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INTRODUCTION 
 

Thyroid cancer (THCA) is the most common endocrine 

cancer and its global incidence has risen rapidly [1, 2]. In 

the United States, the annual incidence rate of THCA is 

6.6% [3], which is the highest among all cancers. Despite 

the low death rate associated with thyroid cancer, its 

recurrence or progression rates are high, increasing 

morbidity and mortality rates in patients with THCA [4]. 

THCA has multiple histological types and subtypes 

affecting different cells, with distinct characteristics and 

prognosis [5]. Endocrine thyroid cells comprise follicular 

thyroid cells and parafollicular C cells. The follicular 

thyroid cell type has been implicated in papillary thyroid 

carcinoma (PTC), follicular thyroid carcinoma (FTC), 

poorly differentiated thyroid Cancer (PDTC) and 

anaplastic thyroid cancer (ATC). Although most thyroid 

cancers are not malignant, existing treatments do not 

sufficiently improve prognosis of patients with locally 

advanced or distant metastatic thyroid cancer. This has 

necessitated the search for highly sensitive therapies such 

as immunotherapy [6, 7]. In addition, several immune-

related parameters have been proposed for prognosis 

prediction in patients with THCA [8, 9], indicating that 
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ABSTRACT 
 

Thyroid cancer (THCA) is a heterogeneous disease with multiple clinical outcomes Immune cells regulate its 
progression. Three immunomolecular subtypes (C1, C2, C3) were identified in gene expression data sets from TCGA 
and GEO databases. Among them, subtype C3 had highest frequency of BRAF mutations, lowest frequency of RAS 
mutations, highest mutation load and shorter progression-free survival. Functional enrichment analysis for the 
genes revealed that C1 was up-regulated in the ERK cascade pathway, C2 was up-regulated in cell migration and 
proliferation pathways, while C3 was enriched in body fluid, protein regulation and response to steroid hormones 
functions. Notably, the three molecular subtypes exhibit differences in immune microenvironments as shown by 
timer database and analysis of immune expression signatures. The abundance of B_cell, CD4_Tcell, Neutrophil, 
Macrophage and Dendritic cells in C2 subtype were lower than in C1 and C3 subtypes Leukocyte fraction, 
proliferation macrophage regulation, lymphocyte infiltration, IFN gamma response and TGF beta response scores 
were significantly higher in C3 compared with C1 and C2 subtypes. Unlike C3 subtype, it was observed that C1 and 
C2 subtypes were significantly negatively correlated with most immune checkpoint genes in two different cohorts. 
The characteristic genes were differentially expressed between cancer cells, adjacent tissues, and metastatic 
tissues in different cohorts. In summary, THCA can be subclassified into three molecular subtypes with distinct 
histological types, genetic and transcriptional phenotypes, all of which have potential clinical implications. 
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different immune status is important in THCA prognosis. 

Therefore, understanding the immunophenotypes of the 

THCA microenvironment will promote the effective 

application of immunotherapy in THCA. 

 

In human, the thyroid gland is the largest endocrine organ 

and is a common target for autoimmune diseases. Studies 

have shown that chronic lymphocytic thyroiditis (a 

common autoimmune disease) may trigger or accelerate 

the development of PTC [10, 11]. In vivo/vitro 

experiments suggest that immunological checkpoint 

inhibitors can eliminate thyroid tumor cells. A study found 

that BRAFV600E expression is positively correlated with 

PD-L1/PD-1 in PTC tissues, suggesting that immuno-

logical checkpoint inhibitors may be effective in PTC 

patients with BRAFV600E mutations [12]. In addition, 

immune cells are widely distributed in the thyroid cancer 

microenvironment [13], forming different tumor 

microenvironments (TME) in different stages of tumor 

development. Further, some immune cells can promote or 

inhibit tumorigenesis [14]. Currently, the role of immune 

cells in THCA is not fully known. 

 

The identification of a specific thyroid cancer type is 

critical to the prognosis and treatment options of this 

malignancy. Previously, two molecular subtypes of PTC, 

namely BRAF V600E and RAS, were proposed based on 

transcriptome analysis of the cancer genome atlas (TCGA) 

database [15]. Recently, Seong-keun et al. [16] proposed a 

third molecular subtype (non-braf-non-ras) associated with 

follicle-patterned thyroid cancer. These reports show that 

the molecular phenotypes of thyroid cancer (TC) provide a 

better classification than the histological features. Many 

gene expression-based algorithms have been proposed for 

feature selection or molecular typing [17]. Among them is 

the CIBERSORT which uses linear support vector 

regression to infer the relative abundance of 22 immune 

cell subsets in tumors [18]. A similar algorithm for 

immunological backgrounds can facilitate immunological 

profiling of multiple cancer types [19]. In these 

approaches, a small number of "metagene signatures" are 

identified from gene expression profiles using negative 

matrix factorization (NMF) [20]. These studies indicate 

that methods for cancer gene expression profiling infers 

the abundance of matrix components [21] and tumor cell 

classification based on immune cell abundance [22] is 

feasible. 

 

In this study, gene expression profiles of 781 THCA 

samples were obtained from the TCGA and Gene 

Expression Omnibus (GEO) databases. In addition, 

datasets of adjacent normal thyroid tissues and immune-

related gene sets were obtained from ImmPort 

(https://immport.niaid.nih.gov). Thyroid immune gene 

expression profiles were analysed using NMF which 

identified three immune-related molecular subtypes 

with distinct characteristics. The immune 

characteristics, genomic features and clinical features of 

the three subtypes were systematically analyzed and a 

method for quantifying immune molecule subtypes, 

gSig score was then established. The gSig score showed 

high performance in predicting the prognosis of patients 

with THCA following treatment with immune 

checkpoint inhibitors. 

 

RESULTS 
 

Deconvolution of THCA immune related genes 

expression profiles into key molecular subtypes 

 

NMF clustering of 477 RNAseq-based gene expression 

profiles downloaded from the TCGA consortium was 

performed to identify key immune molecular subtypes 

underlying the heterogeneous THCA Related Genes 

(IRGs) expression profiles in reduced dimensions [15]. 

Specifically, we analyzed 705 high-expressed specific 

IRGs by univariate survival analysis. Consequently, we 

identified 74 genes which did not predict the 

progression-free survival of patients (logrank p<0.05). 

The NMF algorithm identified three optimal molecular 

subtypes in the IRGCluster; C1 (N=80), C2 (N=139), 

and C3 (N=258). A plot of cophenetic correlation 

coefficients, a measure of stability across the number of 

molecular subtypes examined, showed that the three 

molecular subtypes were present in the expression 

profiles (Figure 1A). A significant difference in 

progression-free survival among the three subtypes was 

observed (Figure 1B), with C3 subtype having the worst 

prognosis. In terms of distribution of THCA in the three 

pathological types (Figure 1C), Tall Cell variant was 

mainly distributed in C3 subtype (94.3%), while 

follicular was mainly distributed in C2 subtype (67.7%), 

suggesting different pathological THCA types have 

distinct immune characteristics. We then compared the 

IRGCluster with the previously proposed four 

molecular subtypes based on copy number variation 

(22q, Many SCNA, Quiet, SomeSCNA) [15]. 

Significant differences were observed in the IRGCluster 

distribution among the four subtypes (Figure 1D). The 

C3 subtype had the lowest proportion in many SCNA, 

the C1 subtype had the lowest proportion in 

SomeSCNA compared with the C2 subtype. Quiet had 

the lowest proportion in Quiet. These results indicate 

that the three molecular subtypes significantly overlap 

with existing molecular subtypes. Notably, some SCNA 

mainly contained C2 (34%) and C3 (58%) subtypes, 

which were enriched with BRAF mutations and were 

significantly associated with THCA clinical stage. In 

addition, C90 samples were enriched with > 90% BRAF 

mutations, and C2 samples had > 30% BRAF 

mutations. C3 subtype showed high invasion, high 

lymph node metastasis and advanced tumor stage 

https://immport.niaid.nih.gov/
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compared withC1 and C2 (Supplementary Figure 1), 

suggesting that the IRGCluster-based molecular 

subtypes can be used for molecular stratification of 

patients based on their prognosis. The unsupervised 

clustering method was used to cluster the 74 gene 

expression profiles. Three types of gene sets, gSig1 

(N=29), gSig2 (N=20) and gSig3 (N=25) were obtained. 

