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INTRODUCTION 
 

Incidence of skin cutaneous melanoma (SKCM), a 

common malignant skin tumor, has increased rapidly 

over the past decade [1]. In the USA, an estimated 

87,000 new melanoma cases and 9,000 melanoma-

related deaths occurred in 2017 [2]. Although novel  

 

treatments might help improve clinical outcomes, the 

prognosis for this disease remains poor due at least in 

part to the involvement and thickness of the lymph 

nodes and the ability of malignant cells to colonize 

distant organs [3, 4]. A comprehensive understanding of 

the molecular features of melanoma will help improve 

treatment efficacy. 
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ABSTRACT 
 

Skin cutaneous melanoma (SKCM) is characterized by both epigenetic DNA methylation (MET) abnormalities 
and genomic copy number variations (CNVs). The resulting transcriptome dysregulation promotes 
progression of many cancers. In this study, DNA copy numbers and MET, as well as mRNA expression, were 
examined in 466 SKCM samples from The Cancer Genome Atlas. Our results indicate that CNVs-correlated 
(CNVcor) genes and MET-correlated (METcor) genes are coregulated to a remarkable degree. In addition, 
integrative multi-omics analysis of both METcor and CNVcor genes revealed four SKCM subtypes with 
differing prognoses; these subtypes were validated with independent data. Immune cell scores were 
markedly elevated in the iC1 subtype, which had the best prognosis. Immune cell infiltration correlated with 
DNA MET or CNV level in SKCM. In the iC3 subtype, which was associated with the most aggressive SKCM 
cases, FAM135B gene mutation frequencies were increased, while CD8A, GBP5, KIAA0040, and SAMHD1 
expression were downregulated, suggesting that these genes play important roles in cancer development 
and immune responses. Taken together, the results of our epigenetic and genomic transcriptome 
modulation analysis improve our understanding of SKCM pathobiology and may aid in the development of 
more effective therapies. 
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Recently, large-scale multi-omics studies have greatly 

increased our understanding of genomic and epigenetic 

dysregulation in many diseases [5]. Genome 

alternations, like DNA mutations or copy number 

variations (CNVs), frequently take place during 

tumorigenesis and can promote cancer development [6]. 

Although DNA mutations have been used to guide 

SKCM subtyping and prognosis prediction, recent 

advances in SKCM treatment have mainly come from 

immunotherapy. It is therefore necessary to investigate 

genomic and epigenomic abnormalities in SKCM from 

a novel perspective. In addition, epigenetic regulation in 

the form of DNA methylation (MET) contributes to 

many SKCM characteristics [7, 8]. DNA CNVs are 

important regulators of SKCM development, and 

resulting transcriptional dysregulation might drive the 

progression of SKCM [9, 10]. In addition, DNA MET 

profiling studies indicate that epigenetic regulation 

influences biological and clinical aspects of cancer 

development [11, 12]. Some crucial cancer-related 

genes, such as LKB1, RB1, and RASSF1A, can regulate 

DNA MET, thus modulating gene function [13–15]. 

 

Correlations between CNVs and MET have been found in 

multiple studies, which suggest that DNA MET is both 

trans-regulated by DNA CNVs and related to the 

redistribution of methylase complexes [16–19]. However, 

the epigenetic relationship between DNA CNVs and MET 

in SKCM progression remains unclear. In this study, we 

investigated regulatory relationships between DNA MET 

and CNVs in SKCM and whether they are associated with 

prognosis. DNA copy numbers and MET, as well as 

messenger RNA (mRNA) expression, were examined in 

SKCM samples. Genes for which expression was 

correlated with DNA MET (METcor) or copy number 

(CNVcor) were then identified. In addition, multi-omics 

integration analysis of METcor and CNVcor genes was 

conducted to identify molecular subtypes associated with 

differences in SKCM prognosis. Finally, deeper 

systematic analysis was used to identify novel biomarkers 

and targets for distinguishing cancer subtypes. 

