. (C) Heat map of differential gene expression patterns in glycolytic and 
cholesterogenic gene clusters across subgroups. (D) Kaplan-Meier survival analyses of patients with all subtypes of LIHC; the log-rank test p 
value is shown. (E) Overall survival analyses in the metastatic subgroup of LIHC patients; the log-rank test p value is shown. (F) Overall survival 
analyses in the non-metastatic LIHC cohort; the log-rank test p value is shown. 
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(Figure 4A). MPC1 and MPC2 mRNA levels differed 

significantly among the metabolic subgroups. MPC2 

expression was significantly lower in the glycolytic 

group than in the other groups, whereas MPC1 

expression was significantly greater in the glycolytic 

group. MPC2 expression was significantly higher in the 

cholesterogenic group than in the quiescent group 

(Figure 4B). Thus, the dysregulation of mitochondrial 

pyruvate transport at the mRNA level may be associated 

with the metabolic tumor subtypes. 

 

To find cellular pathways associated with MPC1/2 

expression, we performed a comprehensive correlation 

analysis between MPC1/2 and all the other tested genes 

(n = 25,483). In total, 168 genes correlated positively 

with MPC1/2, while 14 genes correlated negatively with 

MPC1/2 (Spearman correlation BH-corrected p < 0.01) 

(Figure 4C). The positively correlated genes were 

associated with extracellular matrix function 

(hypergeometric test, BH regulation p < 0.05). The 

pathways enriched in the negatively correlated genes 

were involved in carbon chain binding and 

phosphorylation (Figure 4D). These data suggested that 

MPC1 and 2 participate in cellular networks associated 

with tumor progression in HCC. 

 

Correlation between glycolytic and cholesterogenic 

gene expression in various cancers 
 

It is very important to identify cancers that have unique 

metabolic characteristics driven by their mutational 

environment and organ-specific enzyme expression 

[28]. To identify the dysregulated routes of metabolism 

in different cancers, we performed cluster analyses of 

glycolytic and cholesterogenic gene expression in 26 

cancer types (tumor content ≥ 30%) from TCGA 

(Supplementary Table 2). Gene co-expression pathway-

specific profiles and hub genes were identified via 

network topology analysis in 13 cancer types. 

Metabolism-related genes were co-expressed in most 

tumor types. However, due to the differential co-

expression of glycolytic and cholesterogenic genes,

 

 
 

Figure 2. Gene mutational landscape across metabolic subgroups of HCC. (A) Oncoprint analysis indicating the distribution of SNVs, 
INDELs and CNVs of frequently mutated genes in LIHC across the metabolic subtypes. (B) Box plot of the median expression of 
cholesterogenic genes in samples with CNVs in TP53 and/or MYC. (C) Scatter plot of the correlation between the median cholesterogenic 
gene expression and MYC expression. (D) Scatter plot of the relationship between the median cholesterogenic gene expression and TP53 
expression. 
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some genes were only co-expressed in a few cancer 

types, indicating that certain genes contribute to the 

tumor metabolic program in a cell-type-specific manner 

(Figure 5A). Cholesterogenic gene expression 

correlated positively with poor prognostic gene 

expression in the Hoshida classification system, not 

only in HCC (Spearman correlation BH-corrected p < 

0.05), but also in a range of other tumor types (Figure 

5B). For some cancers, the median cholesterogenic gene 

expression correlated positively with KRAS expression 

(cervical squamous cell carcinoma [CESC], 

glioblastoma multiforme [GBM], kidney renal clear cell 

carcinoma [KIRC], brain lower grade glioma [LGG], 

lung squamous cell carcinoma [LUSC], ovarian serous 

cystadenocarcinoma [OV], pancreatic adenocarcinoma 

[PAAD], pheochromocytoma and paraganglioma 

[PCPG], prostate adenocarcinoma [PRAD] and stomach 

adenocarcinoma [STAD]) or MYC expression (PCPG, 

STAD and LUSC) (BH-corrected p < 0.05). The 

expression of MPC1 was significantly upregulated in 

the cholesterogenic group in KIRC, LGG, lung 

adenocarcinoma (LUAD) and LUSC, and the 

 

