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INTRODUCTION 
 
Skeletal muscle comprises approximately 40% of total 
body weight and contributes significantly to multiple 
bodily functions [1]. Since energy in the form of 
adenosine triphosphate (ATP) is required for all muscle 
actions, skeletal muscle’s efficient functioning is directly 
associated with its intact energy metabolism [2]. 
Mitochondria are the powerhouse of the cell and their 
main function is ATP production. Dysregulation in  

 

mitochondrial oxidative phosphorylation is closely  
related to muscle atrophic diseases, including the 
muscular dystrophies, sarcopenia, and cachexia [3–5]. 
Skeletal muscle that accompanies these diseases is 
manifested by the loss of skeletal muscle oxidative 
capacity, defined by the ability to oxidize nutrients to 
obtain energy [6]. Conversely, improving mitochondrial 
function brings beneficial effects on muscle oxidative 
capacity in disease states, thus contributing to improved 
muscle health and whole-body health [7]. As such, the 
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ABSTRACT 
 
The aims of this study were to investigate whether the inhibitory effect of Leucine (Leu) on starvation-induced 
protein degradation was mediated by its metabolite β-hydroxy-β-methyl butyrate (HMB), and to explore the 
mechanisms involved. The results showed that the beneficial effects of Leu on protein degradation and the oxygen 
consumption rate (OCR) of cells were observed at low levels (0.5 mM) rather than at high levels (10 mM). However, 
these effects were inferior to those of HMB. Moreover, HMB was able to increase/decrease the proportion of MyHC 
I/MyHC IIb protein expression, respectively. In these KICD-transfected cells, Leu was approximately as effective as 
HMB in inhibiting protein degradation and increasing the OCR as well as MyHC I protein expression of cells, and 
these effects of Leu were reverted to a normal state by mesotrione, a specific suppressor of KICD. In conclusion, 
HMB seems to be an active metabolite of Leu to suppress muscle protein degradation in a starvation model, and the 
mechanisms may be associated with improved mitochondrial oxidative capacity in muscle cells. 
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characterization of compounds that can improve 
mitochondrial function and increase the oxidative 
capability of muscle fibers could provide the foundation 
for the development of therapeutic nutraceuticals that 
attenuate muscle atrophy. 
 
Leucine (Leu), a branched-chain amino acid (BCAA), 
has been viewed as a regulator of mitochondrial 
function and oxidative capacity of muscle fibers [8, 9]. 
Evidence for this is provided by observations that 
mitochondrial density and oxidative capacity of C2C12 
myoblasts are enhanced in response to Leu treatment 
(0.1-0.5 mM) [10]. Similar results are also obtained in 
β-hydroxy-β-methyl-butyrate (HMB, a Leu metabolite)-
treated C2C12 myotubes and older adults [11–13]. 
More interestingly, we recently found that HMB (50 
μM) is more superior than Leu (0.5 mM) in effectively 
improving mitochondrial function of C2C12 myotubes 
[12]. However, these in vitro studies were mainly 
performed under anabolic conditions. No study has 
systematically compared the effects of Leu and its 
metabolites on mitochondrial function under catabolic 
conditions. Moreover, it remains unclear whether 
improved mitochondrial function stimulated by Leu and 
its metabolites is accompanied by increased oxidative 
capability of muscle fibers and muscle health. 
Therefore, further investigation is certainly warranted. 
 
Interestingly, both Leu and its metabolites (α-
ketoisocaproate (KIC) and HMB) are capable of 
ameliorating protein degradation in skeletal muscle [14–
18]. Furthermore, our recent studies demonstrate for the 
first time that the inhibitory effects of HMB (50 μM) on 
protein degradation is more potent than Leu (0.5 mM, a 
concentration within a range that is physiologically 
relevant) [19]. The mechanism of HMB action is 
associated with PI3K/Akt signaling pathway [19–21]. 
Intrigued by these interesting observations, we asked 
whether the protective effect of HMB is still more 
effective than that of Leu when its treatment 
concentration is far beyond physiological limits, and 
whether HMB mediates the inhibitory effect of Leu on 
protein degradation. 
 