 

RESULTS 
 

DNA MET and copy number dysregulation at the 

transcriptomic level  

 

MET, CNV, and mRNA expression profiles were 

obtained from 466 SKCM samples in TCGA. Original 

data were then preprocessed as described in Materials 

and Methods. Correlation coefficients between DNA 

MET or CNV profiles and mRNA expression profiles 

were calculated to assess the effects of epigenomic 

and/or genomic aberrations. Correlation coefficient r 

values were normalized using Fisher’s Z-transformation 

to stabilize variance. 

Consistent with our previous findings, overall 

correlation coefficients between DNA CNVs and 

expression profiles showed a marked right-sided skew 

(skewness = 0.67425, p < 1e-5). By contrast, correlation 

coefficients between DNA MET patterns and 

expression profiles displayed a left-sided skew 

(skewness = -0.4274, p < 1e-5) (Figure 1A), indicating 

that abnormalities in DNA MET and CNVs negatively 

and positively regulated transcription, respectively. 

 

The METcor and CNVcor gene sets included many 

individual genes (Supplementary Tables 2–3); only 

genes with notable correlations with overall survival 

(OS) were included in subsequent analysis (log rank p < 

0.05). Positively-correlated gene signatures were 

typically included in the DNA copy number gene set 

(CNVcor, n = 385), while negatively-correlated gene 

signatures were typically included in the DNA MET 

gene set (METcor, n = 892). CNVcor genes were 

associated with CNV-dependent dysregulation at the 

transcriptional level, whereas METcor genes were 

associated with MET-dependent transcriptional 

dysregulation at the epigenetic level. In addition to 

genes that belonged to either the METcor or the 

CNVcor set, 216 overlapping genes were included in 

both sets, implying that both METcor and CNVcor 

genes were specifically associated with dysregulation at 

the transcription level (Figure 1B). 

 

As was found in a previous study, chromosome 1 was 

rich in CNVcor genes (Figure 1C), suggestive of 

regional sensitivity of gene expression to DNA dosage 

[20, 21]. METcor genes were also preferentially located 

in certain chromosomal regions, such as chromosomes 

17 and 1 (Figure 1D and Supplementary Figure 1); in 

addition, most METcor genes were protein coding 

genes (MET on the promoter region) (Figure 1E) and 

located primarily within CpG islands (Figure 1F). These 

results indicate that METcor and CNVcor genes were 

important contributors to transcriptional dysregulation 

in SKCM. 

 

Molecular subtypes based on METcor and CNVcor 

genes 

 

Next, we examined whether METcor and CNVcor gene 

expression could predict prognostic subgroups. Each 

gene set profile was examined using NMF clustering 

analysis, with the cluster number k set at 2-10; k values 

were then determined for all profiles (k=3 for MET and 

k = 2 for CNV) (Figure 2A, 2B and Supplementary 

Figures 2–5). Surprisingly, subtype identifications 

based on CNVcor genes overlapped to a large extent 

with those based on METcor genes (p < 1e-5, χ2-test), 

suggesting that METcor and CNVcor genes both 

contribute to regulation of SKCM (Figure 2E, 2F). 
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Moreover, Kaplan-Meier (KM) curve analysis indicated 

that subtypes identified based on either METcor or 

CNVcor genes were associated with patient OS (Figure 

2C, 2D, p < 0.05).  

 

The comprehensive clustering method iCluster was 

adopted to integrate genomic information regarding DNA 

MET and CNVs as well as mRNA expression. Clustering 

analysis was performed using a cluster number k of 2/3. 

Twenty iterations of clustering analysis at K=2 (category 

3) and at K=3 (category 4) were performed to generate 

optimal iCluster clustering results. Our results indicated 

that K=3 generated more stable clustering results than 

K=2 (Supplementary Figures 6, 7). Samples were 

therefore clustered into four subclasses: iC1-iC4 (n=99, 

108, 113, and 146, respectively). Clustering results for 

these four subclasses are displayed in Figure 3A, 3B; 

clustering results for each sample are presented in 

Supplementary Table 4. 

