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INTRODUCTION 
 
Breast cancer is one of leading causes of cancer death for 
females worldwide [1]. The morbidity of breast cancer 
continues to rise over the past few decades, which makes 
breast cancer an increasing global health issue. 
 
Complex diseases, including breast cancer, are not 
caused by a single gene mutation. Instead, they are the 
consequence of multifaceted dysfunctions, including 
protein/coding genes, non-coding RNAs and their 
epigenetic modification [2, 3]. Disease risks of involved 
genes spread along the links of related biological 
networks since most genes execute their cellular  

 

functions by interacting with other genes [4, 5]. Disease-
associated genes do not scatter randomly in networks, 
but tend to interact with each other. A tightly clustered 
subgraph of disease-associated genes from the same 
network neighborhood forms a disease risk module with 
more internal connections than expected randomly in the 
whole network [6]. Previous studies have shown that 
within a disease risk module, genes present significant 
similarities in terms of expression, function and disease 
association for complex diseases, such as cancers  
and cardiovascular diseases [7, 8]. Therefore, the 
identification of disease risk modules could contribute to 
understanding the molecular mechanisms underlying 
breast cancer. 
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ABSTRACT 
 
Breast cancer is one of the most common malignant cancers among females worldwide. This complex disease is 
not caused by a single gene, but resulted from multi-gene interactions, which could be represented by 
biological networks. Network modules are composed of genes with significant similarities in terms of 
expression, function and disease association. Therefore, the identification of disease risk modules could 
contribute to understanding the molecular mechanisms underlying breast cancer. In this paper, an integrated 
disease risk module identification strategy was proposed according to a multi-objective programming model for 
two similarity criteria as well as significance of permutation tests in Markov random field module score, 
function consistency score and Pearson correlation coefficient difference score. Three breast cancer risk 
modules were identified from a breast cancer-related interaction network. Genes in these risk modules were 
confirmed to play critical roles in breast cancer by literature review. These risk modules were enriched in breast 
cancer-related pathways or functions and could distinguish between breast tumor and normal samples with 
high accuracy for not only the microarray dataset used for breast cancer risk module identification, but also 
another two independent datasets. Our integrated strategy could be extended to other complex diseases to 
identify their risk modules and reveal their pathogenesis. 
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Disease risk modules could be detected directly from 
undirected networks, i.e. gene/protein interaction 
networks and co-expression networks, by available tools. 
For example, Cytoscape plugin MCODE has been 
applied to disease risk module detection from interaction 
networks for lung adenocarcinoma [9], non-small-cell 
lung cancer [10], colorectal cancer [11] and 
inflammatory bowel diseases [12]. In co-expression 
networks, disease risk modules were detected using 
GraphWeb for pancreatic ductal adenocarcinoma [13], 
or by weighted gene co-expression network analysis 
(WGCNA) for atopic dermatitis [14] and Alzheimer’s 
disease [15]. 
 
Disease risk modules could also be detected by merging 
or extending cliques. In graph theory, a clique in a 
network is a fully connected subgraph where every two 
nodes are connected by an edge [16]. Cliques with 
disease-related genes are associated with complex 
diseases and are of great value to uncovering disease 
pathogenesis since perturbation of any gene in a clique 
will directly destroy the function of its neighbors. Disease 

risk modules were detected by merging cliques highly 
overlapped for ankylosing spondylitis [17], congenital 
heart defects in Down syndrome [18] and narcolepsy 
[19], or by extending cliques for multiple diseases [20]. 
 
Mathematical programming has been used to solve 
network reconstruction problems to achieving globally 
optimal number of edges and number of quantitative 
differences [21]. Such kind of programming could also be 
applied to module identification for optimal disease 
association. Thus, in this paper, according to a multi-
objective programming model for two similarity criteria 
maximization as well as significance in module score 
based on Markov random field (MRF), consistency score 
of functions and difference score for Pearson correlation 
coefficient (PCC), an integrated disease risk module 
identification strategy was proposed to identify breast 
cancer risk modules from a breast cancer-related 
interaction network. The association of these risk modules 
with breast cancer was validated by confirmation rate of 
literature review, functional enrichment analysis, and 
classification accuracy (Figure 1). 