Therefore, in the present study, we investigated the 
effects of Leu (within or above a range that is physio-
logically relevant) versus KIC and HMB on protein 
degradation and mitochondrial function in C2C12 
myotubes under catabolic conditions. Our results showed 
that the regulatory effects of HMB on protein degradation 
and mitochondrial function are more potent than those of 
Leu (within a range that is physiologically relevant, but 
not above this range). Then, to determine whether HMB 
mediates these effects of Leu, we over-expressed the 
enzyme α-keto isocaproate dioxygenase (KICD, a key 
enzyme required for the conversion of Leu to HMB) in 

C2C12 cells. Effectively, Leu potentiated its effects on 
protein degradation and mitochondrial function in these 
transfected cells. Taken together, our results seem to 
suggest that Leu effects on muscle protein degradation 
and mitochondrial function are in fact mediated by the 
metabolite HMB under our experimental setting. 
 
RESULTS 
 
HMB was superior to Leu and KIC in effectively 
ameliorating starvation-induced muscle protein 
degradation in C2C12 myotubes 
 
As shown in Figure 1A–1D, treatment with Leu or KIC 
at the concentration of 10 mM increased the protein 
degradation rate (11.24% and 10.04%, respectively), the 
protein expression of MuRF1 (22.39% and 25.37%, 
respectively), and the 3-MeHis concentration (10.21-
fold and 2.79-fold, respectively) (P < 0.05) in 
comparison with the control group. When used at a 
concentration of 0.5 mM, Leu or KIC induced a 
reduction in the protein degradation rate (14.06% and 
16.06%, respectively), the protein expression of MuRF1 
(20.90% and 17.91%, respectively), and in the 3-MeHis 
concentration (12.30% and 21.02%, respectively) (P < 
0.05) compared to control group. The protein 
degradation rate, the protein expression of MuRF1, and 
3-MeHis concentration were significantly decreased (P 
< 0.05 for all) by 19.27%, 49.25% and 27.96%, 
respectively, after HMB treatment. Additionally, we 
observed significant decreases in the percentages of 
both early and late apoptotic cells with 50 μM of HMB 
treatment compared to control group (Figure 1C, P < 
0.05). Therefore, among Leu, KIC, and HMB, HMB 
inhibited protein degradation to the greatest extent. 
 
Leu, KIC, and HMB differently affected mRNA  
and protein expression of skeletal  muscle  fiber 
type-related genes 
 
In this starvation model, to explore the effects of Leu 
and its metabolites on muscle fiber characteristics, we 
analyzed the relative mRNA abundance and protein 
expression of myosin heavy chain isoform (MyHC I, IIa, 
IIx, and IIb) in C2C12 myotubes. Compared to the 
control group, HMB upregulated the mRNA abundance 
of slow-twitch fiber-related genes MyHC I and MyHC 
IIa (2.34-fold and 2.55-fold, respectively; P < 0.05), 
whereas it downregulated the mRNA abundance of the 
fast-twitch fiber-related gene MyHC IIb (31.73%,  
P < 0.05, Figure 2A). Consistently, we found that HMB 
elevated MyHC I protein expression and reduced MyHC 
IIb protein expression (P < 0.05, Figure 2B). These 
results suggest that HMB induces a fast-twitch to slow-
twitch transition in myotubes. Furthermore, the 10 mM 
Leu group significantly increased the gene and protein 
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expression of MyHC IIb relative to the control group  
(P < 0.05, Figure 2). 
 
Leu and HMB effects on mitochondrial function of 
C2C12 myotubes 
 
In this starvation model, to determine the effect of Leu 
and its metabolites on mitochondrial respiration, OCR 
was analyzed using a SeaHorse XF analyzer in C2C12 
myotubes. In this study, the greatest increase in the 
OCR of cells occurred in the HMB group, followed by 
0.5 mM Leu and KIC (Figure 3A). In detail, as shown 
in Figure 3B, in comparison with the control group, 
Leu (0.5 mM) and HMB treatment increased basal 
mitochondrial respiration by 1.40-fold and 1.74-fold (P 
< 0.05), enhanced ATP production by 1.57-fold and 
1.71-fold (P < 0.05), augmented the spare respiration 
capacity (SRC) by 1.46-fold and 2.09-fold (P < 0.05), 
and elevated the NMR by 1.52-fold and 1.27-fold (P < 
0.05), respectively. These parameters were not 

significantly different between the control group and 
other groups (P > 0.05). Additionally, the H+ leak and 
Max of HMB-treated myotubes were elevated by 2.11-
fold and 1.97-fold (P < 0.05), respectively, compared 
to the control group, whereas Leu treatment (0.5 mM or 
10 mM) failed to exert any effects (P > 0.05). 
Furthermore, we measured the protein expression of 
several regulators of mitochondrial biogenesis. As 
revealed in Figure 3C, HMB treatment induced obvious 
increases in the protein expression of p-AMPK and 
PGC-1α. 
 
