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INTRODUCTION 
 

Major depressive disorder (MDD) is viewed as a major 

public health problem globally. MDD has a substantial 

impact on society and individuals, such as increasing 

economic burden and decreasing labor productivity  

 

[1–3]. At a global level, more than 300 million people 

are estimated to suffer from MDD, which is equivalent 

to 4.4% of the world’s population [4]. However, the 

pathogenesis of MDD is still unclear. Some theories 

have been developed to explain the biological 

mechanisms of MDD, such as neurotrophic alterations 
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ABSTRACT 
 

Emerging evidence has shown the age-related changes in gut microbiota, but few studies were conducted to 
explore the effects of age on the gut microbiota in patients with major depressive disorder (MDD). This study was 
performed to identify the age-specific differential gut microbiota in MDD patients. In total, 70 MDD patients and 71 
healthy controls (HCs) were recruited and divided into two groups: young group (age 18-29 years) and middle-aged 
group (age 30-59 years). The 16S rRNA gene sequences were extracted from the collected fecal samples. Finally, we 
found that the relative abundances of Firmicutes and Bacteroidetes were significantly decreased and increased, 
respectively, in young MDD patients as compared with young HCs, and the relative abundances of Bacteroidetes 
and Actinobacteria were significantly decreased and increased, respectively, in middle-aged MDD patients as 
compared with middle-aged HCs. Meanwhile, six and 25 differentially abundant bacterial taxa responsible for the 
differences between MDD patients (young and middle-aged, respectively) and their respective HCs were identified. 
Our results demonstrated that there were age-specific differential changes on gut microbiota composition in 
patients with MDD. Our findings would provide a novel perspective to uncover the pathogenesis underlying MDD. 
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and neurotransmission deficiency [5, 6]. However, none 

of these theories has been universally accepted. 

Therefore, there is a pressing need to identify novel 

pathophysiologic mechanisms underlying this disease. 

 

In recent years, mounting evidence has shown that gut 

microbiota could play a vital role in every aspect of 

physiology [7]. It is the largest and most direct external 

environment of humans. Previous studies found that the 

disturbance of gut microbiota had a crucial role in the 

pathogenesis of many diseases [8–10]. Recent studies 

reported that gut microbiota could affect the host brain 

function and host behaviors through microbiota-gut-

brain axis [11, 12]. Using germ-free mice, we found that 

gut microbiota could influence the gene levels in the 

hippocampus of mice and lipid metabolism in the 

prefrontal cortex of mice [13, 14]. Our clinical studies 

demonstrated that the disturbance of gut microbiota 

might be a contributory factor in the development of 

MDD [15, 16].  

 

Nowadays, emerging evidence has shown the age-

related changes in gut microbiota composition. For 

example, Firmicutes is the dominant taxa during the 

neonatal period, but Actinobacteria and Proteobacteria 

are about to increase in three to six months [17]. While 

in adults, Vemuri et al. reported that Bacteroidetes and 

Firmicutes were the dominant taxa [18]. Meanwhile, 

compared to younger individuals, the abundance of 

Bacteroidetes is significantly higher in frailer older 

individuals [19]. These results showed that there was a 

close relationship between age and gut microbiota 

composition. Ignoring this relationship would affect the 

robust of results when exploring the mechanism of 

action of gut microbiota in diseases. Therefore, to study 

the relationship between gut microbiota and MDD 

patients in different age groups, we recruited 52 young 

subjects aged from 18 to 29 years (27 healthy controls 

(HCs) and 25 MDD patients) and 89 middle-aged 

subjects aged from 30 to 59 years (44 HCs and 45 MDD 

patients). The main purpose of this study was to identify 

the age-specific differential changes on gut microbiota 

composition in MDD patients. Our results would 

display the different changes of gut microbiota 

composition along with age between HCs and MDD 

patients.  