 

 
 

Figure 1. A schematic diagram of the integrated breast cancer risk module identification strategy. 
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RESULTS 
 
Primary modules 
 
After evaluating differential information of genes with 
our two measurements (see Materials and Methods), 
218 differentially expressed genes (DEGs) and 1209 
differential expression variance genes (DEVGs) were 
obtained. Hence, 1382 differential genes were screened 
out from the microarray dataset. 
 
161 cliques containing DEGs or DEVGs with >4 nodes 
were mined from the breast cancer-related interaction 
network. After merging cliques/subgraphs with extent of 
overlapping for seed genes in different cliques S > 0.8 
(see Materials and Methods), 6 primary modules were 
discovered (Table 1). 
 
Candidate modules 
 
Corresponding to primary modules, 6 candidate modules 
were discovered based on two criteria maximization 
using a multi-objective programming model (see 
Materials and Methods, Figure 2). 
 
Since only seed genes were contained in Module 4 and 
6, Module 1-3 and 5 were candidate modules for breast 
cancer risk module identification. 
 
Breast cancer risk modules 
 
Module score W based on MRF, consistency score F of 
functions and difference score for PCC were calculated 
for candidate modules and 1,000 random modules with 
the same number of genes. According to the significance 
of permutation tests for candidate modules (see Materials 
and Methods), 3 breast cancer risk modules were 
identified (Figure 3) involving 16 seed genes and 44 non-
seed genes (Figure 4). 8 non-seed genes were in all three 
breast cancer risk modules. 
 
Validation of breast cancer risk modules 
 
The association of these risk modules with breast cancer 
was evaluated during the validation process from three 
aspects (see Materials and Methods). 
 
Literature review 
 
A literature review was carried out using the  
online database PubMed (https://www.ncbi.nlm.nih.gov/ 
pubmed) for non-seed genes in 3 breast cancer risk 
modules. It was showed that 75% (33/44) non-seed 
genes were associated with breast cancer (~70% for each 
module, Table 2), demonstrating disease association of 
risk modules identified by our integrated strategy. 

Table 1. Primary modules. 

 Number 
of genes 

Number of 
seed genes 

Number of 
non-seed genes 

Primary module 1 91 15 76 
Primary module 2 61 14 47 
Primary module 3 59 13 46 
Primary module 4 6 5 1 
Primary module 5 7 5 2 
Primary module 6 4 3 1 
 

In literature, 5 of 8 common non-seed genes in all three 
breast cancer risk modules were verified. Ling et al. 
found that the mRNA expression level of PIK3C3 was 
steadily increased during breast cancer progression and 
elevated at stage IV [22]. MAPK14, as one of the hub 
target genes in a PPI network constructed by Wang  
et al., had the potential to be used as candidate targets for 
breast cancer treatment [23]. 
 
For other non-seed genes in breast cancer risk modules, 
a transcriptomic signature of BMP4 signaling exhibited 
by primary ER+ breast tumor patients was predictive of 
improved disease outcome or an improved biologic 
response to the treatment. This highlighted BMP4 and its 
downstream pathway activation as a therapeutic 
opportunity in ER+ breast cancer [24]. Considerable 
evidence has implicated WT1 in the development, 
pathogenesis and therapy of breast cancer [25]. For 
example, WT1 expression levels in breast cancers were 
significantly higher than in control tissue [26]. WT1 has 
also been linked with in breast cancer malignant 
transformation, and its overexpression associated with 
reduced susceptibility to drug treatment [27]. ETS1 has 
versatile roles during the cellular processes of various 
types of cancers. It was often highly expressed in breast 
cancer samples and mediated migration and invasion of 
human breast cancer cells [28]. 
 
These non-seed genes in our risk modules played vital 
roles in the development, pathogenesis or signaling of 
breast cancer. Therefore, these genes could act as 
potential breast cancer genes. 
 
Functional enrichment analysis 
 
To assess the functional information of genes in breast 
cancer risk modules, genes in each module were tested 
for enrichment against KEGG pathways and GO 
functions (GO-terms of biological process and molecular 
function) using the Enrichr tool, respectively. 
 
Breast cancer risk modules were enriched in numerous 
pathways and functions, especially breast cancer-related 

https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
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Figure 2. Candidate modules. 
 

 
 

Figure 3. P-values of permutation tests for candidate modules. 
 

 
 

Figure 4. Breast cancer risk modules. Red nodes are seed genes, yellow are confirmed non-seed genes and blue are unconfirmed non-
seed genes. 
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Table 2. The confirmation rate of non-seed genes in 
breast cancer risk modules. 