Protein degradation and mitochondrial function in 
C2C12 myotubes over-expressing KICD 
 
Since KICD is mainly expressed in the liver and kidney, 
the conversion of Leu to HMB is limited in muscle and 
mainly occurs in the liver [24, 32]. Therefore under our 
in vitro experimental conditions, we hypothesized that 
the regulatory effects of Leu on protein degradation and 

 

 
 

Figure 1. Effects of Leu (0.5 mM or 10 mM), KIC (0.5 mM or 10 mM), and HMB (50 μM) on (A) protein degradation, (B) media 3-MeHis,  
(C) MAFbx protein expression, (D) MuRF1 protein expression, and (E) cell apoptosis in C2C12 myotubes. Results are expressed as mean ± 
SEM. Different letters (a, b, c) indicated significant differences (P < 0.05). CON, control; HMB, β-hydroxy-β-methyl butyrate; KIC, α-
ketoisocaproate; Leu, leucine. 
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Figure 2. Effects of Leu (0.5 mM or 10 mM), KIC (0.5 mM or 10 mM), and HMB (50 μM) on the gene expression of myosin heavy chain 
isoform (MyHC I, IIa, IIx, and IIb) (A) and the protein expression of MyHCI and MyHC IIb (B). Results are expressed as mean ± SEM. Different 
letters (a, b, c) indicated significant differences (P < 0.05). CON, control; HMB, β-hydroxy-β-methyl butyrate; KIC, α-ketoisocaproate; Leu, 
leucine. 



www.aging-us.com 11926 AGING 

mitochondrial function would be due to the limited rate 
of Leu metabolism to HMB in muscle, suggesting HMB 
as an active Leu metabolite. To explore the effects of a 
higher rate of conversion of Leu to HMB, we transfected 
C2C12 cells with an expression plasmid, termed pKICD 
coding for the rat enzyme, and the KICD expression was 
confirmed by RT-PCR and western blot (Figure 4A). The 
KICD levels were significantly higher in pKICD C2C12 
transfected cells than in untransfected cells. 

The effects of Leu or HMB treatment on protein 
degradation and mitochondrial function were assayed on 
C2C12 cells over-expressing KICD under non-amino-
acid deprivation. In these transfected cells, HMB retains 
the capability to inhibit protein degradation and to 
improve mitochondrial function. Interestingly, treatment 
with 0.5 mM Leu induced a significant reduction in 
protein degradation and a marked increase in 
mitochondrial function (P < 0.05, Figure 4B–4C). This 

 

 
 

Figure 3. Effects of Leu (0.5 mM or 10 mM), KIC (0.5 mM or 10 mM), and HMB (50 μM) on (A–B) oxygen consumption rate (OCR) of C2C12 
myotubes and (C) protein expression of AMPKα and PGC-α. (A) Represents mitochondrial OCR curves obtained from different conditions. (B) 
Basal, basal respiration; H+ leak; ATP, ATP production; Max, maximum respiration; SRC, spare respiration capacity; and NMR, non-
mitochondrial respiration of C2C12 myotubes under different treatments, respectively. Results are expressed as mean ± SEM. Different 
letters (a, b, c) indicated significant differences (P < 0.05). CON, control; HMB, β-hydroxy-β-methyl butyrate; KIC, α-ketoisocaproate; Leu, 
leucine. 
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effect is prominent given that Leu addition to C2C12 
non-transfected myotubes induced a marked lower effect 
in comparison with HMB in protein degradation and 
mitochondrial function (Figures 1 and 3). 