These three gene set types showed different expression 

patterns in the three molecular subtypes; gSig1 had the 

highest expression level in C1 and lowest expression 

level in C3, gSig2 was highly expressed in C1/C2 and 

weakly expressed in C3, gSig3 showed the highest 

expression in C3, but lower expression in C1/C2 (Figure 

1E). Among these genes, 69 (93.2%) were differentially 

expressed among the three subtypes (FDR<0.05), and 

the BRAF mutations in C3 were significantly higher 

than in C1/C2 subtypes. However, RAS 

(NRAS/HRAS/KRAS) showed low expression levels in 

C3 compared with C1 and C2 subtypes (FDR<0.05). 

Studies have shown that BRAF mutations are highly 

associated with the occurrence and poor prognosis of the 

classical type of PTC, similar to our results.  

IRGCluster characteristic gene score and functional 

analysis 

 

Principal component analysis was used to classify 

expression of the 74 genes into three subtypes (Figure 

2A). The 74 genes were sequenced in importance 

through a random forest, we can see that there is a 

significant jump in the mean decrease gini index of 

top10 gene (Figure 2B), thus top10 genes were selected 

for subsequent analysis. In the top 10 important gene 

subsets, 3 gSig1genes, 4 gSig2 genes and 3 gSig3 genes 

were selected, and the gSig score for each group was 

presented as the average expression (Figure 2C). In 

terms of distribution among the subtypes, gSig1 was 

highly expressed in C1, gSig2 was highly expressed in 

C2, and gSig3 was highly expressed in C3 (Figure 2C). 

A set of external datasets GSE27155 were employed to 

verify this phenomenon (Figure 2D). Notably, we 

observed significant prognostic differences in DFS 

among the gSig scores in each sample (Figure 2E). 

Specifically, gSig3 was found to be a risk factor, while 

gSig1 and gSig2 were protective factors. The R software  

 

 
 

Figure 1. IRGs-based THCA immunophenotyping. (A) The interaction correlation coefficient (y-axis) is plotted against the number of 
subtypes (2-10; x-axis). Stability decreased between 3 and 4 subtypes, indicating that there are at least three molecular features in the 
expression profile of TCGA THCA IRGs. (B) KM curve showing the progression-free survival of each immunotype. (C) Comparison of 
pathological subtypes with IRGCluster. (D) Comparison of molecular subtypes with copy number variation and IRGCluster. The top panel is 
the heat map showing significant difference in the distribution of IRGCluster in the four subtypes with copy number variation. Bottom panel 
shows the distribution of IRGCluster in the four subtypes with copy number variation. (E) Heatmap showing THCA immunotypes and gene 
module gene expression, left panel is 74 genes on IRGCluster average expression level, * indicates FDR <0.05. 
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package ESTIMATE was used to calculate and compared 

the immune infiltration score of each sample. The gSig3 

score was highly positively correlated with immune 

infiltration, while the gSig2 score was negatively 

correlated with immune infiltration (Figure 2F), 

suggesting that the gSig score can monitor the efficacy of 

immunotherapy. GO and KEGG enrichment analyses 

showed that gSig1, gSig2 and gSig3, were enriched in 

various biological pathways (Figure 2G-I). gSig1 was 

associated with ERK cascade (Figure 2G, Figure 2J), 

gSig2 was involved in cell migration and proliferation 

(Figure 2H, Figure 2K), gSig3 was associated with body 

fluid and protein regulation (Figure 2I, Figure 2L). The 

response to steroid hormone was significantly enriched in 

the gSig3 GO enrichment results (Figure 2I), which is 

significantly different from the response to steroid 

hormone seen in the extrathyroidal extension type of 

THCA in previous studies [23]. These results suggested 

that these gene sets are involved in different biological 

pathways which are associated with different clinical 

outcomes in patients with THCA. 

 

Association of immune gene sets of IRGCluster with 

metastasis, primary tumor, and adjacent tissues 
 

We first evaluated the distribution of T, N, M, Stage, 

Age, and Lymph Node Counts in the three molecular 

subtypes (Table 1). Significant differences in T, N, 

 

 
 

Figure 2. Expression characteristics and functional annotation of the immune gene modules in each subtype. (A) First and 
second principal component scores for each sample. (B) The importance ranking of 74 genes in random forest. (C) Distribution of gSigs score 
in IRGCluster. (D) Distribution of gSigs score in different pathological subtypes of GSE27155 data set. (E) The prognosis relationship between 
gSigs score and DFS. (F) Heat map showing gSig score and Pearson correlation results of immune infiltration. (G–I) GO enrichment analysis 
results of gSig1, gSig2 and gSig3. (J–L) KEGG pathway enrichment analysis results of gSig1, gSig2 and gSig3. Dot plot shows the top 10 GO and 
KEGG pathway enrichment results. The color in the graph indicates significance, and the dot size indicates the number of genes. 
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Table 1. Comparison of clinical features and IRGCluster. 

 
C1 C2 C3 Chisq test 

pT 
   

<0.001 

T1 24 51 65 
 

T2 37 54 69 
 

T3 18 34 103 
 

T4 0 0 20 
 

Un 1 0 1 
 

pN    <0.001 

N0 39 91 91 
 

N1 8 7 39 
 

N1a 11 12 61 
 

N1b 11 8 49 
 

Un 11 21 18 
 

pM    0.517 

M0 47 65 158 
 

M1 0 2 4 
 

Un 33 72 96 
 

Stage    <0.001 

I 51 88 133 
 

II 9 27 14 
 

III 16 19 69 
 

IV 4 4 41 
 

Un 0 1 1 
 

Age    0.159 

0~50 52 79 133 
 

50~60 15 24 61 
 

60~70 5 24 35 
 

70~100 8 12 29 
 

Lymph Node Count    0.0024 

0~5 26 54 83 
 

5~10 12 22 45 
 

10~20 7 3 39 
 

20~120 13 12 50 
 

 

Stage, and Lymph Node Count were observed among 

the three molecular subtypes (p<0.01). Advanced 

samples such as T, N, Stage and Lymph Node Count 

samples were highly distributed in the C3 subtype 

with the worst prognosis. This indicated that these 

three molecular subtypes are closely related to the 

clinical stage. The expression distribution of the three 

subtypes of characteristic gene scores in metastatic 

samples, primary samples and paracancerous samples 

were analyzed, and the three subtype characteristic 

gene scores showed extremely significant expression 

differences in different samples types (Figure 3A). 

The expression in the paracancerous samples in gSig1 

and gSig2 was higher than that in the tumor samples, 

and the paracancerous samples in gSig3 were 

significantly lower than the tumor samples. A similar 

phenomenon was observed in the external datasets 

GSE33630, GSE60542, GSE6004 (Figure 3B–3D). 

These results indicated that the three subtypes of 

characteristic gene scores are markers of the THCA 

development and progression. 
 