 

According to KM curve analysis, OS was poorest in the 

iC3 subtype (p < 0.05, Figure 4A). Comparisons of 

patient OS among the four subgroups (Figure 4B and 

Supplementary Figure 8) indicated that the iC1 and  

iC3 subgroups differed most in terms of prognosis  

(p < 0.001). In addition, the subtypes identified using 

iCluster largely overlapped with those identified based on 

METcor and CNVcor genes (p < 1e-5, χ2-test, Figure 4C, 

4D). These results suggest that integrated analysis of 

METcor and CNVcor genes identified clinically-relevant 

molecular subtypes in which epigenomic and genomic 

transcriptional dysregulation influences prognosis. 

 

 
 

Figure 1. Identification of DNA copy-number-correlated (CNVcor) and DNA methylation-correlated (METcor) genes in 
SKCM. (A) Distribution of correlation coefficients between mRNA expression levels and DNA copy number or DNA methylation across 

samples. (B) Venn diagram showing counts of CNVcor genes, METcor genes, and overlapping genes. (C) Proportional frequencies of 
CNVcor genes against total gene counts in each chromosome arm. (D) Proportional frequencies of METcor genes against total gene 
counts in each chromosome arm. (E, F) Genomic positions of DNA methylation probes are categorized based on positional relations 
with CpG islands (right) and genes (left).  
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Figure 2. Identification of SKCM molecular subtypes using CNVcor and METcor genes. (A, B) Plots show the non-negative 

factorization (NMF) cluster results for CNVcor genes in CNV data (A) and for METcor genes in MET data (B). (C, D) Kaplan–Meier plot analyses 
of differences in OS among subtypes identified by NMF clustering of CNVcor (C) and METcor (D) genes. (E, F) Subtypes based on CNVcor 
genes overlapped to a great extent with those based on METcor genes. 

 

 
 

Figure 3. Expression patterns of subtypes based on CNVcor and METcor genes. Subtypes based on CNVcor (A) or METcor (B) genes 

using NMF cluster methods are indicated with colored bars. 
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Abnormalities in DNA MET and CNVs are linked 

 

After correcting for batch effects, occurrence rates  

of genome-wide abnormalities in DNA MET and 

CNVs were compared. DNA copy-number loss 

(CNVloss, β<-0.3) and gain (CNVgain, β>0.3), as 

well as DNA hypomethylation (METhypo, β<0.2) and 

hypermethylation (METhyper, β>0.8), were also 

identified based on the predetermined 0.3-fold change 

threshold and were compared with the average values 

of each probe in normal tissue. Our results 

(Supplementary Table 5) indicate that CNVgain and 

CNVloss frequencies were strongly correlated (p < 

1e-5, Figure 5A). In addition, METhyper and 

METhypo frequencies were also correlated (p < 1e-5, 

Figure 5F). Abnormalities in directional CNVloss, 

CNVgain, METhypo, and METhyper were tightly 

correlated, indicating that each correlation was 

independent of directional abnormality (Figure 5B–

5E, p < 0.001). In summary, our findings indicated 

that SKCM cases with higher DNA CNV frequencies 

also tended to have higher frequencies of abnormal 

DNA MET. 

 

Identification of key molecular features of SKCM 

subtypes  

 

Differences in clinical characteristics (such as Stage, 

TNM, Primary Site, and Gender) were examined among 

the four subtypes identified above. There were no 

statistically significant differences in clinical charac-

teristics among the four SKCM subtypes (Supplementary 

Figure 9). In addition, the tumor immune estimation 

resource (TIMER) approach was used to analyze 

differences in samples belonging to the four subtypes 

(Supplementary Table 6) [22]. Six immune cell scores for 

samples in the iC1 subtype that had the best prognosis 

were markedly elevated compared to scores for samples 

in other subtypes (Figure 6A, 6B, p < 0.01). These results 

suggest that degree of immune cell infiltration or immune 

microenvironment in SKCM are correlated with DNA 

MET or CNV levels. 

