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INTRODUCTION 
 
Lung cancer is the most common cancer in the world, 
composed of 85% non-small cell lung cancer (NSCLC) 
and 15% small cell lung cancer (SCLC). Lung cancer 
alone led to about 1.6 million deaths in 2012, 
constituting 19% of all global cancer death [1, 2]. 
Several factors contribute to the unfavorable prognosis 
of lung cancer, including late diagnosis, inherent 
resistance to both chemotherapy and radiation therapy, 
acquired resistance to targeted therapy, and a high rate of  

 

relapse after the multimodal intervention [3]. To date, 
the prognostic prediction still mainly relies on 
histopathologic diagnosis and tumor staging system. 
However, the traditional approaches are not sufficient 
for precisely evaluating the outcomes of NSCLC 
patients. Therefore, it is imperative to develop robust 
and accurate prognostic biomarkers to help clinicians 
optimize therapeutic strategies. Over the past decades, 
considerable progress has been made in the 
understanding of tumor biology. One of the breakthrough 
findings is the involvement of macroautophagy (referred 

www.aging-us.com AGING 2019, Vol. 11, No. 23 

Research Paper 

Prognostic implications of autophagy-associated gene signatures in 
non-small cell lung cancer 
 
Yang Liu1,2,*, Ligao Wu3,*, Haijiao Ao2, Meng Zhao1, Xue Leng4, Mingdong Liu2, Jianqun Ma4, 
Jinhong Zhu1 
 
1Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, 
Heilongjiang, China 
2Department of Clinical Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China 
3Department of Pathology, BengBu Medical College, BengBu 233000, Anhui, China 
4Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China 
*Equal contribution 
 
Correspondence to: Jianqun Ma, Jinhong Zhu; email: jianqunma@aliyun.com, jinhongzhu625@gmail.com 
Keywords: NSCLC, autophagy, prognosis, gene signature, nomogram 
Received: August 31, 2019 Accepted: November 19, 2019  Published: December 7, 2019 
 
Copyright: Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 
(CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and 
source are credited. 
 
ABSTRACT 
 
Autophagy, a highly conserved cellular proteolysis process, has been involved in non-small cell lung cancer (NSCLC). 
We tried to develop a prognostic prediction model for NSCLC patients based on the expression profiles of 
autophagy-associated genes. Univariate Cox regression analysis was used to determine autophagy-associated 
genes significantly correlated with overall survival (OS) of the TCGA lung cancer cohort. LASSO regression was 
performed to build multiple-gene prognostic signatures. We found that the 22-gene and 11-gene signatures could 
dichotomize patients with significantly different OS and independently predict the OS in TCGA lung 
adenocarcinoma (HR=2.801, 95% CI=2.252-3.486, P<0.001) and squamous cell carcinoma (HR=1.105, 95% CI=1.067-
1.145, P<0.001), respectively. The prognostic performance of the 22-gene signature was validated in four GEO lung 
cancer cohorts. Moreover, GO, KEGG, and GSEA analyses unveiled several fundamental signaling pathways and 
cellular processes associated with the 22-gene signature in lung adenocarcinoma. We also constructed a clinical 
nomogram with a concordance index of 0.71 to predict the survival possibility of NSCLC patients by integrating 
clinical characteristics and the autophagy gene signature. The calibration curves substantiated fine concordance 
between nomogram prediction and actual observation. Overall, we constructed and verified a novel autophagy-
associated gene signature that could improve the individualized outcome prediction in NSCLC. 

mailto:jianqunma@aliyun.com
mailto:jianqunma@aliyun.com
mailto:jinhongzhu625@gmail.com
mailto:jinhongzhu625@gmail.com


www.aging-us.com 11441 AGING 

to thereafter as autophagy) in the development and 
therapeutic response of cancer [4–8]. 
 
Autophagy is a highly conserved catabolic cellular 
event degrading aggregated proteins and damaged 
organelles. The dynamic process includes induction, 
nucleation of the autophagosome, growth of the double-
membrane, sealing and merging with the lysosome, and 
the disintegration of engulfed materials [6]. Typically, 
basal levels of autophagy ubiquitously exist in cells to 
break down and reuse non-functional cellular contents 
as an intracellular source of nutrients. In response to 
diverse stimuli and stresses, such as starvation, hypoxia, 
and drug, the magnitude of autophagy may increase 
dramatically to provide intracellular nutrients and 
remove harmful contents (e.g., damaged mitochondria) 
[5]. It suggests that autophagy is subjected to highly 
orchestrated regulation. Several signaling pathways 
known to regulate key cellular events are also 
implicated in autophagy, including PI3K/AKT/mTOR, 
p53/DRAM, JAK-STAT, RAS, and AMPK/CaMKK 
signaling pathways [6]. 
 