Immune microenvironment characteristics of 

Comparison of clinical features with IRGCluster 
 

Previous studies have reported thyroid typing based on 

TCGA. Agrawal N [15] identified three molecular 

subtypes of thyroid papillary carcinoma; ERK score, 

BRAF_RAF score and differentiation score. In this 

study, the distribution of ERK score, BRAF_RAF score 

and differentiation score in the three immune subtypes 

was explored (Figure 4A–4C). The ERK score was 

significantly lower in C2 than that in C1/C3, and the 

BRAF_RAF and differentiation scores were 
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significantly higher in C1/C2 than in C3. BRAF_RAF 

and the differentiation scores predicted poor prognosis, 

which is consistent with the better C1/C2 prognosis than 

C3. We further analyzed the differences in distribution 

of six immune cell components (B_cell, CD4_Tcell, 

CD8_Tcell, Neutrophil, Macrophage and Dendritic) in 

each subtype.  Significant differences were observed in 

the distribution of the six immune cells among the three 

molecular subtypes. Notably, B_cell, CD4_Tcell, 

Neutrophil, Macrophage, and Dendritic were 

significantly lower in C2 than in C1 and C3, indicating 

that C2 was mainly enriched in follicular type samples. 

Although C1 and C3 were similar, CD4 T cell score was 

higher in C1 than C3, while CD8 T cell and dendritic 

cell scores were higher in C3 that in C1, suggesting 

distinct immune responses among the IRGCluster. A 

previous analysis showed that immune expression 

signatures [24] were significantly different between C2 

and C1/C3 (Figure 4E). However, in C3 subtype with 

the worst prognosis, the leukocyte fraction, proliferation 

macrophage regulation, lymphocyte infiltration, IFN 

gamma response and TGF beta response scores were 

significantly higher than in C1/C2 subtypes. These 

results indicated that the three molecular subtypes have 

different immune microenvironments, which may 

underlie the differences in prognosis among them. 

 

Relationship between immune gene sets and 

expression of immune checkpoint genes in 

IRGCluster 

 

We further analyzed 18 high-level immune checkpoint 

genes (ICGs) from the past literature to assess the 

relationship between the expression levels of these 18 

ICGs and gSig1, gSig2 and gSig3 in the TCGA data set 

(Figure 5A). Overall, gSig1 and gSig2 were negatively 

correlated with the expression of 18 ICGs, while gSig3 

was positively correlated with ICGs expression. The 

same phenomenon was observed in the external 

independent verification set GSE27155 (Figure 5B), 

gSig2 was significantly correlated with 11 (61.1%) 

ICGs, of which 9 (50%) were highly negatively 

correlated. gSig3 was significantly correlated with 13 

(72.2%) ICGs, of which 12 (66.7%) were negatively 

correlated (Figure 5C), and similar results were also 

observed on the independent data set GSE27155 (Figure 

5D). A recent study showed that CD274 (PD-L1) and 

CTLA4 are molecular markers of immunological 

 

 
 

Figure 3. Distribution of gSig score in different tissues. (A) Distribution of gSig score in metastatic/normal/primary tissues in TCGA 
dataset. (B) Distribution of gSig score in normal/primary tissues in GSE33630 dataset. (C) Distribution of gSig score in metastatic/normal/PTC 
tissues in GSE60542 dataset. (D) Distribution of gSig score in invasive/normal/primary tissues in GSE6004 dataset. 
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checkpoint inhibitors. In the TCGA dataset, CD274 was 

highly expressed, the lower the gSig2, while the gSig3 is 

opposite (Figure 5E, 5F) (where CTLA4 is not detected). 

A similar phenomenon was observed in the GSE27155 

set (Figure 5G, 5H) (wherein CD274 was not detected). 

The expression of CD274 and CTLA4 can be used to 

evaluate the benefit of immune checkpoint inhibitor 

therapy. Here, the samples were divided into benefits and 

non-benefit groups based on CD274 and CTLA4 

expression. The gSig2 score and gSig3 score were used 

to predict the average AUC > 0.77 in CD274 expression 

sample from the TCGA data set. For CTLA4 expression 

in the GSE27155 data set, the average AUC > 0.73 

(Supplementary Figure 2A), suggesting that gSig3 score 

may be a powerful prognostic biomarker and predictor of 

immune checkpoint inhibitor response. Similarly, the 

correlation between gSig score and the expression of 

known markers BRAF was analyzed. Notably, gSig1 and 

gSig2 showed a significant positive correlation with 

BRAF while gSig3 was significantly negatively 

correlated with BRAF (Supplementary Figure 2B). These 

results indicated that IRGCluster molecular subtypes can 

be used as immunotherapeutic molecular markers. 

Analysis of genomic heterogeneity in IRGCluster 
 

Previous studies have shown that the overall mutation 

load of patients with THCA is low. The mutation load 

of ICGC (PTC-based), MSK (ATC/PDTC) and TCGA 

(PTC/FTC-based) data sets were compared. Result 

showed that the TMB of different pathological types 

with THCA patients were mainly concentrated below 5 

(Figure 6A). In addition, we found that the mutation 

load in C3 was significantly higher than in C1/C2 

(Figure 6B), suggesting that the mutation load is 

associated with poor prognosis. The distribution of 

BRAF and RAS (NRAS/HRAS/KRAS) genes with the 

highest mutation frequency on THCA in IRGCluster 

was analyzed and showed that the BRAF gene 

associated with poor prognosis had significantly higher 

mutations in C3 compared with C1/C2, whereas RAS 

mutations were higher in C1/C2 (Figure 6C). The 

NetworkAnalyst [25] tool was used to identify the 

pathways associated with BRAF. The five most 

significant pathways were Thyroid cancer (p = 

0.00478), Bladder cancer (p = 0.0053), Endometrial 

cancer (p = 0.0075), Long-term depression (0.007755), 

 

 
 

Figure 4. The immune landscape of THCA IRGCluster. (A–C) Distribution of ERK score, BRAF_RAF score and differentiation score in 
IRGCluster. (D) Six immune cell scores of IRGCluster. (E) Immune expression signature score of ERK score, BRAF_RAF score and differentiation score. 
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Acute myeloid leukemia (0.00853), all of which were 

related to tumor invasion and metastasis, especially 

Thyroid cancer abnormalities. Further, the pathways 

involved in the RAS gene were analyzed, and the five 

most significant pathways were identified including 

Thyroid cancer (p = 1.01e-7), Bladder cancer (p = 

1.38e-7), Endometrial cancer (p = 4e-7), VEGF 

signaling pathway (p = 4.21e-7), Long-term depression 

(4.43e-7), and the overlap of four pathways with 

BRAF, which indicates that these genes play a key role 

in the cancer development. However, the difference is 

that the RAS gene affects the VEGF signaling pathway. 

VEGF signaling pathway is related to neo-

vascularization in tumors and may inhibit maturation 

and differentiation of dendritic cells and promote tumor 

progression. A total of 700 genes for Gain/Loss 

(688/112) were identified by CNV analysis, and these 

CNVs appeared on 89 samples (Figure 6D). Similarly, 

the frequency of CNV occurrence on THCA was low 

(median CNV count: 1), with only 27 genes having 

CNV in 2 or more samples (Figure 6D). GO was 

performed on these 27 genes, and the genes were 

enriched in the cellular and metabolic processes 

(Supplementary Table 1), while the KEGG pathway 

showed no significant enrichment results. Analysis of 

the relationship between IRGCluster and CNV showed 

that CNV was highly associated with C2 (Figure 6E), 

while the genomic distribution was significantly high 

on chr19 and chr7 (Figure 6F). These results indicated 

that different IRGCluster molecular subtypes have 

different genomic abnormalities. 