 
 

Figure 3. The alignment of LIHC metabolic subgroups with known gene expression subtypes. (A) Overlay of the metabolic gene 
profiles with LIHC expression subtypes based on the known classifications of Hoshida et al., Budhu et al. and Chew et al. (B) Bar plots of the 
proportion of LIHC expression subtypes in each metabolic subgroup. (C) Scatter plots depicting the correlations of glycolytic and 
cholesterogenic gene levels with prognostic gene levels in the Hoshida classification. 
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expression of MPC2 was significantly upregulated in 

the cholesterogenic group in PAAD, sarcoma (SARC) 

and CESC (Figure 5B), similar to our findings in HCC. 

Further research is needed to explore the mRNA levels 

of these genes. 

 

The potential associations between specific metabolic 

genes and the clinical features of various cancers were 

analyzed. The survival rates differed significantly 

among patients in the four metabolic subtypes in CESC 

(p = 0.001) (Figure 5C) and KIRC (p < 0.001) (Figure 

5D). In CESC, the overall survival rate was 

significantly lower in the mixed subgroup than in the 

cholesterogenic group. In KIRC, the prognosis was 

worse in the glycolytic and quiescent groups than in the 

mixed and cholesterogenic groups. Thus, our model has 

provided novel insights into the molecular features of 

multiple cancers and revealed the tumor specificity of 

metabolic subtype gene expression. 

DISCUSSION 
 

HCC is a heterogeneous cancer that lacks effective 

treatment methods. Metabolic gene assessment may be a 

useful tool for investigating the metabolic abnormalities 

that characterize cancer cells [29]. During tumorigenesis, 

metabolic pathways are often reorganized to adapt to 

malignancy, and the corresponding tumor 

microenvironment contributes significantly to cancer 

progression. A relatively high proportion of malignant 

tumor tissues exhibit increased glycolytic properties, 

including HCC [30]. Che et al. reported that cholesterol 

synthesis accelerated cholesterol ester production and 

reduced triglyceride levels, thus accelerating hepato-

carcinogenesis [31]. Highly expressed metabolic genes in 

HCC may accelerate metabolic dysfunction and 

tumorigenicity [32]. Therefore, elucidating the relevant 

metabolic pathways in HCC is crucial for prevention and 

treatment.

 

 
 

Figure 4. Association of MPC1 and MPC2 expression with LIHC metabolic subgroups and cell signaling pathways. (A) Oncoprint 
indicating the distribution of MPC1 and MPC2 SNVs and CNVs across the metabolic groups. Only one case was found with an SNV in MPC2. 
(B) Box plots of significant (p < 0.001) differences in MPC1 and MPC2 levels across the LIHC metabolic subgroups. (C) Scatter plot of the 
correlations of 25,483 genes with MPC1 (x-axis) and MPC2 (y-axis). In total, 168 genes correlated positively (Spearman correlation BH-
adjusted p < 0.01) with both MPC1 and MPC2, while 14 genes correlated negatively with both MPC1 and MPC2 (adjusted p < 0.01). (D) The 
most significantly enriched (hypergeometric test BH-adjusted p < 0.05) gene sets among the genes positively (left) and negatively (right) 
associated with MPC1/2 expression. 
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Metabolic reprogramming studies have been 

conducted on glycolysis and the tricarboxylic acid 

cycle [33]. Many metabolic pathways occur in tumor 

cells, including fatty acid, glutamine, serine and 

cholesterol metabolism [34]. Numerous key enzymes 

in glycolysis are significantly upregulated in ovarian, 

pancreatic, breast and prostate cancer, as well as in 

osteosarcoma and melanoma [35]. Understanding the 

metabolic pathways that are disrupted in cancer can 

help researchers predict potentially responsible cells 

in tumor samples and gain insight into the disease 

etiology. For instance, Bénéteau et al. illustrated that 

inhibiting glycolysis could transform conventional 

tolerogenic cancer cells into immunogenic ones, thus 

providing a novel approach for immunogenic 

chemotherapy [36]. In the present study, we sought to 

establish a metabolic classification of HCC. Four 

specific subgroups were identified based on glycolytic 

and cholesterogenic pathways that significantly 

influenced survival.  

