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INTRODUCTION 
 

Thyroid cancer is the most common endocrine 

malignant disease in the world, with increasing 

incidence in recent decades. Thyroid cancer can be 

pathologically classified into well-differentiated and 

undifferentiated subtypes [1]. The former one mainly 

includes papillary thyroid cancer (PTC) and follicular 

thyroid cancer, whereas the latter one includes 

anaplastic thyroid cancer [2]. Of these subtypes, PTC 

is the most common one, constituting about 80% of 

all thyroid cancers [3].  

 

Through standardized treatment, PTC often shows a 

favorable prognosis, with a 10-year survival rate 

accounting for 93% [4]. However, PTC is prone to 

metastasize to cervical lymph nodes, especially the central 

ones. Thus, a proportion of patients with PTC present 

unfavorable prognosis possibly because 20%–90% of 

PTC cases present with cervical lymph node metastasis 

(LNM) [5, 6]. Moreover, cervical LNM is the main risk 

factor associated with high recurrence in patients with 

PTC. In general, LNM occurs in the central region and 

then extends to the lateral region. In this process, skip 

metastasis can be observed [7]. Hence, the molecular 
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ABSTRACT 
 

The functions of immune cells in lymph node metastasis (LNM) have attracted considerable attention. This 
study aimed to screen the key immune-related and LNM-related genes in PTC. In the discovery phase, the 
immune-related genes in LNM were screened by using bioinformatics methods. In the validation phases, the 
association of the genes with LNM was first confirmed in a cohort from The Cancer Genome Atlas and a 
cohort based on a tissue chip. Then, the relationship of the genes with immune cell infiltration was further 
explored. Consequently, CLDN10 was identified, and its high expression was correlated with the presence of 
LNM in PTC but predicted a favorable prognosis. High CLDN10 expression was positively correlated with the 
infiltration of several immune cells, such as B cells, CD8+T cells, and macrophages. High CLDN10 expression 
may improve the outcomes of patients with PTC by increasing immune cell infiltration, although it might be 
associated with LNM. In conclusion, although CLDN1 might be correlated with LNM, it may also increase the 
infiltration of immune cells, including CD8+T cells and macrophages, and improve the clinical outcomes of 
patients with PTC. The effects of tumor purity and immune cell infiltration need to be considered in 
prognosis evaluation. 
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mechanisms underlying LNM must be elucidated to 

develop preventive and treatment strategies. 

 

To date, a number of studies have investigated the 

contributions of microenvironment and immune cell 

infiltration to cancer development. Cancer tissues contain 

not only cancer cells but also noncancer cells, such as 

stromal and immune cells. Noncancer cells dilute the 

purity of cancer cells and serve critical functions in cancer 

biology. Under different purity conditions, recognized 

predictive indicators are no longer effective [8]. Thus, the 

composition and proportion of stromal and immune cells 

in cancers may determine the clinical outcomes of 

patients. In colon cancer, low tumor purity is correlated 

with poor prognosis because of high mutation frequency 

in key pathways and purity-related microenvironmental 

changes [9]. In PTC, immune cell infiltrates are correlated 

with lymph node N stage [10]. In these biological 

processes, immune-related genes may influence the 

prognosis of cancer patients by affecting the abundance of 

infiltrating immune cells [11]. Thus, the immune-related 

genes in a certain phenotype of cancers must be identified 

to elucidate the exact mechanisms and find biomarkers or 

targets for cancer diagnosis and therapy.  

 

In the present study, we aimed to find the key immune-

related genes in LNM of PTC and further assess their 

functions in cancer progression. The study included 

three phases: a discovery phase and two validation 

phases. In the discovery phase, the immune-related 

genes that had a close association with LNM in PTC 

were screened by using bioinformatic methods. In the 

validation phases regarding LNM, the relationships of 

the screened genes with LNM and prognosis were 

evaluated in a The Cancer Genome Atlas (TCGA) 

cohort and in a cohort based on a tissue chip, 

respectively. In the validation phase regarding 

immunity, the association of CLDN10 expression with 

immune cell infiltration levels was assessed.   

