SUPPLEMENTARY FIGURES

Supplementary Figure 1. Ube2s expression is upregulated after MI/R injury. (A) qRT-PCR analysis of the mRNA level of Ube2s in the heart from C57BL/6 mice following 24 h, 48 h, 72 h and 96 h of MI/R injury. Samples from mice receiving sham surgery were used as controls. Each group includes 8 mice. The results were normalized to β -Actin and expressed as relative to sham group. Data are mean \pm SD. Data were compared with sham group using one-way ANOVA analysis. **, P < 0.01; *, P < 0.05. (B) Western blotting analysis of the protein level of Ube2s in the heart as described in (A). β -Actin was used as a loading control. The representative band images are presented (left). The analysis of the relative band intensity is also presented (right). Data are mean \pm SD. Data were compared with sham group using one-way ANOVA analysis. **, P < 0.01; *, P < 0.05. (B) Western blotting analysis of the protein level of Ube2s in the heart as described in (A). β -Actin was used as a loading control. The representative band images are presented (left). The analysis of the relative band intensity is also presented (right). Data are mean \pm SD. Data were compared with sham group using one-way ANOVA analysis. **, P < 0.01.

Supplementary Figure 2. Ube2s stabilizes β -Catenin. (A) The primary cardiomyocytes overexpressing empty vector or Ube2s were treated with CHX for 2 h. The protein expression of β -Catenin and Ube2s was determined by Western blotting analysis. β -Actin was used as a loading control. The representative band images are presented. (B) C57BL/6 mice were intra-myocardially infected with lentivirus expressing vector control or Ube2s 48 h prior to MI/R surgery. Following 24 h of reperfusion, the protein level of GSK-3 β and p-GSK-3 β in the heart was analyzed by Western blotting. Samples from sham group were used as controls. Each group includes 8 mice. The representative band images are presented. (C) C57BL/6 mice were intra-myocardially transfected with control siRNA (siCtrl) or Ube2s siRNA (siUbe2s) 48 h prior to MI/R surgery. Following 24 h of reperfusion, the protein level of GSK-3 β in the heart was analyzed by Western blotting. Samples from sham group includes 8 mice. The representative band images from sham group were used as control siRNA (siCtrl) or Ube2s siRNA (siUbe2s) 48 h prior to MI/R surgery. Following 24 h of reperfusion, the protein level of GSK-3 β and p-GSK-3 β in the heart was analyzed by Western blotting. Samples from sham group were used as controls. Each group includes 8 mice. The representative band images are presented. (D) C57BL/6 mice were intra-myocardially infected with lentivirus expressing vector control or wild-type Ube2s (Ube2s-wt) or C95S mutant form of Ube2s (C95S-mut) 48 h prior to MI/R surgery. Following 24 h of reperfusion, the protein level of β -Catenin and Ube2s in the heart was analyzed by Western blotting. Samples from sham group were used as controls. Each group includes 8 mice. The representative band images are presented. (E) The lysates of heart tissues from mice as described in (D) were immunoprecipitated (IP) with β -Catenin antibody. The IP products were further analyzed by Western blotting to detect ubiquitin expression. The expression of β -Catenin and

Supplementary Figure 3. C95S mutant Ube2s fails to activate β -**Catenin/HIF-1** α **axis and influence MI/R injury.** (A–B) C57BL/6 mice were intra-myocardially infected with lentivirus expressing vector control or C95S mutant Ube2s (mut) in combination with the transfection with control siRNA (siCtrl) or β -Catenin siRNA (si β -Catenin) 48 h prior to MI/R surgery. Following 24 h of reperfusion, the protein expression of targets as indicated in the heart was analyzed by Western blotting. Each group includes 8 mice. β -Actin was used as a loading control. The representative band images (A) and relative band intensity analysis (B) are presented. Data are mean \pm SD. Data were compared using Student's t-test. NS, not significant. (C) Heart samples were harvested as described in (A). The supernatants of the homogenized heart samples were collected, and the caspase-3 activity was determined. The results are expressed as nmol AFC/h/mg protein. Data are mean \pm SD. Data were compared using Student's t-test. NS, not significant. (D) Heart samples were harvested as described in (A), and the mid-myocardial cross sections were prepared. The infarct size in the heart sections was quantified, and the results of percentage of size are shown. AAR/LVA, ratio of area at risk (AAR) to left ventricular area (LVA); IA/AAR, ratio of infarct area (IA) to AAR. Data are mean \pm SD. Data were compared using Student's t-test. NS, not significant. (E) C57BL/6 mice were treated as in (A). The samples of serum were collected and the level of creatine phosphokinase (CPK) was quantified. Data are mean \pm SD. Data were compared using Student's t-test. NS, not significant. (E) C57BL/6 mice were treated as in (A). The samples of serum were collected and the level of creatine phosphokinase (CPK) was quantified. Data are mean \pm SD. Data were compared using Student's t-test. NS, not significant.