 

 

 

Figure 4. Identification of SKCM molecular subtypes using iCluster analysis. (A) Kaplan–Meier plot analyses of differences in OS 

among subtypes identified by iCluster (iC1, iC2, iC3, and iC4). (B) Kaplan–Meier plot analyses of OS in iC3 and iC1 subtypes. (C, D) The 
subtypes determined through iCluster analysis overlapped extensively with those based on CNVcor (C) or METcor (D) genes. 
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Next, we examined heterogeneity in DNA MET, CNVs, 

and gene expression among iC3 and iC1 subtype 

samples. Three categories each were created for DNA 

CNV and MET levels: Normal, Loss, and Gain for 

CNV and Normal, HypoMethy, and HyperMethy for 

MET. Fisher’s exact test was used to identify DNA 

MET or CNV genes with levels that differed between 

the iC3 and iC1 subtypes [23]; the results are shown in 

Supplementary Tables 7, 8. Differentially expressed 

genes (DEGs) between the iC3 and iC1 subtypes were 

identified using DESeq2 (Supplementary Table 9, p < 

0.05) [24]. MET, CNV, and expression results for genes 

with marked differences among samples from the four 

subtypes are shown in Figure 7. A total of 221 genes 

with different MET, CNV, and expression levels 

between the iC3 and iC1 subtypes were examined in 

univariate survival analysis to identify differences in 

prognostic characteristics among the subtypes. The 

results indicated that 146 of these genes were correlated 

with prognosis (Supplementary Table 10, log rank p < 

0.05). Among them, increased hypermethylation and 

decreased expression of the GBP5, CD8A, SAMHD1, 

and KIAA0040 genes were associated with poorer 

outcomes in the iC3 subtype compared to the iC1 

subtype. Samples were then assigned to low (L1), 

medium (L2), or high (L3) groups based on the 

expression of KIAA0040, SAMHD1, CD8A, and 

GBP5. The results indicated that prognostic outcomes 

were positively correlated with the expression of CD8A, 

GBP5, KIAA0040, and SAMHD1 (Figure 8A–8D), 

suggesting that CD8A, GBP5, KIAA0040, and 

SAMHD1 expression levels were associated with DNA 

CNV or MET level. Next, associations between the 

abovementioned 146 genes and patient prognosis were 

evaluated in the GEO GSE65904 SKCM dataset 

(Supplementary Table 10). Seventy-eight genes were 

correlated with prognosis in that dataset; survival curves 

for the top 20 genes are shown in Supplementary Table 

11 and Supplementary Figure 10.  

 

Finally, SKCM mutation profiling data were examined 

to explore associations with the subclassifications 

identified in this study. Synonymous mutations were 

removed, and both nonsense and missense gene 

mutations were included. Overall, mutation frequencies 

differed significantly among the various subtypes. A 

selection of 85 genes with mutation frequencies that 

differed markedly (P < 0.01) between the iC1 and iC3 

subtypes based on Fisher’s test is shown in Figure 9; 

mutation frequency data are shown in Supplementary 

Table 12, and Fisher’s test results are shown in 

Supplementary Table 13. For example FAM135B gene 

 

 

 
 

Figure 5. Abnormal DNA copy numbers and DNA methylation are linked in SKCM. (A, F) Abnormalities in DNA copy numbers or 

DNA methylation were determined based on a cutoff fold difference >0.2 compared to average values in non-tumor tissues. DNA copy-
number gains (CNVgain) and losses (CNVloss) and DNA hypermethylation (METhyper) and hypomethylation (METhypo) are shown for each 
sample. (B–E) Plots show the pairwise frequencies of CNVgain, CNVloss, METhyper, and METhypo genes in individual samples. 
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mutation frequency was much higher in the iC3 subtype 

than in the iC1 subtype (p < 0.01). Interestingly, 

FAM135B gene mutation frequency was also increased 

in the iC2 and iC4 subtypes, which had poor prognoses, 

compared to the iC1 subtype (p < 0.05). In summary, 

these results suggest that DNA copy number- and MET-

related molecular subtypes of SKCM are associated with 

differences in FAM135B gene mutation frequency, 

which might regulate progression of SKCM. 

 

DISCUSSION 
 

According to a previous report, integrative analysis of 

various cancer genome characteristics can identify 

meaningful molecular subtypes that correspond to 

mechanistic and clinical heterogeneities in tumors as 

well as potential biomarkers and treatment targets. 