 

CLDN10 was identified as the key gene. Its high 

expression was correlated with LNM, but it might be a 

good indicator for PTC prognosis. The discrepancy 

overturned our long-held belief that the presence of 

LNM is associated with poor survival, implicating the 

critical contributions of immune cell infiltration to PTC 

development.  

 

RESULTS 
 

Relationship of immune and stromal scores with 

clinical features 

 

The immune and stromal scores and the clinical 

information of the TCGA cohort were obtained. The 

characteristics of the PTC cohort are presented in Table 1. 

The immune and stromal scores were respectively 

divided into high and low groups on the basis of their 

median levels. As shown in Table 2, high immune 

scores showed a significant association with advanced 

clinical stages, high T stages, and LNM (P<0.05). 

Although the comparisons of stromal scores were not 

significant, a borderline association was shown in the 

LNM comparison (P=0.07). The data indicated that both 

immune and stromal scores might have a correlation 

with LNM in PTC.  

 

Survival curves based on the TCGA cohort were 

constructed to evaluate the prognostic values of the 

immune and stromal scores. The results of log-rank 

tests failed to show that either immune or stromal scores 

influenced the prognosis of PTC (P>0.05; Figure 1A). 

 

Identification of differentially expressed genes 

(DEGs) related to immune scores and stromal scores 

in PTC 

 

Immune and stromal scores were used to stratify 

patients with PTC into high and low groups, 

respectively, as mentioned above. The gene expression 

profiles were compared between the high and low 

groups. Heatmaps in Figure 1B show the results 

generated from the comparisons. The comparison based 

on immune scores (high vs. low) revealed 1324 

upregulated and 112 downregulated genes. Similarly, 

the comparison based on stromal scores (high vs. low) 

generated 1237 upregulated and 5 downregulated genes.  

 

Moreover, Venn analysis was performed to narrow the 

scope of the target genes that are associated with 

immune and stromal cells. The data showed 1003 

upregulated and 5 downregulated DEGs in the 

intersection (Figure 1C). Thus, these genes were chosen 

for further analysis.  

 

Functional annotation of DEGs in the intersection 

 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses 

were utilized to evaluate the possible functions of the 

screened DEGs in the intersection.  

 

As shown in Figure 1D, the top five GO terms were 

immune response, defense response, response to biotic 

stimulus, response to pest, pathogen or parasite, and 

organismal physiological process. The top five pathways 

were cytokine–cytokine receptor interaction, complement 

and coagulation cascades, Toll-like receptor signaling 

pathway, ECM–receptor interaction, and focal adhesion.  

 

The results of GO analysis showed that these DEGs 

might be involved in various cell biological processes,
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Table 1. Patient characteristics from TCGA database. 

Characteristic  No. of patients 

Age (year) 509  

Median (range)  46 (15-89) 

<45  233 

≥45  276 

Gender 509  

Male  139 

Female  370 

Historical type 509  

classical  365 

Follicular  102 

Tall cell  35 

Other  7 

Clinical stage 507  

I  288 

II  51 

III  111 

IV  57 

T stage 509  

T1  142 

T2  168 

T3  174 

T4  23 

Tx  2 

N stage 509  

N0  226 

N1  233 

Nx  50 

Distant metastasis 508  

M0  283 

M1  9 

Mx  216 

 

including responses to stimulus and immune 

response. The data were consistent with our results 

that the screened DEGs may be correlated with 

immune responses. Pathway enrichment analysis 

showed that these DEGs may be enriched in 

pathways related to cancer development, suggesting 

that these genes function in immune response and 

cancer progression.  

 

Prognostic values of individual DEGs in PTC 

 

Univariate cox regression analyses of the TCGA 

cohort were conducted to explore the prognostic 

values of the screened DEGs in the intersection. Of 

the 1008 DEGs that were assessed, 87 predicted 

favorable or unfavorable prognosis for PTC (P<0.05; 

Table 3). 

Construction of co-expression network and 

identification of hub genes associated with LNM 

 

A total of 1008 DEGs in the intersection were included 

in the co-expression network analysis. All samples were 

selected because no outliers were observed among the 

samples.  