 

Glycolysis promotes tumor progression, immune 

escape and drug resistance. Glycolysis can reduce 

dependence on oxygen and replenish tumor cells 

quickly. The intermediate products of glycolysis can 

be transferred to the pentose phosphate pathway and 

other pathways for protein, nucleic acid and lipid 

synthesis to meet the anabolic and metabolic 

requirements for rapid tumor cell proliferation [37]. 

Active glycolysis can reduce the permeability of the 

outer membrane of the mitochondria, allowing tumor 

cells to resist cell death [38]. Glycolysis produces 

large amounts of lactic acid, resulting in an acidic 

environment that is conducive to tumor invasion and 

immune escape [39]. Tumor glycolysis is associated 

with changes in intracellular signaling pathways 

 

 
 

Figure 5. The glycolytic and cholesterogenic gene profiles of other cancer types. (A) Heat map depicting that glycolytic and 
cholesterogenic genes were robustly co-expressed when consensus clusters were applied to each individual cancer type. (B) Top: Bar plots 
showing the proportions of the metabolic subgroups across the various cancer types. Bottom: The correlation between cholesterogenic gene 
expression and the expression of Hoshida poor prognostic genes, KRAS, MYC and MPC1/2 in each cancer type. Median glycolytic gene 
expression correlated positively (BH-adjusted p < 0.05) with basal-like gene expression in all cancer types. The correlation between MPC1/2 
expression and glycolytic gene expression was validated using Wilcoxon rank sum tests and BH correction. (C) Kaplan-Meier survival analysis 
curves depicting the differences in median overall survival across the metabolic subgroups in CESC. (D) Kaplan-Meier survival analysis curves 
demonstrating the differences in median overall survival in KIRC. 
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induced by a variety of oncogenic and/or tumor-

suppressor genes. For example, the long non-coding 

RNA Ftx was found to promote aerobic glycolysis and 

tumor aggression by inducing the PPARγ pathway in 

HCC [40]. interestingly, Interestingly, in our study, the 

HCC subtype with higher glycolytic gene expression 

but lower cholesterogenic gene expression seemed to 

be both aggressive and sensitive to chemotherapy, as 

we observed survival benefits in this subgroup. Our 

results suggest that there are multiple metabolic 

phenotypes associated with glycolysis and cholesterol 

synthesis in HCC. 

 

The liver is an important site of lipid metabolism, and 

cholesterol levels rise significantly in liver cancer cells. 

The activation of extracellular signal-regulated kinase in 

liver cells can inhibit the expression of the rate-limiting 

enzyme in cholesterol metabolism, thus inhibiting bile 

acid synthesis and inducing cholesterol accumulation 

[41]. Cholesterol metabolites or intermediates have 

been reported to promote the growth of cancer cells 

[42]. We confirmed the involvement of 

cholesterogenesis in the progression and classification 

of HCC by demonstrating that cholesterol synthesis 

genes were highly expressed in the tumor tissues of 

some patients and were associated with a poorer 

prognosis. Previous reports have indicated that statins 

suppress proliferation and induce apoptosis in HCC 

cells and improve the prognosis of HCC patients [43, 

44]., further illustrating the influence of metabolic 

reprogramming on HCC tumorigenesis. 