 

RESULTS 
 

Differential gut microbiota composition 

 

As shown in Figure 1, the results of abundance-based 

coverage estimator (ACE) and Chao1 showed that there 

was no significant difference in OTU richness between 

MDD patients (young and middle-aged, respectively) 

and their respective HCs. However, the OPLS-DA 

model built with young HCs and young MDD patients 

showed an obvious difference in microbial abundances 

between these two groups (Figure 2A). The relative 

abundances of Firmicutes and Bacteroidetes were 

 

 
 

Figure 1. Comparison of alpha diversity between HCs and MDD patients. (A, B) ACE and Chao1 indexes showed no significant 

differences between young HCs (n=27) and young MDD patients (n=25); (C, D) ACE and Chao1 indexes showed no significant differences 
between middle-aged HCs (n=44) and middle-aged MDD patients (n=45). 
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significantly decreased and increased, respectively, in 

young MDD patients as compared with young HCs 

(Figure 2B). Meanwhile, the OPLS-DA model built 

with middle-aged HCs and middle-aged MDD patients 

showed an obvious difference in microbial abundances 

between these two groups (Figure 3A). The relative 

abundances of Bacteroidetes and Actinobacteria were 

significantly decreased and increased, respectively, in 

middle-aged MDD patients as compared with middle-

aged HCs (Figure 3B). 

Key discriminatory OTUs 

 

In order to find out the gut microbiota primarily 

responsible for the separation between MDD patients 

(young and middle-aged, respectively) and their 

respective HCs, the Random Forests classifier was used. 

A total of 92 OTUs responsible for the separation 

between young MDD patients and young HCs were 

identified (Figure 4). These OTUs were mainly assigned 

to the Families of Bacteroidaceae, Clostridiaceae_1, 

 

 
 

Figure 2. 16S rRNA gene sequencing reveals changes to microbial abundances in young MDD patients. (A) OPLS-DA model 

showed an obvious difference in microbial abundances between the two groups (HCs, n=27; MDD, (n=25); (B) the relative abundances of 
Firmicutes and Bacteroidetes were significantly changed in young MDD patients (n=25) as compared with young HCs (n=27). 
 

 
 

Figure 3. 16S rRNA gene sequencing reveals changes to microbial abundances in middle-aged MDD patients. (A) OPLS-DA 

model showed an obvious difference in microbial abundances between the two groups (HCs, n=44; MDD, (n=45); (B) the relative abundances 
of Bacteroidetes and Actinobacteria were significantly changed in middle-aged MDD patients (n=45) as compared with middle-aged HCs 
(n=44). 
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Coriobacteriaceae, Erysipelotrichaceae, Lachnospiraceae, 

Peptostreptococcaceae and Ruminococcaceae. 

Meanwhile, a total of 122 OTUs responsible for the 

separation between middle-aged MDD patients and 

middle-aged HCs were identified (Figure 5). These OTUs 

were mainly assigned to the Families of Lachnospiraceae, 

Coriobacteriaceae, Streptococcaceae, Prevotellaceae, 

Bacteroidaceae, Eubacteriaceae, Actinomycetaceae, 

Sutterellaceae, Acidaminococcaceae, Erysipelotrichaceae, 

Ruminococcaceae, and Porphyromonadaceae.  

 

 
 

Figure 4. Heatmap of discriminative OTUs abundances between young HCs (n=27) and young MDD patients (n=25). 
 

 
 

Figure 5. Heatmap of discriminative OTUs abundances between middle-aged HCs (n=44) and middle-aged MDD patients 
(n=45). 
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Differentially abundant bacterial taxa 

 

Differentially abundant bacterial taxa responsible for 

the differences between MDD patients (young and 

middle-aged, respectively) and their respective HCs 

were identified by the metagenomic Linear 

Discriminant Analysis (LDA) Effect Size (LEfSe) 

approach (LDA score>2.0 and p-value<0.05). In total, 

six bacterial taxa with statistically significant and 

biologically consistent differences in young MDD 

patients were identified (Figure 6). Meanwhile, fifteen 

bacterial taxa with statistically significant and 

biologically consistent differences in middle-aged MDD 

patients were identified (Figure 7). In addition, using 

 

 
 

Figure 6. Differentially abundant features identified by LEfSe that characterize significant differences between young HCs 
(n=27) and young MDD patients (n=25). 
 