 
Number of 
non-seed 

genes 

Number of 
confirmed  

non-seed genes 

Confirmation 
rate 

Module 1 28 20 71.43% 
Module 2 15 11 73.33% 
Module 3 22 15 68.18% 
Total 44 33 75.00% 
 

ones (Figure 5). It was worth noting that genes from all 
three risk modules, including seed genes and non-seed 
genes, were enriched in the “breast cancer” pathway 
(Figure 6), indicating their roles in the process of  
breast cancer. Different locations of genes from 
different modules demonstrated various functions of 
modules. 
 
Other pathways and functions enriched by single breast 
cancer risk module or all risk modules were also closely 
associated with breast cancer. “Positive regulation of cell 
migration” was also a breast cancer-related biological 
process, which was enriched by only non-seed genes in 
Module 1. Bisphosphonates, antiresorptive drugs, might 
be developed as a therapeutic option for breast cancer 
since it significantly decreased cancer cell migration in a 
dose-dependent manner [29]. Oxidative stress, the 
process of oxidative damage caused by Module-2-
enriched function “Regulation of reactive oxygen 

species metabolic process” [30], and “Regulation  
of inflammatory response” enriched by genes in  
Module 3, were both associated with breast cancer 
development [31]. 
 
For functions enriched by all risk modules, “PI3K-Akt 
signaling pathway” is an important signal transduction 
pathway in cells, which was closely associated with the 
lymph node metastasis of breast cancer, and could affect 
breast cancer progression and patient prognosis [32, 33]. 
“Cellular senescence” is a complex process that was 
found to be a tumor-suppressive mechanism leading to 
suppressed breast cancer cell proliferation by inhibiting 
cell proliferation [34, 35]. “Positive regulation of 
transcription” played significant roles in breast cancer 
development since it was the function enriched in by 
genes identified from many breast cancer-related 
researches [36]. It was also revealed that via participating 
in regulation of transcription biological processes, 
biological elements were involved in the progression of 
breast cancer [37]. An aberrant apoptotic process can 
lead to several pathological conditions, such as tumori-
genesis and cancer metastasis [38]. Thus, mediating 
through active “regulation of the apoptotic process”, 
drugs could effect on breast cancer cells [39]. DNA-
dependent protein kinase has an important role with 
DNA double-strand break repair. DNA-dependent 
“protein kinase activity” of peripheral blood lymphocytes 
is associated with risk of breast cancer since the activity 
in breast cancer patients was significantly lower than that 
in normal [40]. 

 

 
 

Figure 5. Pathways and functions enriched by breast cancer risk modules. 
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Most genes in our breast cancer risk modules, especially 
non-seed genes, were enriched in breast cancer-related 
pathways or functions, some of which were also related 
to cancer hallmark-associated GO terms, such  
as “HALLMARK_APOPTOSIS” and “HALLMARK_ 
PI3K_AKT_MTOR_SIGNALING”, which indicated the 
disease association of our risk modules. 
 
Classification performance 
 
With genes in breast cancer risk modules as features, 
breast tumor and normal samples were classified by  
the SVM classifier. Using LOOCV, all three risk 
modules achieved an accuracy of approximate 85% for 
breast tumor and normal samples of GSE15852, 
although only ~33% genes in each module were 
differential genes. 
 
In order to compare the classification performance of 
breast cancer risk modules and that of only seed genes in 
these modules, the classification accuracy was also 

computed based on SVM classifier with seed genes as 
features. The classification accuracy was ~83% for seed 
genes in each risk module, which was inferior to that of 
breast cancer risk modules (Figure 7). 
 
These results exhibited that our risk modules with seed 
genes and non-seed genes could distinguish between 
breast tumor and normal samples with higher accuracy 
than with only seed genes. 
 
Additionally, to assess classification significance of risk 
modules, 100 random gene sets of the same size were 
selected from the breast cancer-related interaction 
network. AUC values were calculated utilizing SVM 
classifier with genes of random gene sets as features. The 
classification accuracy of breast cancer risk modules 
outperformed the accuracy of random gene sets of the 
same size (AUC = ~0.82). This showed that risk modules 
could classify breast tumor and normal samples 
effectively with significantly better performance than 
only seed genes or random selected ones. 