 

DISCUSSION 
 

Tumor immunotherapy has emerged as a successful 

treatment for advanced tumors [26, 27]. A 

comprehensive understanding of THCA requires not 

only attention to tumor cells, but also understanding of 

the tumor microenvironment (TME) [28, 29]. The TME 

consists of a diverse group of cells that interact with 

cancer cells and participate in all stages of tumori-

genesis. Immune cell infiltration in the tumor 

microenvironment has received much attention from 

researchers and has become a promising therapeutic 

target. Further research is required to decipher the 

immune signatures associated with the development and 

progression of THCA. This is especially important for 

the development of combination therapies. In this study, 

three molecular subtypes with clinical relevance were 

identified based on immune genes. We also predicted 

 

 
 

Figure 5. (A, B) Relationship between ICGs expression and gSig scores in the TCGA and GSE27155 data sets. (C, D) Correlation matrix of ICGs 
expression and gSig score in the TCGA and GSE27155 datasets. (E–F) Dot map showing CD274 gene expression, gSig2, and gSig3 in TCGA 
dataset. (G–H) Dot map showing GLA27155 gene expression, gSig2, and gSig3 in GSE27155 dataset. Correlation analysis used the spearman 
correlation coefficient. 
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the prognosis of patients with THCA after initial 

treatment. The three molecular subtypes displayed 

different genomic characteristics and immune pheno-

types. Moreover, the molecular subtypes were closely 

related to the expression of immune checkpoint genes 

and may have the potential of immunological 

checkpoints to block the therapeutic benefit. 

 

Therapeutic antibodies that block the PD-1 / PD-L1 

pathway can induce robust and long-lasting responses in 

patients with various cancers, including THCA [30–32]. 

However, these reactions occur only in a small number 

of patients, and some studies have found PD-1 

expression, PD-L1 expression, MSI status and mutation 

load are not effective biomarkers for predicting the 

benefit of immune checkpoint blockade [33]. Therefore, 

it is important to develop biomarkers for predicting the 

benefits of checkpoint immunotherapy. In this study, we 

identified three molecular subtypes based on immune 

genes. These three molecular subtypes have different 

immune microenvironments, and the genes specifically 

expressed by the three subtypes are significantly 

correlated with the expression of most immune 

checkpoint genes. Genomic heterogeneity analysis 

revealed that the mutation load of the worst prognosis 

subtype C3 was significantly higher than the other two 

subtypes. These results suggest that the three molecular 

subtypes may have different response patterns to 

immunotherapy, and the characteristic genes of these 

three subtypes can be used as molecular markers to 

monitor responses to immunotherapy.  

 

Comprehensive analysis showed that the three 

molecular subtypes reported by IRGCluster have 

different molecular characteristics and are prognostic 

biomarkers of THCA. C3 subtype is associated with 

poor prognosis. T, N, Stage and Lymph Node Count 

are key prognostic factors in THCA [34]. As expected, 

there was a significant association between IRGCluster 

and the patient's clinical features. Advanced T, N, 

Lymph Node Count, and Stage samples tended to be 

distributed in the worst prognostic C3 subtype. The 

expression distribution of the three subtypes of 

characteristic gene scores in metastatic, primary tumor 

and paracancerous samples. The expression level of 

gSig1 and gSig2 in the paracancerous samples was 

higher than that in the tumor samples, while the 

expression of gSig3 in paracancerous samples was 

significantly lower than that in the tumor sample. 

These findings were verified in an external 

independent data set. These three gene scores are 

important markers for the occurrence and development 

of thyroid cancer. We compared these three molecular 

subtypes with the PTC molecular subtypes from 

 

 
 

Figure 6. Genomic mutations in IRGCluster. (A) Quantity distribution of missense mutation (count per Mb) in ICGC, MSK and TCGA data 
sets. (B) Quantity distribution of mutations in IRGCluster sample. (C) BRAF and RAS gene mutations distribution. (D) CNV distribution in the 
top 27 gene. (E) CNV distribution in the IRGCluster sample. (F) Genomic distribution of CNV. Considering the instability of the INDEL 
detection, only the missense type mutation site is selected here. 
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TCGA (ERK score, BRAF_RAF score and 

differentiation score). We found that the ERK score 

was significantly lower in C2 than that in C1/C3. The 

BRAF_RAF score and differentiation score were 

significantly higher in C1/C2 than in C3. Moreover, 

BRAF_RAF and differentiation scores correlated with 

poor prognosis. 

 

Although we used bioinformatics techniques to identify 

potential immune gene markers involved in the 

development of THCA in large samples, further 

validation should be performed in a prospective THCA 

cohort receiving immunotherapy to fully define the 

cutoff values. Secondly, given the heterogeneity of 

different tumor regions, more clinical factors should be 

included in the prediction model for higher accuracy. 

Thus, the bioinformatic results obtained here requires 

experimental verification.  

 

In summary, we systematically evaluated the expression 

profiles of 1811 immune genes in 781 THCA samples. 

We identified three immunologically relevant molecular 

subtypes with different characteristics, and established 

quantitative immunological molecular subtype 

specificities. The gSig scores presented in this study are 

powerful biomarkers for predicting responses to 

immune checkpoint inhibitor therapy. 

 

MATERIALS AND METHODS 
 

Data collection and processing 
 

THCA RNA-seq expression profile data was 

downloaded from TCGA database (https://portal.gdc. 

cancer.gov/) using GDC API (https://gdc.cancer.gov/ 

developers/gdc-application-programming-interface-api). 

Data comprising 572 samples and the prognostic 

information of these samples were also downloaded on 

March 14, 2019. The specimen used were surgically 

removed before systemic treatment. Tumor and normal 

thyroid samples were obtained from patients with the 

approval from local institutional review boards. RNA-

seq was performed using the Illumina TruSeq library 

construction protocol (non-stranded, polyA+ selection). 

Sequencing data was processed using GDC standard 

pipeline (https://docs.gdc.cancer.gov/Data/Bioin 

formatics_Pipelines/Expression_mRNA_Pipeline/) to 

obtain the FPKM expression profile data. Tumor 

samples without clinical data and those with a follow-up 

period of less than 30 days were excluded. Finally, 477 

primary tumor samples, 8 metastatic samples, and 58 

paracancerous samples were included in this study. Four 

sets of chip datasets GSE27155 [35], GSE33630 [36], 

GSE60542 [37], and GSE6004 [38] were downloaded 

from the Gene Expression Omnibus (GEO) database. 

The GSE27155 dataset was from the Affymetrix 

Human Genome U133A Array, the GSE33630, 

GSE60542, and GSE6004 dataset were from 

Affymetrix Human Genome U133 Plus 2.0 Arrays 

containing 99, 95, 92, and 18 samples, respectively. 

After initial surgical treatment, tumor progression was 

defined as the neonatal, metastatic and recurrence. For 

the probe data, the probe was mapped to the 

GeneSymbol using the R package hgu133plus2.db, and 

median was obtained when the multiple probes 

correspond to the expression of one gene. Probes 

matching multiple genes were removed. The sample 

statistics are shown in Table 2. 

 

The immune-related gene was derived from the 

ImmPort database (https://immport.niaid.nih.gov), and 

1811 immune related genes (IRGs) were obtained after 

excluding the duplicates. The RNA-seq data was 

defined in 50% of the samples, and the FPKM < 1 gene 

was identified as a universally low expression gene and 

was excluded in this study. 

 

Identification of immune molecular subtypes 

(IRGCluster) 
 

Nonnegative Matrix Factor (NMF) is an unsupervised 

clustering method that is widely used in the discovery of 

genomics-based tumor molecular subtypes [39, 40], and 

is a matrix decomposition method under the constraint 

that all elements in the matrix are non-negative. It has 

higher efficiency and less storage space when processing 

large-scale data, and it can minimize the reconstruction 

error of the original matrix while maintaining the 

statistical information of the original data. To examine 

the expression and phenotype of prognosis-related 

immune genes relationships, univariate survival analysis 

was performed to identify immune genes significantly 

associated with prognosis in THCA patients. Based on 

prognostic-related expression profiles of immune genes, 

the NMF method was used to re-cluster the samples and 

analyze the clinical features of the re-clustered samples 

The NMF method selects the standard "brunet" for 50 

iterations, and the number of clusters k is set to 2-10, and 

the average profile width of the common member matrix 

is calculated using the R package NMF [41] The 

minimum member of each subclass was set to 10, and 

cophentic, dispersion, and rss indicators of K=2-10 are 

evaluated. The optimal number of clusters was selected 

based on these three indicators. 