Autophagy is a double-edged sword in carcinogenesis, 
which either suppresses or promotes tumor development 
in a context-dependent manner, depending on tumor type, 
clinical stage, genetic background, and even therapeutic 
regimen. In general, autophagy is thought to prevent 
carcinogenesis by eradicating oncogenic protein 
substrates, misfolded proteins, and damaged organelles. 
However, in established cancer, active autophagic  
flux is often responsible for recycling intracellular 
macromolecules and organelles to fuel the extraordinary 
demands of tumor growth [7]. Increasing studies have 
demonstrated the implication of autophagy in NSCLC 
[6]. Autophagy is critical to the maintenance of glucose 
homeostasis and tumor growth in lung cancer [7]. 
Notably, in tumors with mutations in the RAS pathway 
genes, hyperactivity of autophagy is indispensable to 
meet extraordinarily high demands of tumor cell 
metabolism [9]. Consistently, lung tumors driven by the 
Brafv600E mutation in mouse models were highly sensitive 
to autophagy inhibition [10]. Numerous studies have 
demonstrated that autophagy is involved in epidermal 
growth factor receptor tyrosine kinase inhibitor (EGFR-
TKI) acquired resistance in NSCLC, partially due to the 
inhibition of PI3K/AKT/mTOR signaling pathway [11–
14]. Moreover, high expression levels of autophagy-
related gene 10 (ATG10) were associated with an 
unfavorable prognosis in lung cancer [15]. These findings 
substantiate the involvement of autophagy in lung cancer 
and suggest that autophagy-associated genes may hold 
great promise as prognostic markers in lung cancer. 
 
However, autophagy is a complicated process involving 
hundreds of molecules. Therefore, compared to the 

single genes, a model integrating multiple autophagy-
associated genes may increase prognosis predicting 
accuracy. In contrast to the traditional individual 
molecular prognostic predictors, genomic profiling 
based on “Omics” has provided an option to predict the 
prognosis of patients with a set of genes, known as 
“classifiers” or “signatures.” With this in mind, we used 
Cox proportional hazard regression analysis to screen 
prognosis-related genes out of 148 genes autophagy-
associated in The Cancer Genome of Atlas (TCGA) lung 
cancer cohort. And then, the resulting genes were 
applied to the least absolute shrinkage and selection 
operator (LASSO) to establish an optimal risk model, 
followed by validation in several independent GEO lung 
cancer populations. Patients were divided into high and 
low risk groups by the median risk score. Survival 
analysis was carried out to assess the prognostic values 
of the risk score. The differences in the critical signaling 
pathways between high and low risk groups were 
explored using Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and 
Gene Set Enrichment Analysis (GSEA). Finally, a 
nomogram was built to predict the individuals’ survival 
probability by integrating clinical characteristics and the 
prognostic gene signature. 
 
RESULTS 
 
Characteristics of patients 
 
TCGA lung cancer cohorts consisted of a total of 490 
lung adenocarcinoma (LUAD) and 488 squamous cell 
lung cancer (LUSC) patients. The Demographic and 
clinical features of patients were listed in Supplementary 
Table 1. Kaplan-Meier survival curves were plotted for 
LUAD and LUAC cohorts regarding tumor (T), lymph 
(N), metastasis (M), and TNM stage (Supplementary 
Figure 1). 
 
Construction of prognostic signature for TCGA lung 
cancer cohorts 
 
We searched genes associated with autophagy in the 
GeneCards database. A total of 149 autophagy-associ-
ated genes with relevance score >7 were chosen to 
generate prognostic gene signatures. XBP1 was removed 
due to a lack of expression in TCGA lung cohorts. Gene 
expression profiles of 148 genes in normal and tumor 
tissues were separately displayed for TCGA-LUAD and 
TCGA-LUSC cohorts in the heatmaps (Supplementary 
Figure 2). All these genes were subjected to univariate 
Cox regression analysis. A total of 25 and 11 genes were 
significantly associated with the OS of TCGA-LUAD 
(Figure 1A and 1C) and TCGA-LUSC (Figure 1B and 
1D), respectively. These significant genes entered into 
LASSO COX regression analysis, and the regression 
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coefficient was computed. Coefficient of each gene in 
LUAD was illustrated in Figure 2A. While 22 genes were 
included, the model achieved the best performance 
(Figure 2C). Similar analyses were performed for the 
TCGA-LUSC cohort, ending up with 11 genes 
significantly associated with survival (Figure 2B, 2D, and 
2F). The functions, coefficients, and relevance scores of 
these genes were shown in Table 1, which included 

signal transduction molecules, components of 
autophagosome and lysosome, as well as enzymes 
facilitating the formation of autophagosomes. 
 
We examined the genetic alteration of these risk-
associated genes in lung cancer to understand their 
contributions to lung carcinogenesis (http://www. 
cbioportal.org).

 

 
 

Figure 1. Selection of autophagy genes associated with the survival of lung cancer by univariate Cox regression analysis.  
(A) Forest plot of autophagy genes associated with TCGA-LUAD survival. (B) Forest plot of autophagy genes associated with TCGA-LUSC 
survival. (C) Differential expression of the 25 selected genes between normal and LUAD tissues. (D) Differential expression of the 11 selected 
genes between normal and LUSC tissues. 
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Figure 2. Establishment of prognostic gene signature by LASSO regression analysis. LASSO coefficient profiles of the 25 genes in 
TCGA-LUAD (A) and 11 genes in TCGA-LUSC (B). A coefficient profile plot was generated against the log (lambda) sequence. Selection of the 
optimal parameter (lambda) in the LASSO model for TCGA-LUAD (C) and TCGA-LUSC (D). (E) Genetic alteration of the 22 genes in the TCGA-
LUAD cohort (TCGA, Provisional). (F) Genetic alteration of the 11 genes in the TCGA-LUSC cohort (TCGA, Provisional). 
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Table 1. Functions of genes in the prognostic gene signatures. 