 

We found that cholesterogenic gene expression correlated 

negatively with TP53 expression and positively with MYC 

expression. Thus, abnormal expression of TP53 and MYC 

may promote the malignant process of tumors by 

enhancing cholesterol synthesis and altering cholesterol 

use. In addition, by detecting mutated genes in metabolic 

pathways, we found that the MPC complexes regulating 

pyruvate flux were mutated and abnormally expressed in 

HCC, suggesting that changes in MPC are associated with 

HCC progression. 

 

It is important to note that the correlation between 

glycolysis and cholesterol synthesis has been validated in 

various cancers. Our in-depth investigation demonstrated 

that the mutation of different metabolic genes and the 

expression of specific enzymes contribute to the unique 

metabolic characteristics and clinical prognoses of 

different cancer types. HCC metabolic typing based on 

metabolic reprogramming may provide important 

information to enable clinicians to select treatments, 

predict the potential response, anticipate treatment 

resistance and foresee the likely outcomes. Activating or 

inhibiting particular metabolic pathways may be a useful 

therapeutic strategy to prevent HCC progression. 

MATERIALS AND METHODS 
 

HCC dataset acquisition and processing 

 

The HCC datasets and all corresponding clinical data 

were downloaded from the data portal of TCGA 

(Illumina HiSeq Systems; https://cancergenome. 

nih.gov/) and the ICGC (https://www.icgc.org) [45]. We 

also downloaded standardized RNA sequence data for 

all 423 available cases from TCGA and for 237 samples 

from the ICGC data portal. We used human genome 

reference sequence GRCh37 from the Genome 

Reference Consortium [46]. Samples from the ICGC 

were filtered to exclude those labeled as cell lines, 

xenografts, metastatic, normal or non-laser microscopy 

enrichment. After excluding these samples, we 

downloaded somatic mutational data (CNVs, SNVs and 

indexes) for all the screened samples. 

 

Analysis of RNA sequence data 
 

We normalized the RNA levels in each sample using 

the Transcripts Per Million algorithm and log-

transformed log10 ((normalized count*1e6145) +1). To 

identify significantly differentially expressed RNAs, we 

used a standard screen of a log2 fold change ≥ 1. All 

samples were screened to exclude those with tumor 

contents < 30% [47]. 

 

Batch profile estimation and correction 
 

We analyzed data from TCGA and ICGC cohorts, 

applied a normalization strategy and removed unwanted 

variation as a correction. Batch corrections were 

performed in each cohort using a gene localization scale 

(Figure 6). 

 

Classification of metabolic gene subgroups 
 

The Molecular Signatures Database is critical for 

insightful interpretation of large-scale genomic data 

[48]. We used the "REACTOME GLYCOLYSIS" (n = 

29) to identify the glycolytic subgroup and the 

"REACTOME CHOLESTEROL BIOSYNTHESIS" (n 

= 72) to identify the cholesterogenic subgroup. 

Subtypes were separated based on the consistent 

clustering of glycolytic and cholesterol-generating 

genes in ConsensusClusterPlus v1.38, and their 

statistical significance was assessed with SigClust 

(parameters: 160 reps=100, p Item=0.8, p Feature=1) 

[49]. Ward.D2 and the Euclidean distance were 

respectively used as clustering algorithms and distance 

measurements (k = 5 for glycolytic and cholesterogenic 

genes in resected and metastatic LIHC samples [n = 

610), the cluster1]), and clusters 1-5 were validated. All 

patients were divided into four groups based on the 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.icgc.org/


 

www.aging-us.com 10309 AGING 

median levels of glycolytic and cholesterol-generating 

genes in each sample: the quiescent group 

(GLYCOLYSIS ≤ 0, CHOLESTEROL ≤ 0), the 

glycolytic group (GLYCOLYSIS > 0, CHOLESTEROL 

≤ 0), the cholesterogenic group (GLYCOLYSIS ≤ 0, 

CHOLESTEROL > 0) and the mixed group 

(GLYCOLYSIS > 0, CHOLESTEROL > 0). For each 

gene cluster, the ratio of glycolytic genes and 

cholesterol-generating genes was calculated. Gene 

clusters containing > 90% CHOLESTEROL genes or > 

30% GLYCOLYSIS genes were considered as “core” 

gene clusters. 