 

Characteristic genes evaluable of IRGCluster 
 

To select the characteristic genes of the three immune 

molecular subtypes, the unsupervised clustering method 

was used to classify the genes with significant 

prognosis, and the expression patterns of each 

classification were further analyzed. Random forest 

https://portal.gdc.cancer.gov/)%20using
https://portal.gdc.cancer.gov/)%20using
https://gdc.cancer.gov/developers/gdc-application-programming-interface-api
https://gdc.cancer.gov/developers/gdc-application-programming-interface-api
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://immport.niaid.nih.gov/
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Table 2. Sample information for each data set. 

TCGA Samples classical  follicular  tall cell other 

Metastatic 8 

    Primary Solid Tumor 493 

    DFS>=30 days 477 343 99 35 

 Solid Tissue Normal 58 

    GSE27155      

tumor 51 26 15 10 

 normal 44 

    GSE33630      

tumor 49 49 

   normal 45 

    GSE60542      

Lymph node metastasis 23 16 3 

 

4 

Normal lymph node 4 3 0 

 

1 

Papillary thyroid carcinoma 33 20 6 

 

7 

Normal thyroid 30 21 6 

 

3 

Pleural metastasis 1 0 0 

 

1 

Recurrence 1 1 0 

 

0 

GSE6004      

primary 7 

    invasive 7 

    normal 4 

     

algorithm was used for dimensionality analysis to 

assess the importance of each immune gene. First, the 

number of random variables (mtry parameters) for 

each segmentation was set as 1-74, ntree as 500 and 

the mtry value with the lowest error rate was selected 

as the optimal mtry value for the random forest 

algorithm, and ntree = 80 was selected according to 

the error rate of the random forest. Finally, each  

IRG was sorted based on importance and the top10 

gene were selected as the subtype characteristic gene. 

The average expression level of the subtype-specific 

gene in the subtype-specific expression gene set was 

used as the subtype characteristic gene score (gSig 

score). 

 

The relationship of IRGCluster and clinical feature 
 

To observe the relationship between IRGCluster and 

clinical phenotypes, the distribution of TNM, Stage, 

Age, and Lymph Node count information in the TCGA 

dataset samples was compared in the IRGCluster. 

 

The relationship of IRGCluster and immune 

microenvironment 
 

To explore the relationship between IRGCluster and the 

immune microenvironment, the online TIMER tool [42] 

(tumor immune estimation resource) was used to 

calculate the six immune cell scores of THCA samples 

from TCGA using default parameters, and the 

differences of the six immune cell scores in different 

IRGCluster were analyzed. At the same time, the 

distribution of three molecular subtypes of TCGA 

Papillary Thyroid Carcinoma [24] in IRGCluster were 

compared and further the relationship between 

IRGCluster characteristic gene score and immune 

checkpoint genes was analyzed. A total of 47 immune 

checkpoint genes [43] were retrieved from the literature. 

The gene expression levels were screened, and the 

Spearman correlation of each immune checkpoint gene 

and the IRGCluster characteristic gene score was 

calculated.  

 

The relationship of IRGCluster and tumor genomic 

variation 

 

The CNV data of THCA was downloaded from TCGA. 

First, the CNV intervals were merged using the 

following criteria: 

 
1) 50% regional overlap in the two intervals is 

considered the same interval. 

2) The number of coverage probes <5 intervals 

were removed. 

3) The CNV interval was mapped to the 

corresponding gene using the GRh38 version of 

gencode.v22. 

4) Multiple CNV regions in one gene region were 

combined into one, and average value as the 

combined CNV values. 
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SSNV mutation data were comes from three data  

sets: TCGA (https://www.cancer.gov/about-nci/ 

organization/ccg/research/structural-genomics/tcga), 

ICGC (https://icgc.org/) and MSK-IMPACT 

(https://www.mskcc.org/msk-impact), in which TCGA 

and ICGC were sequenced for the whole exome, and 

MSK-IMPACT was for the 341 gene panel data. The 

number of missense mutations in each sample was 

calculated for Tumor Mutation Load Analysis. For the 

whole external sequencing, 38.4 Mb was taken as the 

genomic interval, and for the 341 gene panel, 1.023 Mb 

was taken as the genomic interval  

 

Functional enrichment analyses 
 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses 

were performed using the R package clusterprofiler [44] 

for genes to identify over-represented GO terms in three 

categories (biological processes, molecular function and 

cellular component), and KEGG pathways. For these 

analyses, a FDR < .05 represented statistical significance. 
 

Statistical analysis 
 

Univariate survival analysis was performed using the 

cox risk regression model, and log rank p < 0.05 was 

used as a cut off threshold to screen for immune-related 

genes (IRGs) that were significantly associated with 

prognosis. The Kaplan-Meier method was used to 

generate survival curves for the subgroups in each data 

set, and the log-rank test was used to determine the 

statistical significance of the differences, significance 

was defined as P < 0.05. The chisq test was used for 

overlapping samples between histological type and 

IRGCluster. The preference for the distribution of the 

case and clinical feature grouping samples on the 

IRGCluster was tested for significance. The two-group 

significance test for continuous variables used the 

Wilcox rank test, and the significance test for more than 

two subgroups used the Kruskal-Wallis rank test, the 

Benjamini-Hochberg method to convert the P values to 

FDR. The R 3.5.1 software was used for these analyses. 

Unless otherwise stated, *** indicates p < 1e-5, ** 

indicates p < 0.01, and * indicates p < 0.05. 
 

CONFLICTS OF INTEREST 
 

Authors declare no conflicts of interest. 

 

FUNDING 
 

This work was partially supported by grants from 

National Natural Science Foundation of China (Grant 

Nos. 81872169), Tianjin Key Research and Development 

Program Science and Technology Support Key Projects 

(Grant No. 17YFZCSY00690), and Tianjin Municipal 

Science and Technology Project (Grant No. 

19JCYBJC27400). 

 

REFERENCES 
 

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman 
D. Global cancer statistics. CA Cancer J Clin. 2011; 
61:69–90. 

 https://doi.org/10.3322/caac.20107 
 PMID:21296855 

2. La Vecchia C, Malvezzi M, Bosetti C, Garavello W, 
Bertuccio P, Levi F, Negri E. Thyroid cancer mortality 
and incidence: a global overview. Int J Cancer. 2015; 
136:2187–95. 

 https://doi.org/10.1002/ijc.29251 
 PMID:25284703 

3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. 
CA Cancer J Clin. 2018; 68:7–30. 

 https://doi.org/10.3322/caac.21442 PMID:29313949 

4. Tuttle RM, Ball DW, Byrd D, Dilawari RA, Doherty GM, 
Duh QY, Ehya H, Farrar WB, Haddad RI, Kandeel F, 
Kloos RT, Kopp P, Lamonica DM, et al, and National 
Comprehensive Cancer Network. Thyroid carcinoma. J 
Natl Compr Canc Netw. 2010; 8:1228–74. 

 https://doi.org/10.6004/jnccn.2010.0093 
 PMID:21081783 

5. Xing M. Molecular pathogenesis and mechanisms of 
thyroid cancer. Nat Rev Cancer. 2013; 13:184–99. 

 https://doi.org/10.1038/nrc3431 
 PMID:23429735 

6. Couzin-Frankel J. Breakthrough of the year 2013. 
Cancer immunotherapy. Science. 2013; 342:1432–33. 

 https://doi.org/10.1126/science.342.6165.1432 
 PMID:24357284 

7. Farkona S, Diamandis EP, Blasutig IM. Cancer 
immunotherapy: the beginning of the end of cancer? 
BMC Med. 2016; 14:73. 