Type No Gene symbol Full name Function 
Risk 

coefficient 
Relevance 

Score 
LUAD 1 RUBCNL Rubicon Like Autophagy Enhancer Promotes autophagosome maturation -0.28125 14.2 
 2 DMD Dystrophin Autophagy-related proteins -0.25704 12.01 

 3 DAPK2 Death Associated Protein Kinase 2 
Trigger cell survival, apoptosis, and 

autophagy 
-0.05171 7.65 

 4 PRKAG2 
Protein Kinase AMP-Activated Non-

Catalytic Subunit Gamma 2 
Autophagy-Related Proteins -0.10836 7.13 

 5 EPG5 
Ectopic P-Granules Autophagy Protein 5 

Homolog 
Clearance of autophagosomal cargo -0.15368 17.36 

 6 TFEB Transcription Factor EB Specifically recognizes lysosomal genes -0.03524 12.12 
 7 ATG16L2 Autophagy Related 16 Like 2 Autophagy-Related Proteins -0.00683 21.99 
 8 ATG4A Autophagy Related 4A Cysteine Peptidase Cysteine protease required for autophagy -0.11242 28.20 

 9 TECPR1 
Tectonin Beta-Propeller Repeat Containing 

1 
Tethering factor involved in autophagy -0.02462 9.24 

 10 ULK3 Unc-51 Like Kinase 3 Induce autophagy -0.01695 8.92 

 11 TMEM173 Transmembrane Protein 173 
Play role in  immune signaling and 

autophagy 
-0.00993 7.11 

 12 DRAM1 
DNA Damage Regulated Autophagy 

Modulator 1 
Lysosomal modulator of autophagy -0.0024 22.24 

 13 CTSD Cathepsin D Autophagy-related protein -0.00014 8.25 

 14 HLA-DRB1 
Major Histocompatibility Complex, Class 

II, DR Beta 1 
Autophagy-related protein -4.95E-05 8.69 

 15 UBC Ubiquitin C A polyubiquitin precursor -0.00031 7.13 
 16 MCL1 MCL1, BCL2 Family Apoptosis Regulator Anti-apoptotic protein 0.004578 8.11 
 17 EGFR Epidermal Growth Factor Receptor Regulation of autophagy 0.001047 7.09 
 18 BCL2L1 BCL2 Like 1 Anti- or pro-apoptotic regulators 0.004578 7.99 

 19 TP53INP2 
Tumor Protein P53 Inducible Nuclear 

Protein 1 
Dual regulator of transcription and 

autophagy. 
0.009989 13.27 

 20 RPTOR 
Regulatory Associated Protein Of MTOR 

Complex 1 
Autophagy-Related Protein 0.057963 8.91 

 21 ATG12 Autophagy- related 12 
Ubiquitin-like protein involved in 

autophagy vesicles formation. 
0.171853 34.22 

 22 PIK3CA 
Phosphatidylinositol-4,5-Bisphosphate 3-

Kinase Catalytic Subunit Alpha 
Autophagy-related proteins 0.077961 8.59 

LUSC 1 DRAM2 
DNA Damage Regulated Autophagy 

Modulator 2 
Plays a role in the initiation of autophagy -0.03131 19.68 

 2 VMA21 
Vacuolar ATPase Assembly Factor 

VMA21 
Autophagy-related proteins -0.0087 47.93 

 3 LAMP2 Lysosomal Associated Membrane Protein 2 
Plays an important role in chaperone-

mediated autophagy 
-0.00761 39.19 

 4 CTSD Cathepsin D Autophagy-related protein 0.000315 8.25 

 5 DRAM1 
DNA Damage Regulated Autophagy 

Modulator 1 
Lysosomal modulator of autophagy 0.002342 22.24 

 6 LRRK2 Leucine Rich Repeat Kinase 2 Positively regulates autophagy 0.005741 9.36 
 7 TRIM5 Tripartite Motif Containing 5 Activation of autophagy regulator BECN1 0.019368 7.57 
 8 ATG5 Autophagy Related 5 Autophagy-related protein 0.036959 40.78 
 9 PINK1 PTEN Induced Kinase 1 Autophagy of mitochondrion 0.053167 9.14 

 10 EPG5 
Ectopic P-Granules Autophagy Protein 5 

Homolog 
Clearance of autophagosomal cargo 0.081189 17.36 

 11 MAP1LC3C 
Microtubule Associated Protein 1 Light 

Chain 3 Gamma 
Senescence and Autophagy in Cancer 0.134076 17.15 
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Datasets of Provisional and PanCancer Atlas for LUAD 
or LUSC were applied (Lung Adenocarcinoma: 586 
samples in Provisional vs. 566 samples in PanCancer 
Atlas; Lung Squamous Cell Carcinoma: 511 samples in 
Provisional vs. 487 samples in PanCancer Atlas). Only 
patients/samples harboring both mutations and CAN 
data were included. In terms of LUAD, genes of interest 
are altered in 289 (57%) of 507 queried 
patients/samples (PanCancer Atlas) (supplementary 
Figure 3A), compared with that altered queried genes 
were detected in 151 (66%) of 230 patients/samples 
(Provisional) (Figure 2E). In terms of LUSC, queried 
genes are changed in 144 (31%) of 469 queried 
patients/samples (PanCancer Atlas) (supplementary 
Figure 3B), compared with 52 (29%) of 178 TCGA-
LUSC patients/samples (Provisional) (Figure 2F). The 
frequent genetic alterations suggested the crucial roles 
of these genes in the development of lung cancer. 
 