 

The soft threshold was determined by scale 

independence and mean connectivity analysis of 

modules with different power values. As shown in 

Figure 2A, when the power value was set to 9, the scale 

independence value achieved 0.9 and lower mean 

connectivity. Figure 2B shows the cluster dendrogram 

among the modules. Four modules containing 194 genes 

in blue, 126 in brown, 15 in grey, and 671 in turquoise 

were generated with different colors.  
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Table 2. Relationship between Immune and Stromal scores and clinicopathological factors. 

Variables Total 
Immune scores 

P 
Stromal scores 

P 
High Low High Low 

Gender        

Male 139 66 73 
0.469 

75 64 
0.285 

Female 370 189 181 180 190 

Age (years)        

<45 233 116 117 
0.897 

113 120 
0.507 

≥45 276 139 137 142 134 

Histological Type       

Classical 365 197 168 

0.000 

191 174 

0.001 
Follicular 102 29 73 36 66 

Tall cell 35 26 9 25 10 

Other 7 3 4 3 4 

Clinical stage        

I+II 339 158 181 
0.018 

161 178 
0.095 

III+IV 168 97 71  93 75 

T stage        

T1+T2 310 144 166 
0.039 

148 162 
0.183 

T3+T4 197 110 87  106 91 

Lymph node metastasis       

Yes 233 136 97 
0.029 

130 103 
0.070 

No 226 109 117  107 119 

Distant metastasis status       

Yes 9 4 5 
0.554 

3 6 
0.174 

No 283 154 129 159 124 

 

The module that had a relationship with LNM was 

evaluated. As shown in Figure 2C, the blue module may 

have the closest association (r=0.38, P=4.6e-08). Thus, the 

genes in the blue module were selected for further 

analysis.  

 

Key gene selection 

 

The following steps were carried out to screen the 

immune-related and LNM-related key genes in PTC. 

First, 87 genes that had prognostic values for PTC, as 

shown in Table 3, were selected (immune-related). 

Second, the genes in the blue module (LNM-related), 

with a GS value more than 0.15, were selected (20 

genes). Third, Venn analysis was conducted to obtain 

the intersection of these genes. As a result, CLDN10 

was screened as the key gene. Hence, the key gene 

might be immune- and LNM-related (Figure 2D).  

 

Assessment of CLDN10 expression in a PTC cohort 

from the TCGA and gene expression omnibus 

(GEO) databases 

 

The expression data of CLDN10 in a PTC cohort were 

extracted from the TCGA database. The expression 

levels of CLDN10 were classified as high and low on 

the basis of the median level. Table 4 lists the main 

results of the association of CLDN10 expression and the 

clinical features.  

 

As shown in this table, high expression may have a 

significant correlation with low ages, high T stages, and 

LNM (P<0.05).  

 

Relevant data from a cohort in a dataset (GSE35570) were 

downloaded from the gene expression omnibus (GEO) 

database to evaluate the diagnostic value of CLDN10 

expression in PTC [12]. This cohort included 65 PTC 

cases and 51 normal controls. As shown in Figure 3A-a, 

the area under the ROC curve (AUC) of the receiver-

operating characteristic (ROC) curves achieved 0.954, 

with a sensitivity of 0.9077 and a specificity of 0.9804, 

suggesting that CLDN10 can be used as a potential 

biomarker distinguishing PTC cases from normal controls.  

 

Surprisingly, survival analysis showed that patients with 

low CLDN10 expression may have a shorter overall 

survival time than those with high CLDN10 expression 

(Figure 3A-b). In other words, CLDN10 might act as a 

preventive factor for PTC.  
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Figure 1. (A) Survival curves of the immune and stromal scores based on the TCGA cohorts of PTC.  a) immune scores (P>0.05); b) stromal 

scores (P>0.05). (B) Heatmap of the DEGs of immune scores (a; high vs low) and stromal scores (b, high vs low). P<0.05; Fold change>2. Red 
stands for up-regulated genes, while green stands for down-regulated genes. (C) The intersections of the up-regulated (a) and down-
regulated genes (b), respectively, from the immune and stromal gene sets. (D) The top 5 GO terms (a) and KEGG pathways (b) of the DEGs in 
the intersections.  
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Table 3. Univariate Cox regression analyses of the DEGs in the intersection (top 20, ordered by ascending P values). 