 

Classification of pre-existing HCC subgroups 
 

Consistent clustering was applied to classify samples 

based on the common tumor subtypes studied by 

Hoshida et al. [50], Budhu et al. [51] and Chew et al. 

[52]. The Hoshida subgrouping was based on the 186 

genetic characteristics in the original publication, the 

Budhu subtyping was based on the 17 genetic 

characteristics in the original paper, and the Chew 

subtyping was based on the 14 genes in the original 

study. During each subtype classification, the samples 

were consistently clustered based on the genes of each 

classifier, and then semi-automatic subtype assignment 

was applied. 

 

RNA expression analysis of MPC1/2 
 

We used RNA-seq data to identify gene sets that 

correlated positively or negatively with MPC1/2 

(Spearman correlation analysis), and performed BH 

correction for multiple test corrections. A significant 

correlation was established between two gene sets based 

on an adjusted p value < 0.01. A correlation coefficient 

of r > 0 was used to establish a positive correlation of a 

gene with MPC1/2, while a correlation coefficient of r < 

0 was used to establish a negative correlation. To 

determine the pathway enrichment of genes that 

correlated positively and negatively with MPC1/2, we 

performed a comprehensive gene set enrichment 

analysis on the two sets of genes. 

 

Calculation of tumor content 

 

The purity of each tumor sample was limited due to the 

presence of various immune cells surrounding the tumor 

cells, as well as other cells in the tumor 

microenvironment. We estimated the tumor purity of 

the HCC samples using an R package. 

 

Mutation analysis of HCC genes 
 

We identified and analyzed gene sequences from the 

human genome assembly GRCh37/hg19 [53]. In order 

to identify oncogenic molecular events in the HCC 

metabolic subtypes, we investigated the frequency of 

SNVs, INDELs and CNVs in commonly mutated HCC 

genes [54] and explored their relationship with the HCC 

metabolic subtypes. With respect to tumor ploidy, DNA 

fragments with copy statuses ≥ 3 and ≤ 1 were 

considered amplified and deleted, respectively. Based 

on a previous study [55], we screened HCC copy 

number events with at least 10 support probes and 

fragment averages > 0.2 (amplified) or < -0.2 (deleted). 

The coordinates of the copy number events were 

mapped to the gene coding region with Bedtools v2.26, 

and the SNVs and CNVs of each gene were tested with 

a contingency analysis. The selected genes in each 

subgroup were tested, and Fisher’s exact test was used 

to determine whether there was a loss-of-function

 

 
 

Figure 6. Batch correction of queued datasets from TCGA and ICGC. (A) Gene datasets were validated before normalization. (B) Gene 
datasets were illustrated after normalization. 
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mutation or copy number amplification/deletion in each 

subgroup. BH correction was applied to the resulting p 

values. 

 

Pan-cancer RNA-seq analysis 

 

We downloaded the Transcripts Per Million data of all 

pan-cancer samples and screened the samples according 

to cancer type. There were at least 100 samples after the 

preliminary screening, and there were 26 matched 

cancer types. Logarithmic conversion, batch correction, 

grouping and cluster analysis of RNA expression values 

were performed as described above. For each gene 

cluster, we calculated the ratio of glycolytic and 

cholesterol-generating genes. Gene clusters containing 

> 90% cholesterogenic genes or > 30% glycolytic genes 

were considered as “core” gene clusters. For cancer 

types with multiple core clusters in the same gene set, 

the most homogeneous cluster was considered to be the 

core cluster. Cancer types that did not have at least 75% 

homogeneous core glycolytic and cholesterogenic 

clusters were omitted from further analyses 

(specifically: bladder urothelial carcinoma, breast 

invasive carcinoma, colon adenocarcinoma, head and 

neck squamous cell carcinoma, kidney renal papillary 

cell carcinoma, acute myeloid leukemia, rectum 

adenocarcinoma, skin cutaneous melanoma, testicular 

germ cell tumors, thyroid carcinoma, thymoma and 

uterine corpus endometrial carcinoma (Supplementary 

Figure 1)). The metabolic subtypes of patients with each 

cancer type were determined based on the median 

values of the respective core glycolytic and cholesterol-

generating genes. 