A risk score was computed for each patient formulated 
on the mRNA expression level and risk coefficient of 
each gene; that is, a linear combination of the mRNA 
level of each autophagy-associated gene weighted by its 
multivariable LASSO regression coefficient. The risk 
score was applied to predict prognosis, with the median 
risk score as a cutoff value to separate patients into high 
and low risk groups. A heatmap was plotted to show the 
gene expression profiles in high and low risk LUAD 
groups (Figure 3A). Genes (EGFR, MCL1, BCL2L1, 
TP53INP2, RPTOR, PIK3CA, and ATG12) with HR>1 
were considered as risk genes, while those (RUBCNL, 
DMD, EPG5, ATG4A, PRKAG2, DAPK2, TFEB, 
TECPR1, ULK3, TMEM173, ATG16L2, DRAM1, UBC, 
HLA-DRB1, and CTSD) with HR<1 as protective genes 
(Figure 3A). 
 
Risk scores were significantly associated with T, N, M, 
and clinical stage in TCGA-LUAD cohorts (Figure 3A). 
As illustrated, patients in the high risk group were more 
likely to express risk genes. In contrast, patients in the 
low risk group had a tendency to express protective 
genes (Figure 3A). The distributions of risk score of 
LUAD patients and the relationships between risk score 
and survival time were visualized in Figure 3C. Similar 
analyses were performed for TCGA-LUSC cohorts 
(Figure 3B and 3D). Following that, we evaluated the 
prognostic value of the risk score. Regarding TCGA-
LUAD, risk scores were significantly associated with 
overall survival (OS) (HR=2.920, 95% CI=2.412-3.534, 
P<0.001) in the univariate analysis (Figure 3E). 
Multivariate analysis revealed that the risk score was an 
independent prognostic predictor (HR=2.801, 95% 
CI=2.252-3.486, P<0.001) (Figure 4A). Kaplan-Meier 
cumulative curves indicated that patients with low risk 
scores survived significantly longer than those with 
high risk scores (Figure 4C). The risk score was also 

associated with TCGA-LUSC cohort, as evidenced by 
univariate (HR=1.103, 95% CI=1.066-1.142, P<0.001) 
(Figure 3F) and multivariate (HR=1.105, 95% 
CI=1.067-1,145, P<0.001) Cox regression analyses 
(Figure 4B), as well as Kaplan-Meier survival curve 
(Figure 4D). The highest area under the curve (AUC) 
values of the risk score was 0.744 and 0.684 for the 
TCGA-LUAD and -LUSC cohorts, respectively (Figure 
4E and 4F). Twenty-two autophagy-associated genes in 
LUAD were used for further analysis since they 
surpassed those genes in LUSC in predicting prognosis. 
The combination of stage and risk score could improve 
prognostic accuracy in TCGA-LUAD (Figure 4G) and 
TCGA-LUSC (Figure 4H) when compared to the stage 
or risk score alone. 
 
Identification of involved signaling pathways 
 
To interrogate potential signaling pathways related to  
the 22 autophagy-associated genes in lung cancer,  
we used them as baits to hook 50 most frequently changed 
neighbor genes in the TCGA-LUAD cohort 
(http://www.cbioportal.org). GO analysis indicated that 
these genes could be categorized into several essential 
biological processes, including biological regulation, 
response to the stimulus, developmental process, cell 
proliferation, cell proliferation, and growth (Figure 5A). 
These genes were linked and formed a tight protein-protein 
interaction network as indicated in Figure 5B 
(https://string-db.org/). KEGG analysis showed that the 72 
genes were mainly associated with autophagy, apoptosis, 
EGFR tyrosine kinase inhibitor (TKI) resistance, ubiquitin-
mediated proteolysis, PI3K-Akt signaling pathway, and 
VEGF signaling pathway (Figure 5C). The log2 of 
enrichment ratio and -log10 of FDR were visualized in the 
volcano plot (Figure 5C). Fold changes of mRNA 
expression levels of all protein-coding genes between high 
and low risk LUAD groups were calculated and pre-
ranked from high to low. GSEA analysis unveiled that 
altered genes were significantly enriched in several 
common pathways (Figure 5D). We found that the high 
risk group was significantly associated with the cell cycle 
(NES=2.80, P<0.0001), p53 signaling pathway 
(NES=1.937, P=0.0039), DNA replication (NES=1.90, 
P=0.0059), and ubiquitin-mediated proteolysis 
(NES=1.703, P=0.017). Meanwhile, the low risk group 
was negatively associated with mTOR (NES=-1.526, 
P=0.045), VEGF (NES=-1.529, P=0.033), and insulin 
(NES=-1.424, P=0.044) signaling pathways, as well as 
lysosome (NES=-1.747, P=0.024). 
 