However, the complexity of genomic data in cancer 

remains a challenge. Here, epigenomic and genomic 

dysregulations of METcor and CNVcor genes were 

identified based on the TCGA database in an attempt  

to integrate epigenomic and genomic data in SKCM 

subtyping. Our findings demonstrated that these 

correlation genes successfully identified SKCM sub-

types that reflected distinct molecular and immuno-

logical features and were associated with different 

outcomes. In addition, SKCM samples with higher 

frequencies of abnormal CNVcor genes also  

had higher frequencies of abnormal METcor genes, 

indicating that patients with higher frequencies of DNA 

CNVs also had higher frequencies of abnormal DNA 

MET. These findings suggest that linkages between 

abnormal DNA MET and CNVs should be considered 

when examining their effects in SKCM. 

 

Correlations between DNA CNVs and MET have 

attracted attention in recent years. If CpG methylation 

were exclusively cis-regulated, it would be controlled 

only by the surrounding DNA sequence of the same 

allele and methylation level would remain unchanged 

regardless of copy number changes. However, several 

studies have identified correlations between DNA 

CNVs and MET, suggesting that DNA MET may be 

trans-regulated by DNA CNVs. Additionally, when 

copy number increases were present, DNA MET 

decreased around CpG islands and increased in CpG 

oceans [16], perhaps due to redistribution of DNA MET 

from CpG oceans to nearby CpG islands. Oxidative 

damage has been reported to induce such DNA MET 

redistribution [25]. Decreased CpG island methylation

 

 
 

Figure 6. Identification of key immune features for SKCM subtypes. Immune scores were calculated for samples from the four 

subtypes and were compared using the TIMER (tumor immune estimation resource) approach. Scores were determined for six immunocytes 
in each sample (A); these scores were compared among subtypes (B).  
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Figure 7. Identification of general molecular features of SKCM subtypes. (A) Distribution of DNA CNVs in iCluster subtypes. (B) 

Distribution of DNA MET in iCluster subtypes. (C) Heatmap of DEGs among iCluster subtypes. 
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may result from redistribution of the methylase complex 

[16, 17], and the magnitude of aging-associated 

methylation changes is similar to the CNV-MET 

associations we have observed in tumor samples [18, 

19]. In this study, we identified CNVCor and METCor 

gene subsets based on expression profiles from TCGA-

SKCM data. By integrating and clustering the DNA 

CNV, MET, and mRNA expression multi-omics data, 

we were able to divide 466 TCGA-SKCM samples 

among four prognostic subtypes that were validated by 

independent data. Survival outcomes were significantly 

better in the iC1 subtype compared to the other 

subtypes, and subsequent candidate key feature gene 

analysis was performed to identify genes associated 

with this difference. Additional studies should be 

conducted to examine the synergistic relationship 

between DNA MET and CNVs identified in our retro-

spective study. 
 

 
 

Figure 8. Identification of key molecular features in SKCM subtypes. (A) GBP5 MET, CNV, and expression levels in the iC1 and iC3 

subtypes are shown in the left panel. Samples were divided among high (L3), medium (L2), and low (L1) groups based on GBP5 gene 
expression; Kaplan–Meier plot analysis for these groups is shown in the right panel. (B) CD8A MET, CNV, and expression levels in the iC1 and 
iC3 subtypes are shown in the left panel; Kaplan–Meier plot analysis for L1, L2, and L3 CD8A groups is shown in the right panel. (C) SAMHD1 
MET, CNV, and expression levels in the iC3 and iC4 subtypes are shown in the left panel; Kaplan–Meier plot analysis for L1, L2, and L3 
SAMHD1 groups is shown in the right panel. (D) KIAA0040 MET, CNV, and expression levels in the iC3 and iC4 subtypes are shown in the left 
panel; Kaplan–Meier plot analysis for L1, L2, and L3 KIAA0040 groups is shown in the right panel. 
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Our classification analysis based on METcor and 

CNVcor genes might help identify novel precision 

biomarkers and treatment targets for SKCM. Analysis of 

different mutation types among SKCM subtypes revealed 

a difference in frequencies of FAM135B mutation. 