 
 

Figure 7. Differentially abundant features identified by LEfSe that characterize significant differences between middle-aged 
HCs (n=44) and middle-aged MDD patients (n=45). 
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the receiver operating characteristic (ROC) curve 

analysis, we found that Clostridium_sensu_stricto, 

Clostridium_XI and Clostridium_XVIII showed good 

diagnostic performance (area under the curve (AUC) 

>0.7) in diagnosing young MDD patients (Figure 8A–

8C). We also found that Anaerostipes, Streptococcus, 

Blautia, Faecalibacterium and Roseburia showed good 

diagnostic performance (AUC>0.7) in diagnosing 

middle-aged MDD patients (Figure 8D–8H). 

 

Effects of age on microbial abundances 

 

Using the LEfSe approach, we identified four 

differentially abundant bacterial taxa (the Family  

level) between young HCs and middle-aged HCs 

(Streptococcaceae, Coriobacteriaceae, Carnobacteriaceae 

and Clostridiales_Incertae_Sedis_XIII) (Figure 9A);  

we also identified six differentially abundant bacterial 

taxa (the Family level) between young MDD patients  

and middle-aged MDD patients (Prevotellaceae, 

Acidaminococcaceae, Veillonellaceae Peptostrep-

tococcaceae, Lachnospiraceae and Ruminococcaceae) 

(Figure 9B). Meanwhile, using the LEfSe approach, we 

identified five differentially abundant bacterial taxa (the 

Genus level) between young HCs and middle-aged HCs 

(Streptococcus, Veillonella, Granulicatella, Collinsella 

and Megamonas) (Figure 10A). All these bacterial  

taxa were significantly decreased in middle-aged  

HCs; we also identified nine differentially abundant 

bacterial taxa (the Genus level) between young MDD 

patients and middle-aged MDD patients (Megamonas, 

Prevotella, Phascolarctobacterium, Anaerostipes, 

Clostridium_XVIII, Gordonibacter, Eggerthella, 

Clostridium_XI and Turicibacter) (Figure 10B).  

 

Effects of medication on microbial abundances 

 

To determinate the homogeneity of gut microbiota 

composition between medicated and non-medicated 

MDD patients, we firstly used the middle-aged HCs and 

non-medicated middle-aged MDD patients to built 

OPLS-DA model (Figure 11A). The results showed that 

41 of the 44 middle-aged HCs and 30 of the 31 non-

medicated middle-aged MDD patients were correctly 

diagnosed by the OPLS-DA model. Then, we used the 

built model to predict class membership of 14 

medicated middle-aged MDD patients. The T-predicted 

scatter plot showed that 11 of the 14 medicated middle-

aged MDD patients were correctly predicted (Figure 

11B). These finding indicated that the gut microbiota 

composition of non-medicated middle-aged MDD 

patients were distinct from middle-aged HCs, but not 

from medicated middle-aged MDD patients. 

 

DISCUSSION 
 

Individuals in the different phases of life cycle (named 

children, young, middle-aged and elderly) present 

different biological characteristics and disease risks 

[20]. Understanding the different characteristics of 

patients in particular age phases could be facilitated to 

prevent and treat diseases. According to the World 

Health Organization reported, the prevalence rates of 

depression vary by age, peaking in older adulthood. It 

also occurs in children, but at a lower level compared 

with older age groups. Here, we conducted this work to 

investigate how the gut microbiota composition 

changed in different age phases of MDD patients, and 

found some age-specific differential gut microbiota in 

 

 
 

Figure 8. Differential taxa (at the genus level) with AUC>0.7 in diagnosing MDD patients from HCs. (A–C) the diagnostic 

performances of three taxa in diagnosing young MDD patients (n=25) from young HCs (n=27); (D–H) the diagnostic performances of five taxa 
in diagnosing middle-aged MDD patients (n=45) from middle-aged HCs (n=44).  
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Figure 9. 16S rRNA gene sequencing reveals changes to microbial abundances at family level (Mean±SEM). (A) the abundances 

of four taxonomic levels were significantly changed between young HCs (n=27) and middle-aged HCs (n=44); (B) the abundances of six 
taxonomic levels were significantly changed between young MDD patients (n=25) and middle-aged MDD patients (n=45). 
 