Validation of the prognostic gene signature in the 
independent lung cancer cohorts 
 
We next evaluated the predictive power of the 
prognostic gene signature in the different lung cancer 

http://www.cbioportal.org/
http://www.cbioportal.org/
https://string-db.org/
https://string-db.org/
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Figure 3. Characteristics of the prognostic gene signature. (A–B) Heatmap of the autophagy-associated gene expression profiles  
in prognostic signature for TCGA-LUAD (A) and TCGA-LUSC (B). (C–D) The distribution of risk score and patient’s survival time, as well  
as status for TCGA-LUAD (C) and TCGA-LUSC (D). (C) The black dotted line is the optimum cutoff dividing patients into low risk and  
high risk groups. (E–F) Univariate Cox regression analysis. Forest plot of the association between risk factors and survival of TCGA-LUAD (E) 
or TCGA- LUSC (F). 
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Figure 4. Autophagy-associated gene signature was significantly related to survival in lung cancer. (A–B) Multivariate Cox 
regression analysis. The autophagy-associated gene signature was an independent predictor of prognosis in TCGA-LUAD (A) and TCGA- LUSC 
(B). (C–D) Kaplan-Meier analysis of TCGA lung cancer patients stratified by the median risk score. (C) The high risk scores were related to poor 
overall survival in TCGA-LUAD. (D) The high risk scores were correlated with poor overall survival in TCGA-LUSC. (E–F) Receiver operating 
characteristic (ROC) analysis of the sensitivity and specificity of the OS for the 22-gene risk score in TCGA-LUAD (E) and 11-gene risk score in 
TCGA-LUSC (F). The combination of stage and risk score could better predict prognosis in TCGA-LUAD (G) and TCGA-LUSC (H) than either one 
alone. 
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Figure 5. GO, KEGG, and GSEA analysis. (A) GO analysis of 22 autophagy-associated genes and 50 altered neighbor genes. (B) Proteins 
interacted with the 22 autophagy-associated genes (black circle) in TCGA-LUAD. (C) Volcano of autophagy genes-associated pathways.  
(D) GSEA analysis of the differentially expressed genes between high and low risk groups. 
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cohorts from the GEO database [16]. In each cohort, 
patients were separated into low and high risk groups 
based on the calculated risk score, and the OS of the 
two groups was compared. Okayama cohort consisted 
of 226 patients with primary stage I-II lung 
adenocarcinoma (GSE31210) [17] (Figure 6). Risk 
scores of patients spanned from -58 to -53 (Figure 6A). 
Patients at low risk survived significantly longer than 
those in high risk (HR=4.55, 95% CI=1.99-10.42, 
P=0.0003416, and maximum AUC=0.795) (Figure 6C 
and 6E). Rousseaux cohort included 293 patients with 
stage I-IV lung cancer (GSE30219), consisting of 71 
adenocarcinomas, 61 squamous cell tumors, 56 large 
cell neuroendocrine tumors, 39, Basaloid tumors, 24 
carcinoid tumors, 21 small cell carcinoma, and 7 other 
histology [18]. Risk scores ranged from -19 to -15 
(Figure 6B). The risk scores performed well, even in 
this mixed lung cancer cohort (HR=2.32, 95% CI=1.69-
3.18, P=2.173e-07, maximum AUC=0.789) (Figure 6D 
and 6F). In the Bild cohort of 109 lung cancer patients 
(GSE3141) [19], patients with smaller risk scores 
outperformed those with high risk in survival 
(HR=2.36, 95% CI=1.38-4.03, P=0.001652, maximum 
AUC=0.743) (Figure 7A, 7C, and 7E). Lastly, Lee’s 
study (GSE8894) was performed in 138 patients with 
stage IA-IIIB postoperative NSCLC (adenocarcinoma 
and squamous cancer cell lung cancer) [20]. Patients in 
the low risk group exhibited longer OS than the high 
risk group (HR=2.43, 95% CI=1.47-4.03, P=0.0005443, 
maximum AUC=0.702) (Figure 7B, 7D, and 7F). 
Overall, these results confirmed that this 22-autophagy 
gene signature was also predictive of survival in the 
independent validation lung cohorts. 
 
A personalized prognostic prediction model 
 
A nomogram is a robust tool that has been applied to 
quantitatively determine individuals’ risk in the clinical 
setting by integrating multiple risk factors [21–25]. We 
generated a nomogram to predict the probability of 3- 
and 5-year OS, by incorporating the 22-autophagy gene 
signature, age, gender, T, N, M, and TNM stage. As 
shown in Figure 8A, each factor was assigned points in 
proportion to its risk contribution to survival. 
Calibration curves indicated that actual and predicted 
survival matched very well (Figure 8B and 8C), 
especially for 5-year survival. For instance, a 70-year 
old (17.5 points) female patient (30 points) would 
obtain a total of 219 points, if she had stage I (0 points), 
stage_T3/4 (32 points), stage_M0 (0 points), and stage 
N1/2 disease (42 points), as well as high risk score (97.5 
points). Her 3-year and 5-year survival was about 42% 
and 12%, respectively. The nomogram was validated in 
the GSE30219 lung cancer cohort, and 3- and 5- year 
calibration curves were presented in Figure 8D and 
Figure 8E, respectively. 

DISCUSSION 
 
Autophagy is a multiple-step process tightly regulated 
by several fundamental signaling pathways. It requires 
the sequential formation of two molecular complexes: 
the ULK1 complex [UNC-51-like kinase 1 (ULK1), 
ULK2, FAK family a kinase-interacting protein of 200 
kDa (FIP200), ATG13L, and ATG101)] and the class III 
PI3K complex [vacuolar protein sorting 15 (VPS15), 
VPS34, Beclin-1, ATG14 or UV radiation resistant-
associated gene protein (UVRAG), and activating 
molecule in BECN1-regulated autophagy protein 1 
(AMBRA1)]. Moreover, two ubiquitin-like conjugation 
systems are responsible for the expansion and elongation 
of the autophagosome membrane: microtubule-
associated protein type 1 light chain 3 (MAP1LC3) -
lipid phosphatidylethanolamine (PE) conjugation system 
and ATG5-ATG12-ATG16L. 
 