Gene symbols HR[exp(coef)] coef 95% CI lower 95% CI upper Z P 

NPTX1 1.451225 0.372408 0.192815 0.552001 4.064233 4.82E-05 

IBSP 1.493858 0.401362 0.184397 0.618328 3.625713 2.88E-04 

PCOLCE2 1.534138 0.427969 0.172976 0.682961 3.289516 0.001004 

HAS1 1.343366 0.295178 0.118928 0.471429 3.282477 0.001029 

GPR34 0.502837 -0.68749 -1.09996 -0.27502 -3.26681 0.001088 

MEG3 1.361818 0.308821 0.115307 0.502334 3.127831 0.001761 

BHLHE22 1.389252 0.328765 0.097692 0.559839 2.788584 0.005294 

FOLR2 0.526309 -0.64187 -1.10451 -0.17922 -2.71922 0.006544 

PRR15 0.809274 -0.21162 -0.36701 -0.05623 -2.66914 0.007605 

ETV7 0.678965 -0.38719 -0.67572 -0.09865 -2.63005 0.008537 

LRRN4CL 1.426836 0.35546 0.088732 0.622187 2.611987 0.009002 

ICAM4 0.741666 -0.29886 -0.52444 -0.07328 -2.59662 0.009414 

P2RY13 0.582569 -0.54031 -0.94957 -0.13104 -2.58752 0.009667 

HS3ST3A1 1.494091 0.401518 0.096599 0.706437 2.580882 0.009855 

GPR114 0.693675 -0.36575 -0.64453 -0.08697 -2.57143 0.010128 

DRP2 1.47486 0.388563 0.088036 0.68909 2.534112 0.011273 

TLR7 0.613546 -0.4885 -0.86668 -0.11032 -2.53174 0.01135 

LIPH 0.833861 -0.18169 -0.32284 -0.04054 -2.52287 0.01164 

RXRG 0.838276 -0.17641 -0.31359 -0.03922 -2.52035 0.011724 

LOC400696 0.565515 -0.57002 -1.01469 -0.12534 -2.51243 0.01199 

 

Protein expression of CLDN10 in a PTC cohort on 

the basis of a tissue microarray 

 

The association of CLDN10 with LNM was further 

validated by measuring its protein expression on a tissue 

chip through an immunohistochemical (IHC) assay.  

 

Specific staining was observed mainly in the membrane 

of cancer and normal cells, and weak staining was 

observed in cytoplasm (Figure 3B-ab). In addition, the 

expression scores of CLDN10 were significantly higher 

in PTC tissues than in para-carcinoma tissues (P<0.05), 

as shown in Figure 3B-c. 

 

In this cohort, no cases presented distant metastasis, and 

the survival information was unavailable. Only the 

confounding factors, such as clinical stages, lymph node 

metastasis, and age, can be addressed.  

 

Interestingly, the data indicated that the high expression 

score of CLDN10 was significantly associated with 

LNM (P<0.05). No significant associations were 

observed in the comparisons regarding age, T stage, and 

clinical stage (P>0.05) (Figure 3C).   

 

Association of CLDN10 expression with immune cell 

infiltration levels 

 

The TIMER algorithm [13] was used to determine the 

possible association between CLDN10 expression and 

immune cell infiltration.  

On the basis of the PTC cohort from TCGA, a weak 

negative correlation was observed between CLDN10 

expression and tumor purity (r=-0.133, P<0.05). 

Conversely, CLDN10 expression had significantly 

positive correlations with infiltrating levels of B cells 

(r=0.348, P<0.05), CD4+T cells (r=0.351, P<0.05), 

neutrophils (r=0.509, P<0.05), and dendritic cells 

(r=0.52, P<0.05) (Figure 4A). Moreover, weak positive 

correlations of CLDN10 expression with CD8+T cells 

(r=0.105, P<0.05) and macrophages (r=0.181, P<0.05), 

respectively, were observed. These findings indicate 

that CLDN10 is closely associated with immune cell 

infiltration in PTC.  