 https://doi.org/10.1186/s12916-016-0623-5 
 PMID:27151159 

8. Lin HY, Chin YT, Shih YJ, Chen YR, Leinung M, Keating 
KA, Mousa SA, Davis PJ. In tumor cells, thyroid 
hormone analogues non-immunologically regulate PD-
L1 and PD-1 accumulation that is anti-apoptotic. 
Oncotarget. 2018; 9:34033–37. 

 https://doi.org/10.18632/oncotarget.26143 
 PMID:30344919 

9. Gunda V, Gigliotti B, Ndishabandi D, Ashry T, McCarthy 
M, Zhou Z, Amin S, Freeman GJ, Alessandrini A, Parangi 
S. Combinations of BRAF inhibitor and anti-PD-1/PD-L1 
antibody improve survival and tumour immunity  
in an immunocompetent model of orthotopic murine 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://icgc.org/
https://www.mskcc.org/msk-impact
https://doi.org/10.3322/caac.20107
https://www.ncbi.nlm.nih.gov/pubmed/21296855
https://doi.org/10.1002/ijc.29251
https://www.ncbi.nlm.nih.gov/pubmed/25284703
https://doi.org/10.3322/caac.21442
https://www.ncbi.nlm.nih.gov/pubmed/29313949
https://doi.org/10.6004/jnccn.2010.0093
https://www.ncbi.nlm.nih.gov/pubmed/21081783
https://doi.org/10.1038/nrc3431
https://www.ncbi.nlm.nih.gov/pubmed/23429735
https://doi.org/10.1126/science.342.6165.1432
https://www.ncbi.nlm.nih.gov/pubmed/24357284
https://doi.org/10.1186/s12916-016-0623-5
https://www.ncbi.nlm.nih.gov/pubmed/27151159
https://doi.org/10.18632/oncotarget.26143
https://www.ncbi.nlm.nih.gov/pubmed/30344919


 

www.aging-us.com 5745 AGING 

anaplastic thyroid cancer. Br J Cancer. 2018;  
119:1223–32. 

 https://doi.org/10.1038/s41416-018-0296-2 
 PMID:30327563 

10. Hwangbo Y, Park YJ. Genome-Wide Association Studies 
of Autoimmune Thyroid Diseases, Thyroid Function, 
and Thyroid Cancer. Endocrinol Metab (Seoul). 2018; 
33:175–84. 

 https://doi.org/10.3803/EnM.2018.33.2.175 
 PMID:29947174 

11. Babli S, Payne RJ, Mitmaker E, Rivera J. Effects of 
Chronic Lymphocytic Thyroiditis on the 
Clinicopathological Features of Papillary Thyroid 
Cancer. Eur Thyroid J. 2018; 7:95–101. 

 https://doi.org/10.1159/000486367 
 PMID:29594061 

12. Bai Y, Guo T, Huang X, Wu Q, Niu D, Ji X, Feng Q, Li Z, 
Kakudo K. In papillary thyroid carcinoma, expression by 
immunohistochemistry of BRAF V600E, PD-L1, and PD-
1 is closely related. Virchows Arch. 2018; 472:779–87. 

 https://doi.org/10.1007/s00428-018-2357-6 
 PMID:29651624 

13. Rotondi M, Coperchini F, Latrofa F, Chiovato L. Role of 
Chemokines in Thyroid Cancer Microenvironment: Is 
CXCL8 the Main Player? Front Endocrinol (Lausanne). 
2018; 9:314. 

 https://doi.org/10.3389/fendo.2018.00314 
 PMID:29977225 

14. Kim J, Bae JS. Tumor-Associated Macrophages and 
Neutrophils in Tumor Microenvironment. Mediators 
Inflamm. 2016; 2016:6058147. 

 https://doi.org/10.1155/2016/6058147 
 PMID:26966341 

15. Cancer Genome Atlas Research Network. Integrated 
genomic characterization of papillary thyroid 
carcinoma. Cell. 2014; 159:676–90. 
https://doi.org/10.1016/j.cell.2014.09.050 
PMID:25417114 

16. Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, Kim 
YA, Kim SJ, Cho SW, Won JK, Chung EJ, Shin JY, Lee KE, 
et al. Integrative analysis of genomic and 
transcriptomic characteristics associated with 
progression of aggressive thyroid cancer. Nat 
Commun. 2019; 10:2764. 

 https://doi.org/10.1038/s41467-019-10680-5 
 PMID:31235699 

17. Lee DD, Seung HS. Learning the parts of objects by 
non-negative matrix factorization. Nature. 1999; 
401:788–91. 

 https://doi.org/10.1038/44565 PMID:10548103 

18. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, 
Xu Y, Hoang CD, Diehn M, Alizadeh AA. Robust 

enumeration of cell subsets from tissue expression 
profiles. Nat Methods. 2015; 12:453–57. 

 https://doi.org/10.1038/nmeth.3337 
 PMID:25822800 

19. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, 
Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, 
Ziv E, Culhane AC, Paull EO, et al. The Immune 
Landscape of Cancer. Immunity. 2018; 48:812–830.e14. 

 https://doi.org/10.1016/j.immuni.2018.03.023 
 PMID:29628290 

20. Brunet JP, Tamayo P, Golub TR, Mesirov JP. 
Metagenes and molecular pattern discovery using 
matrix factorization. Proc Natl Acad Sci USA. 2004; 
101:4164–69. 

 https://doi.org/10.1073/pnas.0308531101 
 PMID:15016911 

21. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, 
Hoadley KA, Rashid NU, Williams LA, Eaton SC, Chung 
AH, Smyla JK, Anderson JM, Kim HJ, et al. Virtual 
microdissection identifies distinct tumor- and stroma-
specific subtypes of pancreatic ductal adenocarcinoma. 
Nat Genet. 2015; 47:1168–78. 

 https://doi.org/10.1038/ng.3398 PMID:26343385 

22. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-
Martin C, Castro de Moura M, Putra J, Camprecios G, 
Bassaganyas L, Akers N, Losic B, Waxman S, Thung SN, 
et al. Identification of an Immune-specific Class of 
Hepatocellular Carcinoma, Based on Molecular 
Features. Gastroenterology. 2017; 153:812–26. 

 https://doi.org/10.1053/j.gastro.2017.06.007 
 PMID:28624577 

23. Teng H, Mao F, Liang J, Xue M, Wei W, Li X, Zhang K, 
Feng D, Liu B, Sun Z. Transcriptomic signature 
associated with carcinogenesis and aggressiveness of 
papillary thyroid carcinoma. Theranostics. 2018; 
8:4345–58. 

 https://doi.org/10.7150/thno.26862 PMID:30214625 

24. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, 
Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy 
JA, Ziv E, Culhane AC, Paull EO, et al, and Cancer 
Genome Atlas Research Network. The Immune 
Landscape of Cancer. Immunity. 2019; 51:411–12. 

 https://doi.org/10.1016/j.immuni.2019.08.004 
 PMID:31433971 

25. Zhou G, Soufan O, Ewald J, Hancock RE, Basu N, Xia J. 
NetworkAnalyst 3.0: a visual analytics platform for 
comprehensive gene expression profiling and meta-
analysis. Nucleic Acids Res. 2019; 47:W234–41. 