 
 

Figure 10. 16S rRNA gene sequencing reveals changes to microbial abundances at genus level (Mean±SEM). (A) the abundances 

of five taxonomic levels were significantly changed between young HCs (n=27) and middle-aged HCs (n=44); (B) the abundances of nine 
taxonomic levels were significantly changed between young MDD patients (n=25) and middle-aged MDD patients (n=45). 
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MDD patients. Our results could provide a new 

perspective on exploring the pathogenesis of MDD. 

 

Many previous studies focused on the effects of gut 

microbiota on brain functions [21, 22]. However, few 

studies have taken the effects of age on gut microbiota 

into consideration when exploring the pathogenesis of 

MDD. Our previous study found that the relative 

abundances of Bacteroidetes and Actinobacteria were 

significantly decreased and increased, respectively, in 

MDD patients as compared with HCs [15]. But, in this 

study, we found that the relative abundances of 

Firmicutes and Bacteroidetes were significantly 

decreased and increased, respectively, in young MDD 

patients as compared with young HCs, and the relative 

abundances of Bacteroidetes and Actinobacteria were 

significantly decreased and increased, respectively, in 

middle-aged MDD patients as compared with middle-

aged HCs. This disparity might be caused by the 

different age structures. Meanwhile, only 35 key 

discriminatory OTUs were significantly changed in both 

young (92 key discriminatory OTUs) and middle-aged 

(127 key discriminatory OTUs) MDD patients. 

Moreover, the differentially abundant bacterial taxa in 

young and middle-aged MDD patients were totally 

different at both Family level and Genus level. These 

results demonstrated that it was necessary to identify the 

age-specific differential gut microbiota in patients with 

MDD. 

 

As far as we known, gut microbiota composition and its 

function could be easily influenced by many factor, 

such as gender, age, life experiences, dietary habit and 

genetics. Mariat et al reported that the 

Firmicutes/Bacteroidetes ratio of the human microbiota 

could change with age [23]. Interestingly, here we 

found that the relative abundance of Firmicutes was 

significantly decreased in young MDD patients, but not 

in middle-aged MDD patients; the relative abundance of 

Bacteroidetes was significantly increased and 

decreased, respectively, in young and middle-aged 

MDD patients. In our previous studies, we did not 

analyze the potential effects of medication on gut 

microbiota composition in MDD patients [15, 16]. Here, 

due to the small samples of young group, we only used 

the middle-aged group to analyze the effects of 

 

 
 

Figure 11. Assessment of gut microbiota composition in non-medicated and medicated middle-aged MDD patients. (A) 

middle-aged HCs (n=44) and non-medicated middle-aged MDD patients (n=31) were effectively separated by the built OPLS-DA model; (B) 14 
medicated middle-aged MDD patients were correctly predicted by the model. 
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medication on the gut microbiota composition. The 

results showed that the medication seemed to have little 

effects on gut microbiota composition in MDD patients. 

However, our findings had to be cautiously interpreted 

due to the relatively small samples using to analyze the 

effects of medication on gut microbiota composition.  

 

The relative abundance of genus Clostridium_XVIII 

was not found to be significantly different between 

MDD patients and HCs in our previous study [15]. 

However, in this study, we found that the relative 

abundance of genus Clostridium_XVIII was 

significantly decreased in young MDD patients 

compared with young HCs, while increased in middle-

aged MDD patients compared with middle-aged HCs. 

The reason of this disparity might be that age could 

significantly affect the relative abundance of genus 

Clostridium_XVIII in MDD patients, but not HCs: i) 

compared to young MDD patients, the middle-aged 

MDD patients had a significantly higher relative 

abundance of genus Clostridium_XVIII; and ii) the 

relative abundance of genus Clostridium_XVIII was 

similar between young and middle-aged HCs. 