Following this, we measured the effects of Leu or HMB 
treatment on MyHC I expression in the pKICD 
transfected cells (Figure 4D–4E). In these cells, 
incubation of the cells with Leu increased the protein 

 

 
 

Figure 4. Effects of Leu and HMB on protein degradation, the oxygen consumption rate (OCR), and MyHC I protein 
expression and immunofluorescence intensity in KICD-transfected C2C12 myotubes. (A) RT-PCR and Western blot analysis of KICD 
from non-transfected and transfected C2C12 myotubes is shown. (B) Protein degradation rates in the presence of 0.5 mM Leu and 50 μM 
HMB. (C) The OCR of cells in the presence of 0.5 mM Leu and 50 μM HMB. (D) MyHC I protein expression in the presence of 0.5 mM Leu and 
50 μM HMB. (E) MyHC I immunofluorescence intensity in the presence of 0.5 mM Leu and 50 μM HMB. Results are expressed as mean ± 
SEM. Different letters (a, b, c) indicated significant differences (P < 0.05). CON, control; HMB, β-hydroxy-β-methyl butyrate; KIC, α-
ketoisocaproate; Leu, leucine. 
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expression and the fluorescent density of MyHC I at 
levels similar to those in HMB-treated cells. 
 
To confirm the importance of KICD on Leu-induced 
effects, protein degradation was assayed in the presence 
of 1 μM mesotrione (a specific KICD inhibitor) [33] in 
the C2C12-transfected cells (Figure 5). Pre-incubation 
with mesotrione blocked the reduction in protein 
degradation due to Leu, whereas it has no significant 
effects on HMB-treated cells (Figure 5A). Meanwhile, 
pre-incubation with mesotrione significantly reduced 
the effects of Leu on the OCR of cells to the levels 
observed in the untransfected cells (Figure 5B and 5C). 
In the presence of mesotrione, HMB retained the 
capability to enhance the OCR of these transfected cells 
in comparison with the control group (P < 0.05). 
Alterations in the protein expression and the fluorescent 
density of MyHC I showed the same trends as those of 
mitochondrial respiratory function. 
 
DISCUSSION 
 
Muscle atrophy occurs mainly due to a larger increase 
in protein degradation. And intriguingly, the present 
study provides evidence that treatment with low 
concentrations of Leu or KIC (0.5 mM) inhibited 
starvation-induced protein degradation in C2C12 
myotubes, while further increasing Leu or KIC 
concentrations to 10 mM failed to elicit an additional 
response. Although the reason for this observation is not 
clear, it is possible that an excess supply of Leu results 
in an imbalance of BCAAs, which may further promote 
protein degradation and impair muscle growth. Because 
the same enzymes are required for BCAAs in their 
catabolic pathways, and the excess supply of one 
BCAA may affect the requirements of the other BCAAs 
[34]. These results suggest that Leu or KIC can be 
regarded as possible adjuncts in nutritional programs to 
ameliorate protein degradation, but Leu or KIC may be 
ineffective at very high doses. Our current results fit 
well with a recent study reporting that Leu or KIC at 
concentrations of 0.5 mM is capable of repressing 
proteolysis, although their inhibitory effects are inferior 
to those of HMB [19]. However, contrary to what was 
observed in the present study, previous studies pointed 
out that the concentrations of at least 5 mM were 
required for Leu to increase protein synthesis [35]. 
Therefore, our understanding of Leu effects on protein 
metabolism was further advanced with the identification 
of its high levels not as a potent regulator for protein 
degradation under catabolic conditions, and we 
employed the Leu concentration of 0.5 mM in the 
following experiments. 
 
Moreover, several previous studies report that unlike in 
healthy states, Leu has little ability to reduce the protein 

degradation rate of muscle cells under catabolic states 
[36, 37]. Consistently, the current results showed that 
the inhibitory effects of Leu were weak and inferior to 
those of HMB. Unlike Leu, HMB is potent repressor of 
proteolysis in catabolic states [26, 38, 39]. Total protein 
degradation induced by tumor necrosis factor-α and 
angiotensin II was completely attenuated by HMB (50 
μM) [25]. Based on these observations, we hypo-
thesized that in catabolic states, the transamination of 
Leu to HMB in muscle cells is the limiting step to 
obtain a complete response on protein degradation. To 
test this possibility, we transfected C2C12 myotubes 
with a plasmid pKICD to over-express this key enzyme 
for the conversion of Leu to HMB, since KICD is 
mainly expressed in the liver [23]. In addition, the use 
of this muscle cell line would allow us to differentiate 
between systemic and muscle specific Leu and HMB 
effects. 
 