 https://doi.org/10.1093/nar/gkz240 
 PMID:30931480 

26. Sharma P, Wagner K, Wolchok JD, Allison JP. Novel 
cancer immunotherapy agents with survival benefit: 

https://doi.org/10.1038/s41416-018-0296-2
https://www.ncbi.nlm.nih.gov/pubmed/30327563
https://doi.org/10.3803/EnM.2018.33.2.175
https://www.ncbi.nlm.nih.gov/pubmed/29947174
https://doi.org/10.1159/000486367
https://www.ncbi.nlm.nih.gov/pubmed/29594061
https://doi.org/10.1007/s00428-018-2357-6
https://www.ncbi.nlm.nih.gov/pubmed/29651624
https://doi.org/10.3389/fendo.2018.00314
https://www.ncbi.nlm.nih.gov/pubmed/29977225
https://doi.org/10.1155/2016/6058147
https://www.ncbi.nlm.nih.gov/pubmed/26966341
https://doi.org/10.1016/j.cell.2014.09.050
https://www.ncbi.nlm.nih.gov/pubmed/25417114
https://doi.org/10.1038/s41467-019-10680-5
https://www.ncbi.nlm.nih.gov/pubmed/31235699
https://doi.org/10.1038/44565
https://www.ncbi.nlm.nih.gov/pubmed/10548103
https://doi.org/10.1038/nmeth.3337
https://www.ncbi.nlm.nih.gov/pubmed/25822800
https://doi.org/10.1016/j.immuni.2018.03.023
https://www.ncbi.nlm.nih.gov/pubmed/29628290
https://doi.org/10.1073/pnas.0308531101
https://www.ncbi.nlm.nih.gov/pubmed/15016911
https://doi.org/10.1038/ng.3398
https://www.ncbi.nlm.nih.gov/pubmed/26343385
https://doi.org/10.1053/j.gastro.2017.06.007
https://www.ncbi.nlm.nih.gov/pubmed/28624577
https://doi.org/10.7150/thno.26862
https://www.ncbi.nlm.nih.gov/pubmed/30214625
https://doi.org/10.1016/j.immuni.2019.08.004
https://www.ncbi.nlm.nih.gov/pubmed/31433971
https://doi.org/10.1093/nar/gkz240
https://www.ncbi.nlm.nih.gov/pubmed/30931480


 

www.aging-us.com 5746 AGING 

recent successes and next steps. Nat Rev Cancer. 2011; 
11:805–12. 

 https://doi.org/10.1038/nrc3153 PMID:22020206 

27. Macciò A, Madeddu C. Inflammation and ovarian 
cancer. Cytokine. 2012; 58:133–47. 

 https://doi.org/10.1016/j.cyto.2012.01.015 
 PMID:22349527 

28. Yarchoan M, Xing D, Luan L, Xu H, Sharma RB, Popovic 
A, Pawlik TM, Kim AK, Zhu Q, Jaffee EM, Taube JM, 
Anders RA. Characterization of the Immune 
Microenvironment in Hepatocellular Carcinoma. Clin 
Cancer Res. 2017; 23:7333–39. 

 https://doi.org/10.1158/1078-0432.CCR-17-0950 
 PMID:28928158 

29. Leonardi GC, Candido S, Cervello M, Nicolosi D, Raiti F, 
Travali S, Spandidos DA, Libra M. The tumor 
microenvironment in hepatocellular carcinoma 
(review). Int J Oncol. 2012; 40:1733–47. 

 https://doi.org/10.3892/ijo.2012.1408 
 PMID:22447316 

30. Zwaenepoel K, Jacobs J, De Meulenaere A, Silence K, 
Smits E, Siozopoulou V, Hauben E, Rolfo C, Rottey S, 
Pauwels P. CD70 and PD-L1 in anaplastic thyroid 
cancer - promising targets for immunotherapy. 
Histopathology. 2017; 71:357–65. 

 https://doi.org/10.1111/his.13230 
 PMID:28383817 

31. Antonelli A, Ferrari SM, Fallahi P. Current and future 
immunotherapies for thyroid cancer. Expert Rev 
Anticancer Ther. 2018; 18:149–59. 

 https://doi.org/10.1080/14737140.2018.1417845 
 PMID:29241377 

32. French JD, Bible K, Spitzweg C, Haugen BR, Ryder M. 
Leveraging the immune system to treat advanced 
thyroid cancers. Lancet Diabetes Endocrinol. 2017; 
5:469–81. 

 https://doi.org/10.1016/S2213-8587(16)30277-7 
 PMID:27773653 

33. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, 
Miller JP, Gopalakrishnan V, Wang F, Cooper ZA, Reddy 
SM, Gumbs C, Little L, Chang Q, et al. Integrated 
molecular analysis of tumor biopsies on sequential 
CTLA-4 and PD-1 blockade reveals markers of response 
and resistance. Sci Transl Med. 2017; 9:9. 

 https://doi.org/10.1126/scitranslmed.aah3560 
 PMID:28251903 

34. Liu Z, Shen X, Liu R, Zhu G, Huang T, Xing M, Stage II. 
Stage II Differentiated Thyroid Cancer Is a High-Risk 
Disease in Patients <45/55 Years Old. J Clin Endocrinol 
Metab. 2019; 104:4941–48. 

 https://doi.org/10.1210/jc.2018-02809 
 PMID:31116377 

35. Giordano TJ, Au AY, Kuick R, Thomas DG, Rhodes DR, 
Wilhelm KG Jr, Vinco M, Misek DE, Sanders D, Zhu Z, 
Ciampi R, Hanash S, Chinnaiyan A, et al. Delineation, 
functional validation, and bioinformatic evaluation of 
gene expression in thyroid follicular carcinomas with 
the PAX8-PPARG translocation. Clin Cancer Res. 2006; 
12:1983–93. 

 https://doi.org/10.1158/1078-0432.CCR-05-2039 
 PMID:16609007 

36. Dom G, Tarabichi M, Unger K, Thomas G, Oczko-
Wojciechowska M, Bogdanova T, Jarzab B, Dumont JE, 
Detours V, Maenhaut C. A gene expression signature 
distinguishes normal tissues of sporadic and radiation-
induced papillary thyroid carcinomas. Br J Cancer. 
2012; 107:994–1000. 

 https://doi.org/10.1038/bjc.2012.302 
 PMID:22828612 

37. Tarabichi M, Saiselet M, Trésallet C, Hoang C, 
Larsimont D, Andry G, Maenhaut C, Detours V. 
Revisiting the transcriptional analysis of primary 
tumours and associated nodal metastases with 
enhanced biological and statistical controls: application 
to thyroid cancer. Br J Cancer. 2015; 112:1665–74. 

 https://doi.org/10.1038/bjc.2014.665  
PMID:25965298 

38. Vasko V, Espinosa AV, Scouten W, He H, Auer H, 
Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la 
Chapelle A, Saji M, Ringel MD. Gene expression and 
functional evidence of epithelial-to-mesenchymal 
transition in papillary thyroid carcinoma invasion. Proc 
Natl Acad Sci USA. 2007; 104:2803–08. 

 https://doi.org/10.1073/pnas.0610733104 
 PMID:17296934 

39. Mirzal A. Nonparametric Tikhonov Regularized NMF 
and Its Application in Cancer Clustering. IEEE/ACM 
Trans Comput Biol Bioinform. 2014; 11:1208–17. 

 https://doi.org/10.1109/TCBB.2014.2328342 
 PMID:26357056 

40. Yu N, Gao YL, Liu JX, Shang J, Zhu R, Dai LY. Co-
differential Gene Selection and Clustering Based on 
Graph Regularized Multi-View NMF in Cancer Genomic 
Data. Genes (Basel). 2018; 9:9. 

 https://doi.org/10.3390/genes9120586 
 PMID:30487464 

41. Ye C, Toyoda K, Ohtsuki T. Blind Source Separation on 
Non-contact Heartbeat Detection by Non-negative 
Matrix Factorization Algorithms. IEEE Trans Biomed 
Eng. 2020; 67:482–94. 