 

 
 

Figure 6. The breast cancer pathway. Red nodes are seed genes and yellow are non-seed genes. Modules these genes belong to 
are marked beside them. 
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Then, the classification with genes in breast cancer risk 
modules as features was conducted on another two 
datasets, GSE70947 from another platform and samples 
collected from The Cancer Genome Atlas (TCGA), the 
accuracy of which was compare with that of seed  
genes in risk modules (Table 3). Since the size of breast 
tumor in TCGA was much larger than that of normal 
samples, tumor samples with the same number as 
normal ones (113) were randomly selected. The genes 
in breast cancer risk modules could also classify  
breast tumor and normal samples of the same size 
accurately (>0.86). 
 
Similar results that our risk modules with both seed genes 
and non-seed genes could distinguish between breast 
tumor and normal samples with higher accuracy than 
with only seed genes were also obtained for these two 
datasets. 
 
DISCUSSION 
 
In this paper, an integrated strategy was proposed to 
identify breast cancer risk modules according to a 

multi-objective programming model and significance in 
three scores. A total of 3 breast cancer risk modules 
were identified. ~70% non-seed genes in these risk 
modules were confirmed to play vital roles in the 
development, pathogenesis or signaling of breast 
cancer and could act as potential breast cancer genes. 
Most genes in our risk modules, including unconfirmed 
non-seed genes, were enriched in breast cancer-related 
pathways or functions. These risk modules could 
distinguish between breast tumor and normal samples 
with higher accuracy than seed genes in risk modules. 
These results indicated the disease association of breast 
cancer risk modules identified by our integrated 
strategy. 
 
In order to illustrate the robustness of our risk modules, 
risk modules were re-identified using 90% samples 
randomly selected from GSE15852. The process was 
repeated 100 times. Genes of risk modules from random 
samples were compared with those of breast cancer risk 
modules from all samples (Figure 8). More than 90% 
genes in risk modules from all samples were re-
identified by random samples. 

 

 
 

Figure 7. The ROC curves and AUC values of breast cancer risk modules and seed genes in these modules for GSE15852. 
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Table 3. The classification accuracy with breast cancer risk modules and seed genes in risk modules as features for 
another two datasets. 

 
Microarray dataset GSE70947 Expression data from TCGA 

Module 1 Module 2 Module 3 Module 1 Module 2 Module 3 
AUC values with breast cancer risk modules 0.899 0.893 0.889 0.985 0.989 0.992 
AUC values with seed genes in risk modules 0.804 0.778 0.783 0.974 0.976 0.977 
 

For the purpose of primary modules detection, cliques 
of the breast cancer-related interaction network were 
mined using Cytoscape MClique in our integrated 
strategy. MCODE and GraphWeb were also taken into 
consideration for primary module detection. It was 
showed that the number of genes in cliques/modules 
mined by MClique, MCODE and GraphWeb had great 
difference, while classification accuracy varied among 
the three module sets (Figure 9). Since cliques mined by 
MClique were smaller with more connections, larger 
AUC values and more similar genes, they were used for 
primary module detection in our integrated strategy. 
 
A multi-objective programming model based on 
maximization of two criteria, MI and PCC, was 
employed for candidate module discovery. Candidate 
modules based on individual criterion, MI or PCC, were 
also discovered. Breast tumor and normal samples were 
classified with these modules as features (Figure 10). 
Candidate modules discovered using both criteria could 
classify samples with higher accuracy and fewer genes 
than those using individual criterion in most cases, and 
were used for breast cancer risk module identification. 
 

 
 

Figure 8. The number of common genes in risk modules 
from all samples and from random samples. Blue dots 
represent the number of genes in breast cancer risk modules 
from all samples. Boxplots represent the distribution of the 
number of common genes in breast cancer risk modules from all 
samples and risk modules form random samples. 

To further demonstrate the effectiveness of our 
integrated strategy, genes removed from primary 
modules were compared to non-seed genes remained in 
breast cancer risk modules by classification accuracy. 
The accuracy of non-seed genes remained in breast 
cancer risk modules was higher than that of genes 
removed from primary modules (Table 4). These results 
indicated that non-seed genes in breast cancer risk 
modules were more related to breast cancer than the 
removed ones, supporting the effectiveness of our 
integrated strategy, especially the multi-objective 
programming model. 
 