Over-expressing KICD in C2C12 myotubes exerted a 
key role in the potentiation of Leu effects since in these 
transfected cells, Leu decreased protein degradation to 
the levels comparable with HMB. These results could 
be specifically due to the catabolism of Leu to HMB, 
since Leu-induced suppression of protein degradation 
was blocked by the pre-incubation with mesotrione, a 
specific inhibitor of KICD [40]. Accordingly, these 
results clearly highlight the importance of KICD as an 
essential enzyme mediating Leu action and support that 
Leu’s effects on protein degradation are mediated by its 
metabolite HMB. 
 
Mitochondria exert important roles in maintaining 
proper oxygen consumption and ATP production for 
cellular metabolic activity. Alterations in mitochondrial 
function and ATP deprivation have been demonstrated 
to be required to trigger muscle wasting [41, 42]. In 
particular, dysfunctional mitochondria damage mito-
chondrial constituents (such as the electron transfer 
chain) [43] and trigger catabolic signaling pathways that 
feed-forward to the nucleus to promote the activation of 
muscle atrophy [44], ultimately leading to cell death. 
Interestingly, HMB has been proposed as a nutritional 
supplement to increase muscle health by improving 
mitochondrial function, since HMB was reported to 
promote mitochondrial biogenesis of myotubes by about 
50% [7, 11, 45]. Furthermore, HMB has been recently 
reported to be superior to Leu in effectively enhancing 
mitochondrial function in C2C12 myotubes under 
anabolic states [12]. Consistently, the current study 
found that in a starvation model, HMB-treated C2C12 
myotubes exhibited significant improvement in 
mitochondrial function, as manifested by elevated basal 
respiration, H+ leak, ATP production, maximum 
respiration, and SRC. Moreover, these effects of HMB 
were more potent than those of Leu or KIC (0.5 mM).
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Figure 5. Effects of Leu and HMB on protein degradation, the oxygen consumption rate (OCR), and MyHC I protein 
expression and immunofluorescence intensity in KICD-transfected C2C12 myotubes in the presence of 1 μM mesotrione. (A) 
Protein degradation rates in the presence of 0.5 mM Leu and 50 μM HMB. (B–C) The OCR of cells in the presence of 0.5 mM Leu and 50 μM 
HMB. (C–D) MyHC I protein expression and immunofluorescence intensity in the presence of 0.5 mM Leu and 50 μM HMB. Results are 
expressed as mean ± SEM. Different letters (a, b, c) indicated significant differences (P < 0.05). CON, control; HMB, β-hydroxy-β-methyl 
butyrate; KIC, α-ketoisocaproate; Leu, leucine. 
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Mitochondrial SRC is defined as the difference between 
basal ATP production and its maximal activity and is 
considered to be an important aspect of mitochondrial 
function [46]. In general, high energy-requiring tissues 
such as skeletal muscle in aging exhibit decreased 
mitochondrial SRC [47, 48]. A cell with a larger SRC 
has the ability to generate more ATP and to overcome 
more stress [49]. Consistent with the current study, 
previous studies have also demonstrated that 
mitochondria-targeting therapy by improving mito-
chondrial respiration is efficient in blocking muscle 
atrophy [42]. Therefore, we speculated that increased 
mitochondrial function contributed to the cytoprotective 
effects of HMB treatment against muscle wasting. 
Further confirmation comes from the findings that 
HMB treatment upregulated the protein expression of 
AMPK and PGC-1α. AMPK-dependent activation of 
PGC-1α is central for improving mitochondrial 
function, thus protecting skeletal muscle from atrophy 
[7, 50, 51]. However, a seemingly paradoxical finding is 
that AMPK activation induced by higher concentrations 
of Leu and KIC (10 mM) failed to increase PGC-1α 
expression. We speculate that this inconsistency may be 
due to cellular BCAA imbalance induced by higher 
concentrations of Leu and KIC. It is known that BCAA 
can affect several synthetic and catabolic cellular 
signaling cascades resulting in altered phenotypes in 
mammals [52]. These findings indicate that interplay 
between BCAA imbalance and PGC-1α activity 
requires further study. Consistently, high levels of Leu 
or KIC (10 mM) failed to elicit beneficial effects on 
mitochondrial oxidative capacity. Since improved 
mitochondrial function exerts a protective role in 
muscle health partially via increasing the proportion of 
slow-twitch fiber types, which are gradually decreased 
in response to muscle atrophy [53–56], we further 
assessed the proportion of slow-twitch fibers in  
muscle cells. As expected, HMB-induced improvement 
in mitochondrial function was accompanied by 
increases in the proportion of slow-twitch fibers, as 
evidenced by upregulated protein expression of MyHC I 
and downregulated protein expression of MyHC IIb. 
This novel finding suggests that HMB may suppress 
muscle protein degradation by elevating the proportion 
of oxidative fibers and improving mitochondrial 
function. 
 