 https://doi.org/10.1109/TBME.2019.2915762 
 PMID:31071015 

42. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang 
P, Shen H, Aster JC, Rodig S, Signoretti S, Liu JS, Liu XS. 
Comprehensive analyses of tumor immunity: 

https://doi.org/10.1038/nrc3153
https://www.ncbi.nlm.nih.gov/pubmed/22020206
https://doi.org/10.1016/j.cyto.2012.01.015
https://www.ncbi.nlm.nih.gov/pubmed/22349527
https://doi.org/10.1158/1078-0432.CCR-17-0950
https://www.ncbi.nlm.nih.gov/pubmed/28928158
https://doi.org/10.3892/ijo.2012.1408
https://www.ncbi.nlm.nih.gov/pubmed/22447316
https://doi.org/10.1111/his.13230
https://www.ncbi.nlm.nih.gov/pubmed/28383817
https://doi.org/10.1080/14737140.2018.1417845
https://www.ncbi.nlm.nih.gov/pubmed/29241377
https://doi.org/10.1016/S2213-8587%2816%2930277-7
https://www.ncbi.nlm.nih.gov/pubmed/27773653
https://doi.org/10.1126/scitranslmed.aah3560
https://www.ncbi.nlm.nih.gov/pubmed/28251903
https://doi.org/10.1210/jc.2018-02809
https://www.ncbi.nlm.nih.gov/pubmed/31116377
https://doi.org/10.1158/1078-0432.CCR-05-2039
https://www.ncbi.nlm.nih.gov/pubmed/16609007
https://doi.org/10.1038/bjc.2012.302
https://www.ncbi.nlm.nih.gov/pubmed/22828612
https://doi.org/10.1038/bjc.2014.665
https://www.ncbi.nlm.nih.gov/pubmed/25965298
https://doi.org/10.1073/pnas.0610733104
https://www.ncbi.nlm.nih.gov/pubmed/17296934
https://doi.org/10.1109/TCBB.2014.2328342
https://www.ncbi.nlm.nih.gov/pubmed/26357056
https://doi.org/10.3390/genes9120586
https://www.ncbi.nlm.nih.gov/pubmed/30487464
https://doi.org/10.1109/TBME.2019.2915762
https://www.ncbi.nlm.nih.gov/pubmed/31071015


 

www.aging-us.com 5747 AGING 

implications for cancer immunotherapy. Genome Biol. 
2016; 17:174. 

 https://doi.org/10.1186/s13059-016-1028-7 
 PMID:27549193 

43. Danilova L, Ho WJ, Zhu Q, Vithayathil T, De Jesus-
Acosta A, Azad NS, Laheru DA, Fertig EJ, Anders R, 
Jaffee EM, Yarchoan M. Programmed Cell Death 
Ligand-1 (PD-L1) and CD8 Expression Profiling Identify 
an Immunologic Subtype of Pancreatic Ductal 

Adenocarcinomas with Favorable Survival. Cancer 
Immunol Res. 2019; 7:886–95. 

 https://doi.org/10.1158/2326-6066.CIR-18-0822 
 PMID:31043417 

44. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–87. 

 https://doi.org/10.1089/omi.2011.0118 
 PMID:22455463 

  

https://doi.org/10.1186/s13059-016-1028-7
https://www.ncbi.nlm.nih.gov/pubmed/27549193
https://doi.org/10.1158/2326-6066.CIR-18-0822
https://www.ncbi.nlm.nih.gov/pubmed/31043417
https://doi.org/10.1089/omi.2011.0118
https://www.ncbi.nlm.nih.gov/pubmed/22455463


 

www.aging-us.com 5748 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. IRGCluster was compared with clinical stage. (A–C) The top panel was the heat map of the significant 
difference in the distribution of IRGCluster in clinical stage T, N and stage. The significance p value was obtained by anova test, the median 
value was -log10 (p value), bottom panel was the distribution proportion of IRGCluster in clinical stage. 
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Supplementary Figure 2. (A) gSig2 score and gSig3 score predicted the AUC curve of high and low expression of CD274 in TCGA data set 
and the AUC curve of high and low expression of CTLA4 in GSE27155 data set. (B) correlation between three gSig scores and BRAF expression 
in TCGA data set. 
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Supplementary Table 
 

Supplementary Table 1. GO is performed on these 27 genes, and found that they were mainly concentrated in the 
cellular process and the metabolic process. 

ID Description Count GeneRatio geneID 

GO:0000003 reproduction 1 27-Jan PTEN 

GO:0008152 metabolic process 13 13/27 
ZFP62/CNOT6/FLT4/MGAT1/ATP6V1E
1/CECR2/CSGALNACT2/FN3K/FN3KR
P/PTEN/SLC25A18/TG/ZNF750 

GO:0001906 cell killing 0 0/27 
 

GO:0002376 immune system process 2 27-Feb IL17RA/BTNL8 

GO:0006791 sulfur utilization 0 0/27 
 

GO:0006794 phosphorus utilization 0 0/27 
 

GO:0040007 growth 2 27-Feb SCGB3A1/PTEN 

GO:0007610 behavior 1 27-Jan PTEN 

GO:0008283 cell proliferation 4 27-Apr CNOT6/FLT4/SCGB3A1/PTEN 

GO:0009758 carbohydrate utilization 0 0/27 
 

GO:0009987 cellular process 18 18/27 

OR2Y1/ZFP62/CNOT6/FLT4/MGAT1/S
CGB3A1/IL17RA/ATP6V1E1/BTNL8/C
ECR2/CSGALNACT2/FN3K/FN3KRP/P
TEN/SLC25A18/TBCD/TG/ZNF750 

GO:0015976 carbon utilization 0 0/27 
 

GO:0019740 nitrogen utilization 0 0/27 
 

GO:0022414 reproductive process 1 27-Jan PTEN 

GO:0022610 biological adhesion 2 27-Feb PTEN/TBCD 

GO:0023052 signaling 9 27-Sep 
OR2Y1/CNOT6/FLT4/SCGB3A1/IL17R
A/ATP6V1E1/BTNL8/PTEN/TG 

GO:0032501 
multicellular organismal 

process 
8 27-Aug 

OR2Y1/FLT4/MGAT1/IL17RA/CECR2/P
TEN/TBCD/TG 

GO:0032502 developmental process 9 27-Sep 
FLT4/MGAT1/SCGB3A1/CECR2/FN3K/
PTEN/TBCD/TG/ZNF750 

GO:0040011 locomotion 3 27-Mar FLT4/IL17RA/PTEN 

GO:0043473 pigmentation 0 0/27 
 

GO:0044848 biological phase 0 0/27 
 

GO:0048511 rhythmic process 1 27-Jan PTEN 

GO:0048518 
positive regulation of 

biological process 
7 27-Jul 

CNOT6/FLT4/SCGB3A1/IL17RA/BTNL
8/PTEN/ZNF750 

GO:0048519 
negative regulation of 

biological process 
5 27-May CNOT6/FLT4/SCGB3A1/PTEN/TBCD 

GO:0050789 
regulation of biological 

process 
12 27-Dec 

OR2Y1/ZFP62/CNOT6/FLT4/SCGB3A1/
IL17RA/ATP6V1E1/BTNL8/PTEN/TBC
D/TG/ZNF750 

GO:0050896 response to stimulus 10 27-Oct 
OR2Y1/CNOT6/FLT4/SCGB3A1/IL17R
A/ATP6V1E1/BTNL8/PTEN/SLC25A18/
TG 

GO:0051179 localization 7 27-Jul 
FLT4/IL17RA/ATP6V1E1/CECR2/PTEN
/SLC25A18/TG 

GO:0051704 multi-organism process 2 27-Feb IL17RA/PTEN 

GO:0065007 biological regulation 12 27-Dec 
OR2Y1/ZFP62/CNOT6/FLT4/SCGB3A1/
IL17RA/ATP6V1E1/BTNL8/PTEN/TBC
D/TG/ZNF750 

GO:0071840 
cellular component 

organization or biogenesis 
5 27-May CNOT6/SCGB3A1/CECR2/PTEN/TBCD 

GO:0098743 cell aggregation 0 0/27 
 

GO:0098754 detoxification 0 0/27 
 

 