Results of breast cancer risk modules and their 
validation demonstrated the effectiveness of our choice 
for different steps of our integrated strategy. 
Nevertheless, there are some potential limitations to 
our study. First, known disease-associated genes were 
required for disease-related interaction network 
construction. Second, expression similarity and 
difference as well as functions of genes were exploited 
for disease risk module identification in our integrated 
strategy, which might be affected by datasets used in 
the process. The other breast cancer microarray dataset 
GSE70947 was used to screen differential genes and 
identify breast cancer risk modules with our integrated 
strategy. Another two risk modules were identified. 
With more differential genes in these modules (~55%), 
they had a high classification accuracy (~0.85),  
which was still inferior to that of our risk modules 
identified from GSE15852 (>0.89) for GSE70947. This 
showed the effectiveness of our integrated strategy and 
breast cancer risk modules we identified. With other 
types of information available, they could also be 
integrated into our integrated strategy to improve its 
performance or reveal the molecular mechanism of 
metastasis [41]. 
 
Subtype (Basal, Her2, Luminal A (LumA) and Luminal 
B (LumB)) classification for breast cancer is of great 
significance for its clinical diagnosis and treatment. To 
assess the subtype classification ability of breast cancer 
risk modules, expression values of genes in these risk 
modules were used to classify different subtypes. All 
risk modules could distinguish between subtypes with 
high accuracy (Table 5). 
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Figure 9. The number of genes and classification accuracy for cliques/modules detected by MClique, MCODE and GraphWeb. 

 

 

 
 

Figure 10. The number of genes and AUC values for candidate modules discovered using different criteria. 
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Table 4. The classification accuracy of genes removed from primary modules and non-seed genes remained in breast 
cancer risk modules. 

 Genes removed from primary modules Non-seed genes remained in breast cancer risk modules 
Module 1 0.856 0.889 
Module 2 0.795 0.878 
Module 3 0.847 0.908 

 

Table 5. The classification accuracy of breast cancer risk modules for breast cancer subtypes. 

 Module 1 Module 2 Module 3 
Basal vs Her2 0.978 0.964 0.985 
Basal vs LumA 0.999 0.999 0.996 
Basal vs LumB 0.995 0.990 0.991 
Her2 vs LumA 0.978 0.983 0.972 
Her2 vs LumB 0.938 0.913 0.902 
LumA vs LumB 0.845 0.863 0.842 

 

In summary, breast cancer risk modules identified by our 
integrated strategy were confirmed to play critical roles 
in breast cancer by literature review, functional 
enrichment analysis, and classification accuracy. Our 
integrated breast cancer risk module identification 
strategy could be extended to other complex diseases for 
researchers to gain more thorough understanding of their 
pathogenesis. 
 
MATERIALS AND METHODS 
 
Data 
 
The microarray dataset GSE15852 (GPL96) was 
downloaded from Gene Expression Omnibus (GEO) 
database, which was composed of 43 human breast 
tumor tissues and their 43 paired normal tissues. 
 
Known breast cancer-associated genes were collected 
from the Catalogue of Somatic Mutations in Cancer 
(COSMIC) Cancer Gene Census (CGC, https://cancer. 
sanger.ac.uk/census), the breast cancer gene database  
of the Tumor Gene Family of Databases (TGDB, 
http://www.tumor-gene.org/tgdf.html), ONGene (http:// 
www.ongene.bioinfo-minzhao.org/) and the Network  
of Cancer Genes (NCG, http://ncg.kcl.ac.uk/ 
index.php). CGC is an expert-curated and wide-used 
source of genes driving human cancer [42]. TGDB 
contains information about genes which are targets for 
cancer-causing mutations with their historical relevance 
[43]. ONGene is a literature-based database for human 
oncogenes [44]. The latest version of NCG contains 
information of cancer genes from manually curated 
publications [45]. 32 breast cancer-associated genes from 
at least two databases were referred to as seed genes in 

our analysis to increase the confidence of our seed genes 
(Table 6). 
 
A complete gene/protein interaction network is of 
fundamental importance for the understanding of 
diseases [46]. Human protein interaction data were 
integrated from the HPRD [47], STRING [48], and 
KEGG [49] databases. All products of seed genes were 
used to determine a breast cancer-related interaction 
network by extracting direct interactions between seed 
and other proteins. The resulting network was centered 
on seed genes with 13136 interaction relationships 
between 5202 genes. 
 