To further confirm whether HMB is the active Leu 
metabolite in regulating mitochondrial function, we 
assayed the OCR of KICD-transfected C2C12 myotubes 
in a starvation model. Similar to alterations in protein 
degradation, over-expressing KICD in C2C12 myotubes 
potentiated Leu effects on mitochondrial function since 
in these transfected cells, Leu was approximately as 
effective as HMB in promoting mitochondrial oxidative 
capability. These results could be specifically attributed 

to the conversion of Leu to HMB since Leu failed to 
elicit any response when myotubes were pre-incubated 
by mesotrione. These findings are in accordance with 
the recent literature reporting that Leu’s effects on 
muscle mitochondrial function were blocked upon 
KICD knockdown [11]. In addition, alterations in 
MyHC I mRNA and protein expression as well as 
immunofluorescence signals showed the similar trends 
as those of mitochondrial function. These observations 
indicate that HMB plays beneficial roles in muscle 
protein degradation partially via improving mito-
chondrial oxidative capacity. 
 
In summary, our study points out that HMB is more 
effective than Leu in inhibiting protein degradation and 
improving mitochondrial oxidative capacity in a 
starvation model. Over-expressing KICD in C2C12 cells 
augments Leu response and highlights the catabolism of 
Leu to HMB in the suppression of protein degradation 
and in the improvement of mitochondrial function in 
muscle. These results suggest that in a starvation model, 
HMB is the active metabolite of Leu and mediates its 
effects on protein degradation via improving 
mitochondrial oxidative capacity in muscle cells. These 
findings may facilitate the development of strategies 
with HMB supplementation to treat muscle atrophic 
diseases. Although these intriguing results were obtained 
in a model cell line system, it is tempting to propose that 
HMB may serve as an important tool for patients 
suffering from these atrophic diseases to counteract 
muscle loss. 
 
MATERIALS AND METHODS 
 
Materials 
 
L-Leu (purity ≥ 98.5-101.0%), KIC (purity ≥ 98 %), and 
HMB free acid (purity ≥ 95%) were purchased from 
Sigma (St. Louis, MO, USA). TRIzol, DNase I, and 
SYBR Green detection kit were purchased from 
Invitrogen (Life Technologies, Carlsbad, CA, USA). 
Protease inhibitor cocktail was purchased from Roche 
(Basel, Switzerland). Phosphatase inhibitors were 
purchased from Thermo Scientific (Waltham, MA, 
USA). Phosphate Buffered Saline (PBS) and Trypsin 
were also purchased from Wisent. Mesotrione (2-(4-
Mesyl-2-nitrobenzoyl)-1,3-cyclohexanedione)-Pestanal©, 
catalogue No. 33855) was obtained from Fluka (St. 
Louis, MO, USA). The growth medium used for cell 
growth consisted of high glucose Dulbecco’s modified 
Eagle’s medium (DMEM) purchased from Gibco (Life 
Technologies, Grand Island, NY, USA), 10% fetal 
bovine serum (FBS) (Gibco #26050-088), and 1% 
Antibiotic-Antimycotic (Wisent #450-115-EL). The 
medium used for differentiation of cells was  
high glucose DMEM supplemented with 2% horse 
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serum (HS) (Gibco #26050088) and 1% Antibiotic-
Antimycotic. 
 