 

Multivariate COX regression analyses were performed 

using the TIMER tool to learn the potential effects of 

these immune cells on PTC survival. As shown in Table 

5, tumor purity was correlated with poor survival, 

confirming that CLDN10 expression was negatively 

correlated with tumor purity. Notably, CD8+T cells 

(HR=0.000, 95%CI= 0.000–0.032) and macrophages 

(HR=0.000, 95%CI= 0.000–0.152) might be independent 

favorable prognostic indicators that lower the cancer risk 

and prolong the overall survival time of patients.  

 

Association of CLDN10 expression with immune cell 

markers 

 

Markers of immune cells were considered to investigate 

further the association of CLDN10 expression with 

CD8+T cells and macrophages. As shown in Figure 4B 
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and Table 6, CLDN10 expression was correlated with 

immune markers of macrophages and CD8+T cells. In 

consideration that macrophages and CD8+T cells might 

be favorable prognostic indicators for PTC, the data 

may help explain why low CLDN10 expression is 

related to poor prognosis in patients with PTC.  

 

DISCUSSION 
 

A discovery phase and two validation phases were 

included in the present study. In the discovery phase, 

CLDN10 was chosen as the key immune-related and 

LNM-related gene. In the validation phases, high 

CLDN10 expression was shown to correlate with 

LNM in PTC at the mRNA and protein levels. It had a 

positive correlation with infiltration of various 

immune cells. Surprisingly, high CLDN10 expression 

may predict a good prognosis rather than a poor 

prognosis in patients with PTC. The discrepancy of 

the results may distort our conventional view that 

LNM-related genes are correlated with poor prognosis 

in cancers.  

CLDN10 encodes Claudin-10, an integral tight junction 

membrane-spanning protein expressed in the kidney, 

skin, and salivary glands [14]. Abnormal expression of 

CLDN10 may be involved in cancer progression. For 

instance, overexpression of CLDN10 in osteosarcoma 

may be related to its metastatic phenotype [15]. In liver 

cancer, CLDN10 overexpression may be correlated with 

cell proliferation and invasive abilities [16]. 

Nevertheless, no difference in CLDN10 expression was 

observed between laryngeal cancer tissues and normal 

controls [17]. Therefore, CLDN10 might serve different 

functions in different malignant tumors.  

 

A recent report [18] has shown that high CLDN10 

expression is correlated with LNM in PTC patients on 

the basis of the TCGA cohort, which is in line with the 

present study. However, this report has also presented 

that patients with high CLDN10 expression experience 

a poor overall survival, which is contradictory to our 

results. Thus, we have endeavored to repeat the survival 

analysis on the basis of the data from TCGA and a used 

the UALCAN and TIMER tools. However, the results 

 

 
 

Figure 2. (A) Scale independence and mean connectivity analysis. (B) Gene clustering tree (dendrogram) obtained by hierarchical clustering 

of adjacency-based dissimilarity. (C) Module-trait relationship plot shows that the blue module has a close correlation with LNM. (D) Venn 
analysis generated CLDN10 as the key gene that correlates both with LNM and immune.  
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Table 4. Relationship between CLDN10 expression and clinicopathological factors. 

Variables Total 
CLDN10 

P 
High Low 

Gender     

Male 139 70 69 
0.942 

Female 370 185 185 

Age (years)     

<45 233 129 104 
0.029 

≥45 276 126 150 

Histological Type    

Classical 365 212 153 

0.000 
Follicular 102 9 93 

Tall cell 35 29 6 

Other 7 5 2 

Clinical stage     

I+II 339 163 176 
0.197 

III+IV 168 91 77 

T stage     

T1+T2 310 142 168 
0.021 

T3+T4 197 111 86 

Lymph node metastasis    

Yes 233 158 75 
0.000 

No 226 81 145 

Distant metastasis status    

Yes 9 4 5 
0.554 

No 283 154 129 

 

still indicated CLDN10 as a favorable prognostic 

indicator rather than an unfavorable indicator for PTC.  