Several studies have suggested the potential association 
between autophagy proteins and NSCLC survival. High 
expression levels of ATG10 were associated with an 
unfavorable prognosis in lung cancer [15]. In a Czech 
Republic population with IB-III NSCLC, patients with 
more LC3A-positive stone-like structures were 
significantly more likely to have the poor OS and 
disease-free survival (DFS) [26]. To date, hundreds of 
proteins are considered to be involved in the autophagy 
process. Given the importance of autophagy in lung 
cancer, it is reasonable to speculate that autophagy-
associated genes hold great promises in prognostic 
prediction and that multiple-gene signature derived 
from reliable algorithms would be superior to single 
molecules in predicting OS of NSCLC. 
 
In this study, we profiled the mRNA expression of 148 
autophagy-associated genes in the TCGA lung cancer 
cohort. Among them, 25 genes were associated with the 
survival of TCGA-LUAD, while 11 genes with the 
survival of TCGA-LUSC. We used LASSO regression 
to develop a 22-gene and an 11-gene prognostic 
signature for TCGA-LUAD and -LUSC cohort, 
respectively. The risk score was calculated for each 
patient by integrating mRNA expression levels and risk 
coefficients for selected genes. The risk scores 
significantly stratified patient outcomes in both TCGA-
LUAD and -LUSC cohorts. More importantly, the 
prognostic power of the 22-gene signature was 
validated in several independent GEO lung cohorts 
comprising of both LUAD and LUSC, as well as early-
stage lung cancer populations. As early as 2007, in an 
attempt to develop gene signatures correlated with 
NSCLC clinical outcomes, Chen et al. developed a five-
gene prognostic signature for NSCLC [27]. Since then, 
gene signature, also known as classifier, has been 
frequently used to predict prognosis in a variety of 
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Figure 6. Risk scores of 22-autophagy gene signature were significantly associated with survival in the Okayama and 
Rousseaux cohorts. The distribution of risk score (A), Kaplan-Meier survival curve (C), and ROC curve (E) for the Okayama cohort. The 
distribution of risk score (B), Kaplan-Meier survival curve (D), and ROC curve (F) for the Rousseaux cohort. 
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tumors [28–31], which even outperformed the TNM 
staging method in some cases [29]. Prognostic gene 
signatures based on autophagy-associated genes have 
been reported in colon cancer, colorectal cancer, serous 

ovarian cancer, and hepatocellular carcinoma [30, 32–34]. 
For instance, following our results, Mo and colleagues 
recently reported a nine-autophagy-related signature 
(CAPN2, ATG16L2, TP63, SIRT1, RPS6KB1, PEX3, 

 

 
 

Figure 7. Risk scores of 22-autophagy gene signature were significantly associated with survival in the Bile and Lee cohorts. 
The distribution of risk score (A), Kaplan-Meier survival curve (C), and ROC curve (E) for the Bile cohort. The distribution of risk score (B), 
Kaplan-Meier survival curve (D), and ROC curve (F) for the Lee cohort. 
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ATG5, UVRAG, NAF1) based on relapse-free survival in 
patients with resected stage I-III colon cancer [30]. This 
gene signature successfully distinguished patients at a 
significantly increased risk of early relapse from those at 

low risk [30]. When we compared our gene signature 
with Mo’s, few genes were in common between the two 
datasets, suggesting that the contributing autophagy-
associated genes were tumor type-specific. 

 

 
 

Figure 8. The nomogram to anticipate prognostic probabilities in TCGA-LUAD. (A) The nomogram for predicting OS developed 
TCGA-LUAD cohort (training set). (B–C) The calibration plots for predicting 3-year (B) and 5-year survival (D) in the training set. The calibration 
plots of 3-year (D) and 5-year survival (E) in the GSE30219 lung cancer cohort (testing set). The x-axis and y-axis represented nomogram-
predicted and actual survival, respectively. The solid line indicated the predicted nomogram and the vertical bars represent a 95% confidence 
interval. 
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Bioinformatic approach uncovered that the 22-gene 
signature mainly associated with the PI3K-AKT 
signaling pathway, the VEGF signaling pathway, EGFR 
tyrosine kinase inhibitor (EGFR-TKI) resistance, 
apoptosis, and ubiquitin-mediated proteolysis in LUAD. 
Interestingly, tons of studies have found that autophagy 
plays a part in the EGFR-TKI resistance of tumor cells 
[11–14, 35]. EGFR-TKI induces autophagy through the 
suppression of the PI3K/AKT/mTOR signaling pathway, 
which in turn saves tumor cells from the harm of EGFR-
TKIs [14]. Inversely, inhibition of autophagy overcame 
the resistance of tumor cells to EGFR-TKIs [14]. There 
is also numerous evidence supporting the interplay 
between autophagy and apoptosis [36–38]. Autophagy 
may either promote or hinder apoptosis. 
 