 

Survival analysis of HCC patients 

 

Kaplan-Meier diagrams were generated using the R 

packages "survival" v.2.4.2 and "survminer" v.0.4.2 

[56]. Patients with a total survival of less than one 

month were removed from the survival analysis. 

 

Statistical analysis 
 

We used SPSS 23.0 software (IBM Corp., Armonk, NY, 

USA) and GraphPad Prism 7 (San Diego, CA, USA) to 

analyze the data [57]. Pearson correlation coefficients 

were used to express the linear correlations between pairs 

of variables. Kaplan-Meier and log-rank tests were used 

to analyze patient survival. R Studio was used to obtain 

the best cut-off value for each gene and survival curve. 

Two-sided p values < 0.05 were considered significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 

 

 

 
 

Supplementary Figure 1. Glycolysis- and cholesterol-related core gene clusters in 13 cancer types. 
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Supplementary Tables 
 

Supplementary Table 1. Extent of various LIHC subtypes and metabolic phenotypes in each sample. 

Row Labels 
Count of 

Hoshiba_groups 

Count of 

Budhu_groups 

Count of 

Chew_groups     

Cholesterogenic 132 132 132 
    

Glycolytic 146 146 146 
    

Mixed 167 167 167 
    

Quiescent 163 163 163 
    

Grand Total 608 608 608 
    

        Count of 

Chew_groups 
Column Labels 

  

Count of 

Chew_groups 
Column Labels 

  

Row Labels Good Poor Grand Total Row Labels Good Poor p value 

Cholesterogenic 37 95 132 Cholesterogenic 28.03030303 71.969697 0.22701108 

Glycolytic 81 65 146 Glycolytic 55.47945205 44.520548 0.0156542 

Mixed 73 94 167 Mixed 43.71257485 56.2874252 0.38750472 

Quiescent 61 102 163 Quiescent 37.42331288 62.5766871 
 

Grand Total 252 356 608 
    

        Count of 

Budhu_groups 
Column Labels 

  

Count of 

Budhu_groups 
Column Labels 

  

Row Labels Mam Mim Grand Total Row Labels Mam Mim p value 

Cholesterogenic 34 98 132 Cholesterogenic 25.75757576 74.2424242 1 

Glycolytic 52 94 146 Glycolytic 35.61643836 64.3835616 0.12422132 

Mixed 29 138 167 Mixed 17.36526946 82.6347305 0.22402215 

Quiescent 40 123 163 Quiescent 24.5398773 75.4601227 
 

Grand Total 155 453 608 
    

        
Count of 

Hoshiba_groups 
Column Labels 

  

Count of 

Hoshiba_groups 
Column Labels 

  

Row Labels Good Poor Grand Total Row Labels Good Poor p value 

Cholesterogenic 46 86 132 Cholesterogenic 34.84848485 65.1515152 0.02223115 

Glycolytic 65 81 146 Glycolytic 44.52054795 55.4794521 0.39599375 

Mixed 50 117 167 Mixed 29.94011976 70.0598802 0.00243795 

Quiescent 85 78 163 Quiescent 52.14723926 47.8527607 
 

Grand Total 246 362 608 
    

 

 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 2. Consistent cluster analysis of glycolytic and cholesterogenic gene expression in 26 cancer 
types (tumor content ≥ 30%). 

 