Breast cancer risk module identification strategy 
 
An integrated disease risk module identification strategy 
was proposed and used to identify breast cancer risk 
modules. First, differential genes were screened from a 
breast cancer microarray dataset, and primary modules 
were detected by merging cliques containing differential 
genes from a breast cancer-related interaction network. 
Then, candidate modules were discovered using a multi-
objective programming model to maximize two 
similarity criteria. Finally, breast cancer risk modules 
were identified according to significance in module 
score based on MRF, consistency score of functions and 
difference score for PCC. 
 
Detection of primary modules 
 
Two measurements were used to evaluate differential 
information of genes: (1) after preprocessing, the 
significance analysis of microarrays (SAM) program 
was used for screening DEGs. The false discovery rate 

https://cancer.sanger.ac.uk/census
https://cancer.sanger.ac.uk/census
http://www.tumor-gene.org/tgdf.html
http://www.ongene.bioinfo-minzhao.org/
http://www.ongene.bioinfo-minzhao.org/
http://ncg.kcl.ac.uk/index.php
http://ncg.kcl.ac.uk/index.php
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Table 6. Breast cancer-associated genes and their source databases. 
 CGC TGDB ONGene NCG 
BARD1 √  √  

BRCA1 √ √  √ 
BRCA2 √ √  √ 
RB1 √ √  √ 
TP53 √ √  √ 
AKT1 √  √ √ 
ARID1A √   √ 
ARID1B √   √ 
BAP1 √   √ 
CASP8 √   √ 
CCND1 √ √ √ √ 
CDH1 √  √ √ 
CDKN1B √  √ √ 
CTCF √   √ 
EP300 √   √ 
ERBB2 √ √ √ √ 
ESR1 √ √  √ 
FOXA1 √   √ 
GATA3 √   √ 
IRS4 √   √ 
MAP2K4 √   √ 
MAP3K1 √   √ 
MAP3K13 √   √ 
NCOR1 √   √ 
NOTCH1 √   √ 
NTRK3 √   √ 
PBRM1 √   √ 
PIK3CA √  √ √ 
PPM1D √  √  
SMARCD1 √   √ 
TBX3 √   √ 
ZMYM3 √   √ 

 

(FDR) < 0.05 and the absolute value of log2fold change 
(FC) > 1 were selected as the significance threshold for 
DEG screening. (2) The variance S2 for expression 
values of gene x could measure how far its expression 
level in different samples is from the average expression 
level in all samples: 
 

  
( )2

2 1

1

N
ii

x x
S

N
=

−
=

−
∑

   (1) 

 
where 1( , , )Nx x

 represents expression value of gene 
x (N is the number of samples), x  is the average value 
for 1( , , )Nx x

. The variation value V was defined as 
the absolute value of difference between variance for 
genes in disease and normal samples: 

  ( )2 2 .normal tumorV abs S S= −  
  (2) 
 
The p value was evaluated by the number of times V of 
1000 random genes exceed that of the interested one. 
Genes with FDR-adjusted p value<0.05 were screened 
as DEVGs. 
 
DEGs and DEVGs were differential genes for further 
analysis. 
 
Cliques containing 4-8 genes were mined from the 
breast cancer-related interaction network using 
Cytoscape MClique. Only those containing differential 
genes were taken into consideration. These cliques were 
also centered on seed genes that overlapped with seed 
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genes in other cliques. The extent of overlapping  
for seed genes in different cliques was evaluated by 
Simpson index: 
 

  ( ) ( )
,

min ,
A B

S A B
A B
∩

=    (3) 

 
where A B∩  is common genes in cliques A and B, A  
and B  indicate the number of genes in module A and 
B, respectively. 
 
Cliques with 4 genes could be merged if the cutoff of 
Simpson index S was set to ~0.75. In this case, 
subgraphs with more than 2000 genes were obtained. 
Therefore, to identify more rational modules, cliques 
with 5-8 genes were used for clique merging. That is, 
each pair of cliques/subgraphs with S>0.8 were merged 
to form larger subgraphs until S for no subgraph pair 
was larger than 0.8. Subgraphs obtained at this step 
were named primary modules. 
 