On the one hand, autophagy facilitates cells to survive 
the stressful condition by providing essential nutrients 
and eliminating damaged organelles; on the other hand, 
excessive autophagy may lead cells to death, namely 
autophagic cell death (ACD) [37, 39]. Some molecules 
regulating both apoptosis and autophagy may underlie 
the crosstalk between these two processes. For instance, 
Beclin-1 is known to interact with anti-apoptotic Bcl-2 
protein to suppress both autophagy and apoptosis at 
basal levels. However, upon nutrient starvation, Beclin-1 
was released from the binding to Bcl-2, and in turn, 
formed an autophagic complex with VPS34 and other 
molecules to promote autophagy progression; 
meanwhile, the resulting phosphorylated Bcl-2 
prevented apoptosis by binding to Bax [40]. 
 
Interestingly, apoptotic protein caspases were found to 
be involved in the regulation of autophagy [41]. 
Activated caspases could cleave autophagy-associated 
proteins (e.g., Beclin-1, ATG5, and p62), thereby 
inhibiting autophagy [42]. Several lines of evidence 
suggested that the understanding of the crosstalk 
between autophagy and apoptosis in NSCLC may 
facilitate clinicians to make better therapeutic strategies. 
Salinomycin was reported to induce apoptosis of 
NSCLC cells through inhibiting the AKT1-mTOR 
signaling pathway, accompanied by the activation of 
autophagy; blockage of autophagy augmented 
salinomycin-mediated apoptosis, suggesting that the 
autophagic response plays cytoprotective roles [43]. It 
was also the case with anti-EGFR treatments, as 
mentioned above. Autophagy inhibitors have been 
demonstrated to increase the sensitivity of NSCLC cells 
to EGFR-TKIs [35]. Moreover, the molecular interplay 
among apoptosis, autophagy, and proteasomal protein 
degradation pathway are also well documented [38, 44]. 
Consistently, GSEA analysis also indicated the 
involvement of mTOR, VEGF, and ubiquitin-mediated 
proteolysis, and further discerned the participation of 
cell cycle, DNA replication, the p53 signaling pathway, 

the insulin signaling pathway, and lysosome in the 
development of LUAD. 
 
Lastly, we developed a nomogram to predict individuals’ 
clinical outcomes. A nomogram is a steady and credible 
tool to quantitatively measure risk on an individual basis 
by combining and delineated risk factors, which has been 
used for oncology prognoses, including NSCLC [21–25]. 
A nomogram generates a statistical predictive model 
presented in a graph, conferring points to each factor 
such as age, gender, and TNM stage in the clinical 
setting. By summarizing all the points, this model yields 
a numerical possibility for an individual regarding a 
clinical outcome, such as overall survival (OS), relapse, 
and medication nonadherence. Apart from traditional 
clinicopathological features (e.g., TNM stage, tumor size, 
and histological subtype), risk score derived from the 
gene signature could also be incorporated into a 
predictive nomogram model to better predict clinical 
outcomes [28–30, 45, 46]. Mo et al. reported a 
nomogram to predict 3-, 5-, and 7- year relapse-free 
survival in colorectal cancer with the inclusion of a 
prognostic score calculated from autophagy-gene 
signature [30]. The combination of the autophagy-gene 
signature and prognostic factors achieved better 
prognostic performance than each one alone [30]. Xiong 
and colleagues demonstrated the improved prognosis 
prediction of colorectal cancer with the introduction of a 
lncRNA-microRNA-mRNA signature [29]. The multi-
RNA-based signature exhibited high prognostic accuracy 
than the TNM stage. Moreover, as demonstrated by the 
calibration curve, the nomogram adopting both the RNA 
signature and conventional prognostic factors could 
accurately predict 3-year and 5-year survival probabilities 
[29]. Despite the popularity of the integration of gene 
signature and traditional prognostic factors in predicting 
prognosis of colon cancer, the application of this strategy 
in the NSCLC is striking limited [28]. Wang and 
colleagues demonstrated a novel lymph node metastasis-
related gene signature to forecast OS for LUAD patients 
with lymph node metastasis and the fine use of a 
nomogram combining gene signature with 
clinicopathological features [28]. Consistently, in the 
current study, we indicated that a nomogram, including a 
22-autophagy gene signature, could well predict 3- and 5- 
year survival possibilities of LUAD patients. 
 
In conclusion, we identified a prognostic 22-autophagy 
gene signature based on TCGA and GEO lung cancer 
cohorts. This gene signature was an independent 
predictor of prognosis. A nomogram based on the gene 
signature and clinicopathological feature could accurately 
predict a 3- and 5-year survival probability for individual 
lung cancer patients. Our finding suggests that the 22-
autophagy gene signature may help facilitate 
personalized medicine in the clinical setting. 
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MATERIALS AND METHODS 
 
Selection of autophagy-associated genes 
 
Autophagy-associated genes were retrieved by searching 
the GeneCards website (https://www.genecards.org/) 
with the term “autophagy.” A relevance score was used 
to indicate the strength of the correlation between genes 
and autophagy activity, ranging from 0 to 100. Lager 
scores represent the stronger associations. Genes with 
association score >7 were taken into as autophagy-
associated genes. 
 
Acquisition of lung cancer datasets 
 
Both raw RNA-sequencing (RNA-seq) datasets and 
clinical characteristics of TCGA lung cohorts  
were downloaded from the TCGA website (https://portal. 
gdc.cancer.gov/). R version 3.6.0 software was used to 
normalize and process the data. GSE31210, GSE30219, 
GSE3141, and GSE3141 datasets were obtained from the 
Gene Expression Omnibus (GEO, https://www. 
ncbi.nlm.nih.gov/geo/) for the validation studies. 
 