 

The discrepancy was confusing to an extent. The 

associations of CLDN10 with immune cell infiltration 

in PTC were further assessed to explain the objective 

phenomenon of this contradiction. CLDN10 showed a 

positive correlation with the immune cells, such as 

CD4+T cells and macrophages, and a negative 

correlation with tumor purity. Increased CD8+T cells 

and macrophage infiltration predicted better prognosis, 

as indicated by the Cox regression analysis. Thus, 

increased immune cell infiltration might play a leading 

role in the survival of patients, although LNM might 

also have a certain impact on survival.  

 

Previous evidence showed that the presence of LNM in 

PTC predicts poor prognosis [19]. Conversely, recent 

evidence has shown that LNM is not a good predictor 

for PTC prognosis because the microenvironment of 

LNM presents features that favor an anti-tumor immune 

response [20]. In specific, infiltration of CD8+T cells 

may protect against metastatic spread in PTC [21], and 

a high infiltration of CD68+ cells (macrophages) in 

tumor stroma may predict long survival time [22]. In 

addition, the animal experiments confirmed the anti-

tumor activities of CD8+T cells and M1 macrophages in 

PTC [23]. Thus, the weight of immune cell infiltration 

on prognosis may be greater than that of LNM in PTC. 

The evidence may help clarify the reasons why high 

CLDN10 expression acts as a favorable prognostic 

factor for PTC, although it has a significant correlation 

with LNM.  

 

In the present study, the ESTIMATE Algorithm was used 

to screen immune-related genes, and the WGCNA 

method was used to screen LNM-related genes in PTC. 

The intersection involved CLDN10 as the key gene. Aside 

from ESTIMATE and TIMER, other algorithms (such as 

CIBERSORT) can be used for immune cell infiltration 

[24]. However, each algorithm has its own advantages 

and disadvantages, which have been verified by 

experiments. None of the algorithms is the most 

authoritative. Therefore, we adopted the ESTIMATE and 

TIMER algorithms in the present study to understand the 

infiltration of immune cells. WGCNA was applied to 

investigate the relationship between co-expression gene 

modules and clinical traits. In the present study, we 

successfully identified CLDN10 as the immune-related 

and LNM-related gene in PTC, demonstrating WGCNA 

as a good method for gene screening.  

 

Although the possible functions of CLDN10 have been 

indicated in our study, future lab experiments using cell 
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Figure 3. (A) The ROC curve (a) showed that CLDN10 expression can be used as a biomarker distinguishing PTC from normal thyroid tissues 

(GSE35570; AUC=0.954 (95%CI=0.899-0.984); Specificity=0.9804, Sensitivity=0.9077). The survival curve (b) showed that PTC patients with 
high CLDN10 expression levels had a longer overall survival time relative to those with low CLDN10 expression ones (P<0.05). (B) CLDN10 
expression in PTC tissues and adjacent normal tissues assayed by IHC (×10). (a) cancer tissue; (b) para-cancer tissue; (c) cancer vs normal, 
P<0.05. (C) The association of CLDN10 protein expression levels with clinical features based on a tissue chip. (a) LNM, N0 vs N1, P<0.05; (b) 
Age, <45y vs >=45y, P>0.05; (c) Clinical stage, I+II vs III+IV, P>0.05; (d) T stage, T1+T2 vs T3+T4, P>0.05.   
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Figure 4. (A) Correlation of CLDN10 expression with tumor purity and immune cell infiltration levels in thyroid cancer. CLDN10 expression 

was negatively correlated with tumor purity (r=-0.133, P<0.05), but positively correlated with B cell (r=0.348, P<0.05), CD8+T cell (r=0.13, 
P<0.05), CD4+T cell (r=0.351, P<0.05), Macrophage (r=0.181, P<0.05), Neutrophil (r=0.509, P<0.05), and Dendritic cell (r=0.52, P<0.05), 
respectively.  (B) The CLDN10 expression was positively correlated with cell markers of CD8+T cell, Tumor-associated macrophage (TAM), M1 
macrophage, and M2 macrophage, respectively.  
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Table 5. Multivariate analyses of CLDN10 expressions and other clinical prognostic markers as well as immune cells 
related to overall survival in PTC. 