Cell culture 
 
C2C12 myoblasts were grown in growth medium  
(which contains 0.8 mM L-Leu) and incubated at 37°C 
in 5% CO2. When the myoblasts reached about 80% 
confluency, they were differentiated into myotubes  
by exchanging the growth medium with the 
differentiation medium. The differentiation medium 
was changed daily until myotubes were fully formed. 
After differentiation, myotbues were starved in serum-
free medium for 6 h prior to each treatment and the 
following experiments were performed in this 
starvation medium. 
 
Treatment of cells 
 
The dosages of reagents were 0.5 mM or 10 mM for 
Leu, 0.5 mM or 10 mM for KIC, and 50 μM for HMB. 
Leu, KIC, and HMB were freshly diluted in medium 
before treatment of cells. The concentrations of 0.5 
mM and 10 mM were selected as treatment 
concentrations for Leu as they represent physiological 
and non-physiological concentrations, respectively 
[22]. Since Leu can be reversibly transaminated to 
form KIC, the concentrations for KIC were the same 
as Leu. 50 μM was selected as an appropriate 
concentration for HMB since about 5~10% KIC can be 
converted into HMB [23, 24] and since this 
concentration has been reported to achieve the greatest 
inhibitory effects on protein degradation [25–27]. 
After 6 h starvation (a starvation model has been 
reported in our recent studies [19]), myotubes were 
then exposed to serum-free media containing indicated 
agents for 24 h. 
 
Determination of protein degradation 
 
Protein degradation was measured as previously 
described with the following modifications [15, 19]. 
C2C12 cells were plated on 6-well tissue culture plates, 
differentiated for 6 days, and then starved for 6 h in 
serum-free medium. Cells were treated with Leu (0.5 
mM or 10 mM), KIC (0.5 mM or 10 mM), and HMB (50 
μM) and incubated for 24 h. Subsequently, wells were 
thoroughly washed two times with ice cold PBS, and 
then incubated for 6 h in buffer A (0.1% bovine serum 
albumin (BSA), 10 mM HEPES, 2 mM pyruvate, and 5 
mM glucose). After 6 h incubation, the medium was 
collected, and the tyrosine concentration was measured 
by the HPLC method, the cell monolayer was washed 
two times with ice cold PBS, and the cells were dissolved 
in 1 N NaOH. Proteins were measured by the Lowry 
method using BSA as the standard. 

3-Methylhistidine level assay 
 
HPLC was used to measure the amount of 3-
Methylhistidine (3-MeHis) in media as previously 
described [28]. 
 
Cell apoptosis assay 
 
The annexin V–fluorescein isothiocyanate (FITC) and PI 
dual staining technique was used to assess cell apoptosis 
as previously described [29]. Briefly, the supernatant 
was removed and 1 mL of 70% cold ethanol was slowly 
added during vigorous mixing. Samples were stored at 
4°C. Cells were washed once with ice-cold PBS and re-
suspended in 1 mL of staining reagent containing 50 
mg/mL PI and 100 mg/mL RNase for 30 min in the 
dark. Then, harvested cells were stained PI/Annexin-V-
FITC (KeyGEN, Nanjing, China) according to the 
manufacturer’s instructions and analyzed by flow 
cytometry (BD FACSCalibur, USA). The degree of 
apoptosis was quantified as a percentage of the annexin 
V-positive and PI-negative (annexin V+/PI−) cells. 
 
KICD overexpression 
 
To investigate whether HMB is an active Leu metabolite 
in inhibiting protein degradation, we overexpressed 
KICD by using the HPD-pEGFP-N1 plasmid, which was 
obtained from Weier biotechnology co., LTD 
(Changsha, China). The pEGFP-N1 plasmid was 
transfected into C2C12 myoblasts along with control 
vector. After 24 h, the myoblasts were introducted into 
myotubes with differentiation medium. Then the 
myotubes were treated with 0.5 mM Leu and 50 μM 
HMB and incubated for 24 h. The samples were 
collected for further analysis. 
 