Identification and validation of the prognostic gene 
signature 
 
Univariate Cox proportional hazard regression analysis 
was conducted to screen the autophagy genes 
significantly associated with overall survival (OS) of 
TCGA-lung cancer cohorts. Identified OS-associated 
genes were used to develop prognostic multiple-gene 
signatures. Autophagy-associated gene signatures 
(minimal length best performing multivariate models) 
were built for OS. The least absolute shrinkage and 
selection operator (LASSO) Cox regression method was 
adopted to construct multivariable models with 
autophagy-related genes using the “glmnet” package for 
R [47, 48]. LASSO regression achieves dimension 
reduction of high-dimensional data by restricting the 
sum of the absolute value of coefficients to be smaller 
than a predetermined value. As a result, variables with a 
relatively small contribution would be conferred a 
coefficient of zero. The best model was determined by 
maximizing model performance and minimizing the 
number of features (i.e., genes). Only genes with 
nonzero coefficients in the LASSO regression model 
were chosen to further calculate the risk score [49]. We 
computed risk score for each patient using the following 
formula: risk scores 1 Coefj Xjn

j== ∑ ∗ , with Coefj 

indicating the coefficient and xj representing the relative 
expression levels of each autophagy-related gene 
standardized by z-score. The median risk score was 
chosen as a cutoff value to separately dichotomize 
TCGA-LUAD and -LUSC cohorts. The prognostic gene 

signature was verified in the four independent lung 
cancer cohorts (GSE31210, GSE30219, GSE3141, and 
GSE8894) [16]. The same formula was used to calculate 
risk scores in GEO datasets, as in the TCGA datasets. 
 
Pathway analysis 
 
The functional annotation of Gene Ontology (GO), 
including biological process, cellular component, and 
molecular function, was performed using the open 
access WebGestalt tool (http://www.webgestalt.org) 
[50, 51]. The same tool was also used to implement the 
KEGG pathway enrichment analysis. Top results  
with the false discovery rate (FDR) ≤0. 05 were 
considered noteworthy. The enriched pathways and 
processes were visualized in the volcano plot, in which 
the x and y axis indicated the enrichment ratio and  
the log of the FDR for all the functional categories  
in the database [50, 51]. Next, we conducted Gene  
Set Enrichment Analysis (GSEA) to uncover the 
signaling pathways and biological processes in  
which differentially expressed genes between high and 
low risk subgroups were enriched (http://software. 
broadinstitute.org/gsea/). 
 
Development of nomogram 
 
Age, gender, stage, T, N, M, and risk score were used 
to construct a nomogram, using the survival and the 
rms package for R. Following that, calibration curves 
were plotted to evaluate the concordance between 
actual and predicted survival. Moreover, the 
concordance index (C-index), ranging from 0.5 to 1.0, 
was computed to assess the model performance for 
predicting prognosis was measured. The value of 0.5 
and 1.0 represents a random chance and an excellent 
capacity for predicting survival with the model, 
respectively. 
 
Statistical analysis 
 
All statistics were executed using the R software 
(Version 3.6.0; https://www.R-project.org). x2 test was 
used to check the association of risk scores with clinical 
characteristics. Kaplan-Meier curves were plotted and a 
log-rank test was used to check the significant difference 
in OS between groups. Univariate and multivariate Cox 
proportional hazard regression analysis was also 
performed to access the association between risk score 
and OS. The Receiver Operating Characteristic (ROC) 
analysis was used to examine the sensitivity and 
specificity of survival prediction using the gene signature 
risk score. An area under the ROC curve (AUC) served 
as an indicator of prognostic accuracy. A P-value of less 
than 0.05 was set as statistically significant for all the 
analyses. 

https://www.genecards.org/
https://www.genecards.org/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.webgestalt.org/
http://www.webgestalt.org/
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
http://software.broadinstitute.org/gsea/
https://www.r-project.org/
https://www.r-project.org/
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 

 
 

Supplementary Figure 1. Kaplan-Meier survival curves regarding the clinical features in TCGA lung cancer cohorts. Survival 
curves for LUAD (A, C, E, and G) and LUSC (B, D, F, and H) were exhibited on the left and right panels, respectively. 
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Supplementary Figure 2. mRNA expression profiles of 148 autophagy-associated genes in TCGA lung cancer cohorts. Gene 
expression profiles for LUAD (A) and LUSC (B) were exhibited in the up and low panels, respectively. 



www.aging-us.com 11461 AGING 

 
 

Supplementary Figure 3. Genetic alteration of genes included in the gene signatures (TCGA, PanCancer Atlas). (A) Genetic 
alteration of the 22 genes in the TCGA-LUAD cohort. (B) Genetic alteration of the 11 genes in the TCGA-LUSC cohort. 
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Supplementary Table 
 
 
Supplementary Table 1. Characteristics of TCGA lung cancer cohorts. 

  LUAD LUSC 
Cases  490 488 
Age    
 ≤65 237 189 
 >65 253 299 
Gender    
 Female 266 127 
 Male 224 361 
Stage    
 Stage I 261 238 
 Stage II 117 156 
 Stage III 79 83 
 Stage IV 25 7 
T(Tumor)    
 T1 166 110 
 T2 258 285 
 T3 45 70 
 T4 18 23 
N(Lymph Node)    
 N0 317 312 
 N1 92 126 
 N2 68 40 
 N3 2 5 
M(Metastasis)    
 M0 322 400 
 M1 24 7  
 MX 140 77 

 