PTC Coef HR 95%CI_l 95%CI_u P value 

Tumor purity 4.384 80.154 3.887 1.652799e+03 0.005 

age 0.174 1.190 1.106 1.282000e+00 0.000 

gendermale 0.071 1.074 0.267 4.313000e+00 0.920 

raceBlack 15.741 6856360.714 0.000 - 0.999 

raceWhite 15.535 5579115.168 0.000 - 0.999 

B-cell 0.205 1.228 0.000 6.304123e+04 0.970 

CD8+Tcell -18.440 0.000 0.000 3.200000e-02 0.016 

CD4+Tcell 8.645 5681.442 0.254 1.270458e+08 0.091 

Macrophage -31.546 0.000 0.000 1.520000e-01 0.037 

Neutrophil -33.653 0.000 0.000 5.740182e+10 0.259 

Dendritic 11.912 149010.289 0.557 3.989821e+10 0.062 

CLDN10 -0.138 0.871 0.727 1.044000e+00 0.135 

 

Table 6. Correlation between CLDN10 and related gene markers of relevant immune cells. 

Immune cell Gene Markers 
None  Purity 

r P  r P 

CD8+T cell CD8A 0.194 0.000  0.202 0.000 

 CD8B 0.381 0.000  0.391 0.000 

TAM CCL2 0.380 0.000  0.374 0.000 

 CD68 0.439 0.000  0.426 0.000 

 IL10 0.325 0.000  0.309 0.000 

M1 Macrophage INOS(NOS2) 0.028 0.535  0.039 0.386 

 IRF5 0.532 0.000  0.532 0.000 

 COX2(PTGS2) 0.602 0.000  0.601 0.000 

M2 Macrophage CD163 0.358 0.000  0.343 0.000 

 VSIG4 0.393 0.000  0.383 0.000 

 MS4A4A 0.417 0.000  0.404 0.000 

 

lines and animal models are still needed to explore its 

exact mechanisms. Future studies using tissue chips 

containing a large PTC cohort with survival information 

are also warranted to confirm the effects of CLDN10 

expression on PTC prognosis.  

 

In conclusion, CLDN10 was screened as a key 

immune-related and LMN-related gene in PTC. 

Although the high expression of CLDN10 is 

associated with lymph node metastasis, it provided 

better predictions for PTC. The discrepancy might be 

due to the preponderant weight of the CLDN10-

related infiltration of CD8+T cells and macrophages 

on the prognosis, suggesting immune cell infiltration 

as a negligible factor in the development of PTC. The 

data of the present study suggest that LNM-related 

proteins might not necessarily predict unfavorable 

outcomes in cancers. The effect of tumor purity and 

immune cell infiltration on prognosis should also be 

considered in cancer research.   

MATERIALS AND METHODS 
 

Data source 

 

A cohort of PTC was retrieved from the TCGA 

database [25]. The gene expression profile based on 

RNA-seq and relevant clinical data were downloaded 

from the TCGA and UCSC Xena databases, 

respectively [26].  

 

The stromal and immune scores in the PTC TCGA 

dataset were calculated based on the ESTIMATE 

algorithm to predict the level of infiltrating stromal and 

immune cells in PTC and infer tumor purity in tumor 

tissue [27].  

 

The data were analyzed by using the package limma of R 

program (version 3.6.0). The samples were divided into 

two groups (high and low) on the basis of the immune and 

stromal scores, and the two groups were compared. The 
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results were downloaded and analyzed, in which the genes 

that met the cut-off criteria of adjusted P<0.05 and a |log 

fold-change| of >1.0 were screened.      

 

The screened genes regarding immune and stromal 

scores were processed with Venn analysis. Genes of the 

intersection were considered as the DEGs. 

 

Functional annotation of the DEGs 

 

GO and KEGG pathway enrichment analyses were 

conducted by using the Gather database to learn the 

possible functions of the DEGs [28].  