Specifically, FAM135B mutation frequency, which is 

generally high among SKCM patients, was lowest in the 

iC1 subtype, which was associated with the best 

prognosis. Mutation frequencies for FAM135B, which is 

associated with cellular lipid metabolic processes, are 

high in many different malignancies (including 

esophageal squamous cell cancer and small cell lung 

cancer) [26, 27]. However, the mechanism by which 

FAM135B modulates cancer development and progres-

sion remains unclear. Moreover, the relationship between 

FAM135B mutation frequency and its expression in 

SKCM remains unclear. Our present findings suggest 

that FAM135B mutation might promote invasive 

behaviors in iC2-iC4 subtype tumors to some extent, but 

additional molecular biology experiments and protein-

protein (PPI) analyses are needed to verify these results. 

 

We also identified CD8A, GBP5, KIAA0040, and 

SAMHD1 as potentially crucial regulators of SKCM 

initiation and progression. GBP5, a member of the 

guanylate-binding protein (GBP) family, belongs to the 

INF-inducible guanosine triphosphate hydrolases 

(GTPases) superfamily and promotes tumorigenesis and 

cancer progression. It also plays an important role 

during host defense, which can affect autoimmunity, 

cancer-related immune response, and infection [28]. 

CD8A, an integral membrane glycoprotein, is crucial 

for differential immune responses to internal and 

external stimuli. It has served as an immune micro-

environment biomarker in 14 different types of solid 

cancers, including SKCM, to identify patients that 

might benefit from anti-immunotherapies like anti-PD-

1/PD-L1 and CAR-T treatment [29]. More research is 

warranted to examine the functions of the KIAA0040 

and SAMHD1 genes in SKCM. Here, CD8A, GBP5, 

KIAA0040, and SAMHD1 expression were strongly 

correlated with DNA MET. As a result, drugs targeting 

the methylation process, such as azacitidine and 5-Aza-

2-deoxycytidine, might help mitigate the effects of 

abnormal CD8A, GBP5, KIAA0040, and SAMHD1 

levels, thus inhibiting progression of SKCM [30, 31]. 

 

In conclusion, this comprehensive analysis of 

epigenomic and genomic regulation of gene expression 

has revealed novel links between different trans-

criptional regulators in SKCM. Our findings might help 

identify novel immune-related molecular subtypes as 

well as new pathogenic mechanisms and clinical 

therapy targets in SKCM. 

 

 
 

Figure 9. Differentially mutated genes among the SKCM subtypes.



 

www.aging-us.com 12713 AGING 

MATERIALS AND METHODS 
 

DNA copy number, DNA MET, and mRNA expression 

profiles 

 

The SKCM dataset was downloaded from TCGA. DNA 

copy number, DNA MET, mRNA expression patterns, 

and mutation data for SKCM samples were extracted 

through the official TCGA data portal. A total of 466 

samples for which matched DNA copy number, DNA 

MET, and mRNA expression pattern data were available 

were included in this study (Supplementary Table 1). 

Gene expression profiles were normalized using quantile 

normalization and log2 transformation, and were later 

aggregated according to official HUGO symbols. Each 

expression profile was then normalized to mean 

expression of the probe gene in normal tissue so that it 

represented the fold change in cancer tissue relative to 

normal tissue. The circular binary segmentation algorithm 

from the R package “DNAcopy” library was then used to 

map genetic DNA copy numbers to CNV data in every 

sample according to the segmented CNV data [32]. For 

DNA MET patterns, probe β-values were filtered  

to remove probes located on sex chromosomes. Then, 

probes located in CpG island-associated regions were 

mapped to related genes, including Shelf, CpG islands, 

Shore regions, first-exon regions, differentially 

methylated regions, 5’-UTRs, and gene promoter regions 

containing 2500 upstream bases from TSS. Probes with 

>30% missing values across samples were removed from 

each processed profile.  