Meanwhile, we found that the relative abundance of 

genus Megamonas was significantly decreased in both 

middle-aged HCs and middle-aged MDD patients 

compared to their respective young populations. In 

addition, most of differential bacterial taxa were 

significantly decreased in middle-aged HCs compared 

with young HCs, but only about half of differential 

bacterial taxa were significantly decreased in middle-

aged MDD patients compared with young MDD 

patients. Lozupone et al. reported that gut microbiota 

could not only simply determine the certain host 

characteristics, but also respond to signals from host via 

multiple feedback loops [24]. Therefore, our results 

suggested that age might have the different effects on 

the gut microbiota composition of HCs and MDD 

patients, and should always be considered in 

investigating the relationship between MDD and gut 

microbiota. 

 

Limitations should be mentioned here. Firstly, the 

number of HCs and MDD patients was relatively small, 

and future works were still needed to further study and 

support our results. Secondly, we only explored the age-

specific differential changes on gut microbiota 

composition in patients with MDD; future studies 

should further investigate the functions of these 

identified differential gut microbiota using 

metagenomic technology. Thirdly, all included subjects 

were from the same site and ethnicity; thus, the 

potential site- and ethnic-specific biases in microbial 

phenotypes could not be ruled out, which might limit 

the applicability of our results [25–28]. Fourthly, only 

young and middle-aged groups were recruited, future 

studies should recruit old-aged group and children 

group to further identify the age-specific differential gut 

microbiota in the different phases of life cycle. Fifthly, 

we only investigated the differences in gut microbiota 

between HCs and MDD patients on phylum level, 

family level and genus level. Future studies were 

needed to further explore the differences on other 

levels, such as class level and species level. Sixthly, we 

did not collect information on smoking, a factor which 

could influence the gut microbiota composition. Future 

studies were needed to analyze how the smoking 

influenced the gut microbiota composition in the 

different phases of life cycle of subjects. Finally, we 

found that the medication status of subjects could not 

significantly affect our results. However, limited by the 

relatively small samples, this conclusion was needed 

future studies to further validate. 

 

In conclusion, in this study, we found that there were 

age-specific differential changes on gut microbiota 

composition in patients with MDD, and identified some 

age-specific differentially abundant bacterial taxa in 

MDD patients. Our findings would provide a novel 

perspective to uncover the pathogenesis underlying 

MDD, and potential gut-mediated therapies for MDD 

patients. Limited by the small number of subjects, the 

results of the present study were needed future studies 

to validate and support. 

 

MATERIALS AND METHODS 
 

Subject recruitment 

 

This study was approved by the Ethical Committee of 

Chongqing Medical University and conformed to the 

provisions of the Declaration of Helsinki. In total, there 

were 27 young HCs (aged 18-29 years) and 25 young 

MDD outpatients (aged 18-29 years) in the young 

group; there were 44 middle-aged HCs (aged 30-59 

years) and 45 middle-aged MDD outpatients (aged 30-

59 years) in the middle-aged group. Most of MDD 

patients were first-episode drug-naïve depressed 

subjects. There were only seven young MDD patients 

and 14 middle-aged MDD patients receiving 

medications. The detailed information of these included 

subjects was described in Table 1. All HCs were 

recruited from the Medical Examination Center of 

Chongqing Medical University, and all MDD patients 

were recruited from the psychiatric center of Chongqing 

Medical University. MDD patients were screened in the 

baseline interview by two experienced psychiatrists 

using the DSM-IV (Diagnostic and Statistical Manual 

of Mental Disorders, 4th Edition)-based Composite 

International Diagnostic Interview (CIDI, version2.1). 

The Hamilton Depression Rating Scale (HDRS) was 

used to assess the depressive symptoms of each patient, 
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Table 1. Demographic and clinical characteristics of MDD patients and HCsa. 