Discovery of candidate modules 
 
Using a multi-objective programming model to maximize 
two criteria, candidate modules were discovered, under 
the hypothesis that genes more similar to seed genes may 
tend to be disease-related. The similarity of non-seed 
genes with seed ones in primary modules was measured 
by the sum of mutual information (MI) and the average 
of PCCs: 
 

 ( ) ( )max , , ,MI x y PCC x y∑   (4) 
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where 
ixn  and 

iyn  are the number of points within  
a certain radius determined by 3 nearest neighbors  
of ( ),i ix y , and the digamma function 

( ) ( ) ( )1 /t t d t dtψ −= Γ Γ . 
 

Through multiple iterations that calculations were 
performed for each non-seed gene y against each seed 
gene x in primary modules, candidate modules that 
satisfied the requirements could be obtained. 
 
Identification of breast cancer risk modules 
 
Breast cancer risk modules were identified based on 
significance of permutation tests for three scores of 
candidate modules. 
 
Module score W based on MRF 
For a candidate module with m genes, a multivariate 
random variable ( )1, , mf f f= 

 was defined as the 
expression difference of these genes between tumor  
and normal samples. It was assumed that the expression 
difference formed a MRF, and thus, the expression 
difference of a gene only depended on the expression 
difference of its direct interacting neighbor genes. 
 
Gibbs distribution was employed to specify the joint 
probability of f: 
 

  ( ) ( )11 G f
TP f e

K
−

=   (5) 

 
where K is a constant that guarantees the probability 
sum to be 1, T is a temperature parameter controlling 
the distribution sharpness, and 
 

( ) ( )
1 2
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which represents the differential level of seed genes with 
the similarity between non-seed genes of a candidate 
module. 
 
Therefore, the module score based on MRF was  
defined as 
 

( ) ( )
1 2
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,
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i

i C u v C u v

f fW M f MI u v
km d d∈ ∈

 
= − −  

 
∑ ∑ (7) 

 
where k is the number of interactions in the module M, 
C1 and C2 are the set of seed genes and non-seed genes 
in the module, fu and fv are expression differences 
assessed by the t-test between tumor and normal 
samples, and du and dv are the degree of non-seed genes 
u and v, respectively. 
 
Consistency score F of functions 
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The consistency scores of candidate modules were 
calculated based on functional consistency between 
seed genes and non-seed ones: 
  ( ) xyF M F=    (8) 
 

where x y
xy

x y

F F
F

F F

∩
=

∪
. Fx and Fy are functions annotated 

by seed gene x and non-seed gene y, respectively. 

x yF F∩  is the number of common functions, and 

x yF F∪  is the number of all functions x and y 
annotated. 
 
Difference score for PCC 
PCC between each gene pair in candidate modules for 
tumor and normal samples were calculated, 
respectively. PCC difference of a module was defined 
as the sum of PCC differences for gene pairs in it. 
 
 ( ) ( )

,
,

x y M
x y

PCC M PCC x y
∈
≠

= ∑   (9) 

 
Candidate modules with large values for all the three 
scores indicated their disease association. 
 
To obtain the significance of permutation tests for each 
candidate module, 1,000 random modules with the same 
number of genes were constructed. All of the three 
scores were calculated individually for these random 
modules. Scores significantly greater than the random 
ones (permutation tests, p <0.05) were considered 
significant. Breast cancer risk modules were identified 
as candidate modules significant in all 3 scores. 
 
Validation of breast cancer risk modules 
 
Validation for association of risk modules identified 
using our integrated strategy with breast cancer was 
evaluated from three aspects: 1) confirmation rate by 
literature review, 2) functional enrichment analysis 
(adjusted p < 0.05 was considered statistically 
significant), including Gene Ontology (GO) function 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analysis, performed through a latest 
enrichment tool Enrichr (http://amp.pharm. 
mssm.edu/Enrichr/) [50], and 3) classification accuracy 
determined by area under the receiver operating 
characteristic curve (AUC) evaluated with a leave-one-
out cross-validation (LOOCV) strategy after 
distinguishing breast tumor and normal samples by 
means of a support vector machine (SVM) classifier 
with genes in risk modules as features. The 
classification was conducted on not only the microarray 

dataset we used to identify breast cancer risk modules, 
but also another two independent datasets: one was 
another microarray dataset GSE70947 (GPL13607) 
downloaded from GEO composed of 148 human breast 
tumor tissues and 148 paired adjacent normal breast 
tissue, and the other was the expression data of 1102 
breast tumor and 113 normal samples collected from the 
TCGA database (https://portal.gdc.cancer.gov/) [51]. 
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