Quantitative real-time PCR 
 
Total RNA extracted from C2C12 myotubes was 
reverse-transcribed into cDNA using reverse 
transcriptase (Takara, Tokyo, Japan) as previously 
described [30]. The primer sequences used for PCR are 
designed using the Oligo 6.0 software program. Relative 
expression of target genes was calculated by the 2-ΔΔCt 
method [31]. 
 
Western blotting analysis 
 
Total protein extracted from C2C12 myotubes was used 
to measure the relative protein levels of MAFbx 
(Proteintech, 12866-1-AP), MuRF1 (Proteintech, 55456-
1-AP), MyHC I (Santa Cruz, sc-53089), MyHC IIb 
(Proteintech, 20140-1-AP), p-AMPKα (Cell signaling 
technology, 2535s), and PGC-α (Santa Cruz, SC-13067) 
by the western blotting technique as previously 



www.aging-us.com 11932 AGING 

described [30]. Secondary antibodies were purchased 
from Thermo Scientific Inc (Waltham, MA, USA).  
The bands of the protein were visualized using a 
chemiluminescent reagent (Pierce, Rockford, IL, USA) 
with a ChemiDoc XRS system (Bio-Rad, Philadelphia, 
PA, USA). The resultant signals were quantified using 
Alpha Imager 2200 software (Alpha Innotech Corp., San 
Leandro CA, USA), and the data were normalized with 
the inner control. 
 
Oxygen consumption rate measurement 
 
For measurements of mitochondrial respiration, oxygen 
consumption rates (OCR) was measured as previously 
described [12]. Briefly, C2C12 myocytes were seeded  
at density 2.5×105 in 24-well culture plate from 
SerHorse Bioscience (Billerica, MA, USA), incubated, 
differentiated, and treated with indicated agents for 24 h 
as described earlier. After treatment, the cells were 
washed twice and media was replaced with XF Assay 
medium from SeaHorse Bioscience containing 4.5 g/L 
glucose, 1.0 mM sodium pyruvate, and 4.0 mM 
glutamine (adjusting the pH to 7.35 ± 0.05 using 1 mol/L 
NaOH). OCR measurements were performed using 
SeaHorse Bioscience XF Analyzer. All experiments 
were performed at 37°C. After measurement of basal 
respiration, oligomycin (1 μM), proton ionophore 
carbonylcyanide p-trifluoromethoxyphenylhydrazone 
(FCCP) (1 μM), and rotenone/antimycin A (1 μM) were 
added sequentially to measure ATP production, maximal 
respiratory (Max), and nonmitochondrial respiration 
(NMR), respectively. Thereafter, these respiratory 
parameters of mitochondrial function were calculated. 
 
Immunofluorescence and confocal microscopy 
 
After treated with indicated agents for 24 h, C2C12 
myotubes were harvested using cold PBS, followed by 
fixing in 4% paraformaldehyde in PBS at 4 ºC for 10 
min. Then, fixed myotubes were attached on slides 
using of the CytoSpin Cytocentrifuge (Yingtai Ltd, 
Changsha, China) with spinning down at 1500 rpm for 5 
min, followed by drying for 15 min. The slides 
containing myotubes were washed with PBS for 3×2 
min, followed by treatment with 5% (vol/vol) Triton-
x100 for 5 min. Then, the slides were washed with PBS 
for 3×2 min, followed by being incubated with 5% BSA 
solution to block background staining for 30 min. The 
slides were incubated in a humidity chamber with 
MyHC I (sc-53089, Santa Cruz, USA, 1:100) diluted in 
5% BSA solution at 4 ºC overnight. The slides were 
washed 3×2 min with PBS prior to 1 h incubation with 
1:1000 dilutions of the CL594-conjugated goat anti-
rabbit IgG (H+L) (Proteintech). Nuclei were stained 
with SlowFade Gold antifade reagent containing 4’,6’-
diamidino-2-phenylindole (DAPI) (Sigma, Shanghai, 

China). Images were taken using confocal electroscope 
(Zeiss, Germany). 
 
Statistical analysis 
 
Data obtained from the present study were analyzed by 
one-way ANOVA using the SAS 8.2 software package, 
followed by a Duncan’s multiple-range test to 
determine treatment effects. The results were expressed 
as mean ± SEM and regarded to achieve statistical 
significance at P < 0.05. 
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