 

GO is a comprehensive community-based bioinforma-

tics resource that provides information about gene or 

gene product function using ontologies to represent 

biological knowledge [29]. In the GO analysis, the gene 

network was presented according to biological 

processes [30]. KEGG is a reference knowledge base 

for linking sequences to biological functions from 

molecular to higher levels [31], which is an integrated 

database consisting of three generic categories of 

systems information, genomic information, and 

chemical information [32].    

 

A P-value less than 0.05 was considered statistically 

significant. 

 

Construction of weighted co-expression network 

(WGCNA) and identification of modules related to 

LNM 

 

Relevant gene modules were identified using the WGCNA 

method to screen the possible gene sets associated with 

LNM [33]. WGCNA is an algorithm widely used in gene 

co-expression network identification in a number of 

disorders to find significantly correlated gene modules. 

Scale independence and mean connectivity analysis of 

modules with different power values were conducted to 

assess the soft threshold of module analysis. The power 

value was determined when the scale independence value 

was 0.9. Then, with the minimal module size of 30 and the 

merge cut height of 0.25, the co-expression matrix was 

calculated. The results of dynamic tree cut and merge were 

displayed by clustering dendrogram.  

 

Information regarding the clinical features was used to 

identify significant co-expression modules associated 

with the clinical traits. The related gene modules 

concerning clinical features (such as LMN) were 

identified by calculating their correlations. Module 

membership (MM) and gene significance (GS) were 

calculated in an intramodular analysis of module 

statistically. Significant modules were defined with a P 

value less than 0.05.  

Key gene screening 

 

The expression levels of the DEGs were divided into 

high and low groups on the basis of their median levels. 

From the TCGA data, the univariate cox regression 

analyses were used to evaluate their prognostic values 

for PTC. The genes with P values less than 0.05 were 

selected. Second, the modules that had a close 

association with LNM were chosen. The genes with a 

GS of more than 0.15 were selected. Third, Venn 

analysis was conducted to filter the intersection of the 

genes selected from the above two steps.  

 

PTC specimens 

 

A PTC tissue microarray (HThy-Pap120CS-01) 

comprising 58 PTC tissues and 58 paired adjacent non-

cancer tissues was purchased from Shanghai Outdo 

Biotech Co., Ltd.. All patients were pathologically 

diagnosed as PTC and received no extra treatment 

before surgery.  

 

IHC staining and evaluation 

 

The protein expression levels of the key genes were 

tested by using the two-step method of IHC as 

previously described in our study [34]. In brief, the 

slides were deparaffinized, rehydrated, and treated with 

3% hydrogen peroxide for 20 min to inhibit endogenous 

peroxidase. The sections were rinsed with distilled 

water and saturated in phosphate buffered saline for 5 

min and then incubated with a 1:200 dilution of rabbit 

anti-polyclonal antibody (primary antibody; Abcam) 

overnight at 4 °C. The staining was visualized using 

DAB solution and counterstained with hematoxylin. 

IHC staining was conducted in accordance with the 

manufacturer’s instructions. 

 

The IHC stain results were identified by integrated 

scoring. The results were evaluated and scored 

independently by two pathologists without knowledge of 

the clinical parameters of the cases. The staining 

intensities of the proteins were scored from 0 to 3, where 

0 means negative, 1 weak, 2 moderate, and 3 strong. The 

percentages of positively stained cells were scored in 

scales of 0 to 4, in which 1 represents (0–25%), 2 (26%–

50%), 3 (51%–75%), and 4 (76%–100%). The proportion 

and intensity scores were then multiplied to gain a total 

score, with a range from 0 to 12.  

 

Statistical analysis 

 

For continuous variables, differences between the 

groups were analyzed using ANOVA, a t-test, or a 

Wilcoxon rank sum test in accordance with the concrete 

types of the data. Chi-squared test was used to 
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differentiate the rates of different groups. The 

diagnostic accuracy of the genes was measured by the 

ROC curves and the AUC. The Kaplan–Meier method 

was conducted to calculate the overall survival curves. 

A log-rank test was used to determine differences in the 

survival rates. These analyses were performed by 

utilizing MedCalc software (15.2.2; Mariakerke, 

Belgium). Statistical significance was considered at P < 

0.05. 
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