 

The R package “liftOver” library was used to align probe 

genomic coordinates to the hg38 human reference 

genome in each dataset. Probes were then matched to 

corresponding probes in the mRNA expression profile 

data. In addition, cancer-specific alterations were 

identified by subtracting the average intensity of the probe 

in normal tissue. After probes with >50% missing values 

and those located on sex chromosomes had been 

removed, data were analyzed using the sk-nearest 

neighbor algorithm. Pairwise Pearson’s correlation 

coefficients were then calculated for each gene within the 

paired profiling patterns of CNV and expression and MET 

and EXP. If multiple probes had been mapped to the same 

gene, the probe with the mean or lowest correlation 

coefficient was used as the representative pair-matched 

probe for MET and CNV profiles, respectively. 

 

Clustering analysis of genome patterns from 

different aspects 

 

Stable sample clusters were identified through negative 

matrix factorization (NMF) clustering analysis 

according to the “brunet” method and 50 iterations 

using METcor and CNVcor genes. The cluster number 

k was set between 2 and 10, and the optimal cluster 

number was computed based on the monitored 

consensus map as well as cluster cophenetic cor-

relations. In addition, average silhouette width was 

determined for the consensus membership matrix using 

the R package “NMF.” For each member, the smallest 

cluster number was set to be 10. The “iCluster” R 

package was used to perform comprehensive clustering 

analyses of DNA CNV, MET, and mRNA expression 

profiles using default parameters and 20 iterations. 

 

Abbreviations 
 

CNV: copy number variation; DEG: differentially 

expressed gene; GBP: guanylate-binding protein; 

GTPases: guanosine triphosphate hydrolases; MET: 

methylation; mRNA: messenger RNA; NMF: negative 

matrix factorization; OS: overall survival; PPI: protein-

protein interaction; SKCM: skin cutaneous melanoma. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1. The METCor genes’ distribution on the genome. 
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Supplementary Figure 2.NMF rank survey for CNVcor gene set. NMF: non-negative matrix factorization. 
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Supplementary Figure 3. NMF clustering analysis for CNVcor gene set. NMF: non-negative matrix factorization. 
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Supplementary Figure 4. NMF rank survey for METcor gene set. NMF: non-negative matrix factorization. 
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Supplementary Figure 5. NMF clustering analysis for METcor gene set. NMF: non-negative matrix factorization. 
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Supplementary Figure 6. iCluster multi-omics clustering result (K = 2, iC1-3). 
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Supplementary Figure 7. iCluster multi-omics clustering result (K = 3, iC1-4). 
 

 

 

 

 
 

Supplementary Figure 8. Differences in prognosis between iC1 and iC2 / iC1 and iC4. 
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Supplementary Figure 9. Clinical characteristics (TNM, Stage, Gender, Primary site) differences between iC1-4. 
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Supplementary Figure 10. Survival curves for the top 20 differential genes in the GEO validation data. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1 to 13. 

 

Supplementary Table 1. TCGA-SKCM CNV, Methylation (MET) and RNA-seq (EXP) data included for multi-omics 
analysis.  
 

Supplementary Table 2. Included CNVcor gene set for multi-omics analysis.  
 

Supplementary Table 3. Included METcor gene set for multi-omics analysis.  
 

Supplementary Table 4. Multi-omics clustering results of included TCGA-SKCM samples.  
 

Supplementary Table 5. CNV gain / loss and MetHyper / MetHypo correlation of included TCGA-SKCM samples.  
 

Supplementary Table 6. Six immune cell scores of included TCGA-SKCM samples.  
 

Supplementary Table 7. Differential CNV genes between iC1 and iC3 subtypes.  
 

Supplementary Table 8. Differential methylation (MET) genes between iC1 and iC3 subtypes.  
 

Supplementary Table 9. Differential expression (EXP) genes between iC1 and iC3 subtypes.  
 

Supplementary Table 10. Clinical characteristics of GSE65904 dataset.  
 

Supplementary Table 11. Differential genes related to prognosis between iC1 and iC3 subtypes. (post GSE65904 
dataset verification)  
 

Supplementary Table 12. Differential genes between iC1 and iC3 subtypes included in SNV analysis.  
 

Supplementary Table 13. SNV loci of differential genes between iC1 and iC3 subtypes. 