 Young group (18-29 years) Middle-aged group (30-59 years) 

 HC MDD p-value HC MDD p-value 

Sample Size 27 25 – 44 45 – 

Age (years)c 24.96±2.31 24.0±3.74 0.26 47.16±8.07 44.96±7.76 0.19 

Sex (female/male) 19/8 18/7 0.89 34/10 31/14 0.37 

BMI 21.53±2.37 22.13±2.24 0.35 23.23±2.33 22.64±2.64 0.26 

Medication (Y/N) 0/27 7/18 – 0/44 14/31 – 

HDRS scores 0.29±0.61 22.64±3.18 <0.00001 0.34±0.74 23.0±4.61 <0.00001 

aAbbreviations: HDRS: Hamilton Depression Rating Scale; HCs: healthy controls; MDD: major depressive disorder; BMI: body 
mass index. 
 

and those patients with HDRS score >=17 were 

included. Meanwhile, MDD patients were excluded if 

they had other mental disorders, illicit drug use or 

substance abuse, and were pregnant or menstrual 

women. HCs were excluded if they were with mental 

disorders, illicit drug use or systemic medical illness. 

All the included subjects provided written informed 

consent before sample collection. 

 

16s rRNA gene sequencing 

 

We used the standard PowerSoil kit protocol to extract 

the bacterial genomic DNA from the fecal samples. 

Briefly, we thawed the frozen fecal samples on ice and 

pulverized the samples with a pestle and mortar in 

liquid nitrogen. After adding MoBio lysis buffer into 

the samples and mixing them, the suspensions were 

centrifuged. The obtained supernatant was moved into 

the MoBio Garnet bead tubes containing MoBio buffer. 

Subsequently, we used the Roche 454 sequencing (454 

Life Sciences Roche, Branford, PA, USA) to extract the 

bacterial genomic DNA. The extracted V3-V5 regions 

of 16S rRNA gene were polymerase chain reaction-

amplified with bar-coded universal primers containing 

linker sequences for pyrosequencing [29].  

 

The Mothur 1.31.2 (http://www.mothur.org/) was used 

to quality-filtered the obtained raw sequences to 

identify unique reads [30]. Raw sequences met any one 

of the following criteria were excluded: i) less than 

200bp or greater than 1000bp; ii) contained any 

ambiguous bases, primer mismatches, or barcode 

mismatches; and iii) homopolymer runs exceeding six 

bases. The remaining sequences were assigned to 

operational taxonomic units (OTUs) with 97% 

threshold, and then taxonomically classified according 

to Ribosomal Database Project (RDP) reference 

database [31]. We used these taxonomies to construct 

the summaries of the taxonomic distributions of OTUs, 

and then calculated the relative abundances of gut 

microbiota at different levels. The abovementioned 

procedure and most of data were from our previous 

studies [15, 16].  

 

Statistical analysis 

 

Richness was one of the two most commonly used alpha 

diversity measurements. Here, we used two different 

parameters (Chao1 and ACE) to estimate the OTU 

richness [32, 33]. The orthogonal partial least squares 

discriminant analysis (OPLS-DA) was a multivariate 

method, which was used to remove extraneous variance 

(unrelated to the group) from the sequencing datasets. The 

LEfSe was a new analytical method for discovering the 

metagenomic biomarker by class comparison. The 

bacterial taxa with LDA score>2.0 were viewed as the 

differentially abundant bacterial taxa responsible for the 

differences between different groups. Here, both OPLS-

DA [34, 35] and LEfSe were used to reduce the 

dimensionality of datasets and identify the differentially 

abundant bacterial taxa (the Family level and Genus level) 

that could be used to characterize the significant 

differences between HCs and MDD patients. Meanwhile, 

we used the Random Forest algorithm to identify the 

critical discriminatory OTUs. The ROC curve analysis 

was used to assess the diagnostic performance of these 

identified differential bacterial taxa. The AUC was the 

evaluation index. Finally, we used the LEfSe to reveal the 

changes of microbial abundances at Family level and 

Genus level in HCs and MDD patients, respectively. 
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